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Abstract: Heavy metal(loid)s and organic contaminants are two major groups of pollutants in soils.
The fate and exposure of such pollutants in soil depends on their chemical properties, speciation, and
soil properties. Soil properties and processes that control the toxicological aspects of pollutants include
temperature, moisture, organic matter, mineral fractions, and microbial activities. These processes
are vulnerable to climate change associated with global warming, including increased incidences
of extreme rainfall, extended dry periods, soil erosion, and a rise in sea level. Here we explain
evidence that relates to the effects of climate change-driven soil processes on the mobility, transport,
and storage of pollutants in soil. The review found that changes in climate could increase human
exposure to soil contaminants mainly due to processes involving soil organic carbon (SOC), surface
runoff, redox state, and microbial community. However, uncertainties remain in relation to the extent
of contaminant toxicity to human health, which is linked to global change drivers.

Keywords: soil contaminants; soil process; climate changes; ecotoxicity of pollutants

1. Introduction

Manipulation of naturally available chemicals and the synthesis of new compounds has played
a vital role in human development. However, conflict between the ever-increasing development
of human civilization and the need to reduce chemical pollutants has become apparent since the
development of the discipline of environmental toxicology in the middle of the 20th century [1].
Economic growth and the demand for goods has brought up approximately 80,000 synthetic chemicals
over the last 50 years’ time [2]. Synthetic chemicals produce goods and services for us but also
emit contaminants to the environment. Every year 2000–3000 new chemicals are reviewed by the
United States Environmental Protection Agency (US-EPA) and many are identified as hazardous [3,4].
The Earth’s critical zone is defined as the “heterogeneous, near-surface environment in which complex
interactions involving rock, soil, water, air, and living organisms regulate the natural habitat and
determine the availability of life-sustaining resources” [5]. Soil dominates the flow and transformation
of mass, energy, and genetic information [6], and therefore significantly dominates the above- and
below- ground systems of this zone. In the Anthropocene, the age defined as that with significant
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human impacts on the environment, this critical zone is a front-line natural resource vulnerable
to climate change [7]. The empirical and research data across various geochemical spaces suggest
that climate change is one of the ten planetary boundaries [8] potentially impacting environmental
sustainability [9–14]. Excessive production of greenhouse gases (GHG) (e.g., CO2, N2O, NOx, CH4,
etc.), which lead to global warming, changes the frequency and intensity of rainfall, drought, and the
intensity of storms and soil erosion; all of which affect soil properties and functions [15,16].

Climate change and its effects on public health are related to the exposure of environmental
contaminants and pathogens that are discussed in a previous communication [17]. Also, in the marine
food webs such relations revealed that the bioaccumulation and transfer of several contaminants
(e.g., persistent organic pollutants) were altered due to climate change [18]. On the other hand,
soil systems control several processes in performing ecological functions. In a recent review,
Lipczynska-Kochany [19] stressed the effect of climate changes on humic substances, which had
a potential link to the fate of contaminants in soil, surface, and groundwater. The author concluded
that climate changes might enhance the biodegradation of humic substances and thus soil contaminants
could be desorbed and re-immobilized [19]. Indeed, the exposure of soils to pollutants is critically
important to aspects of the ecotoxicity of pollutants in soils [20]. However, from a toxicological
perspective, the occurrence, fate, and transport of chemical pollutants in soils are largely driven by
the properties of the pollutants; however, the properties of soils are also important. Therefore, in this
review, we develop an understanding of the dynamics of pollutants in soils with various properties,
subject to a range of processes under the climate change influences.

2. Understanding Soil Properties and Processes and the Dynamics of Chemical Pollutants

Toxic substances including heavy metal(loid)s, such as arsenic (As), mercury (Hg), lead (Pb),
cadmium (Cd), and chromium(VI) (Cr(VI)) and organic contaminants, such as polycyclic aromatic
hydrocarbons (PAHs) (e.g., benzo[a]pyrene), persistent organic pollutants (POPs) (e.g., polychlorinated
biphenyl) or emerging pollutants (e.g., per- and poly-fluoroalkyl substances, polybrominated
biphenyls, etc. that present unique issues and challenges to environmental quality) have been detected
in soils [21]. The available fractions of such pollutants in soil are often toxic to soil organisms and
humans [22–24].

Adsorption and desorption of chemical pollutants in soils largely depend on pH, redox conditions,
and the available chemical species. Inorganic ions, such as HPO4

2−, NO3
−, Cl−, and SO4

2− and organic
ligands, such as citrate, oxalate, fulvic, and dissolved organic carbon (DOC) can affect pollutant
behavior in soils [25–27]. Inorganic ions can influence adsorption through their interactions with
metal(loid)s. For example, metal(loid)s complexed with such ions exhibit less sorption affinity to
soils [28] than free ions, but free states of some ions (e.g., PO4

3−) in soil increase net negative surface
charge and therefore increase the sorption of cationic metal(loid)s [29]. Soil organic constituents,
such as soil organic matter (SOM), which is often estimated and expressed as soil organic carbon
(SOC) [30], play an important role in the sorption of soil pollutants [31]. Some SOM, such as humic
substances have a high affinity for metal cations [32]. The heavy metal ion-binding ability of humic
substances is attributed to the negative surface charge, particle size, and diffusion coefficient of humic
acid as well as the content of oxygen-containing functional groups, including -OH, -COOH, -SH,
and -C=O [33,34].

Another important process in soil is the microbial activity relative to the fate and transformation
of pollutants. For example, the microbial degradation of petroleum hydrocarbons [35] is experienced
as the natural clean-up process of organic pollutants. Also, heavy metal(loid)s can be remediated
using the soil-grown plants (commonly accepted as “phytoremediation”), particularly with the
microbial-assisted rhizosphere [36].
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3. Changing Environments–Climate Change and the Soil Properties and Processes

The principal climate change factors and results that affect soil properties and processes are (i)
presence of GHG, (ii) air and soil warming or extreme surface temperature, (iii) extreme rainfall and
saline water intrusion, and (iv) land and surface soil erosion [7,37–39]. The processes that can induce
changes in soil properties and processes include temperature, hydrologic cycle, soil moisture, salinity,
redox condition, and the organic carbon fractions of soil systems [20,40–45].

The IPCC [46] reported a significant increase in GHG, mainly during the last 60 years. For instance,
during the past six decades, the anthropogenic CO2 emitted to the atmosphere was 2040 ± 310 Gt,
and the amount of CH4 and N2O followed with the similar trend [46] (Figure 1). However, a large
portion of GHG is deposited in the terrestrial systems, such as soil and plants, which contribute soil
organic carbon (SOC) pool in soil or increase N uptake in plant systems [47,48]. Soils are impacted by
climate changes and the total environmental process involves air and water systems as well (Scheme 1).
Climate change has induced an increase of global mean surface temperature by about 0.3–0.6 ◦C
in the past century and is expected to remain elevated [46]. The warming of the atmosphere in the
Anthropocene, which was particularly evident from 1983 to 2012 [46], is likely to have increased
temperature in soils [16].

Figure 1. A global average greenhouse gas concentration trend. The figure was retrieved from the
Intergovernmental panel on climate change with permission (IPCC [46]).

Temperature significantly influences the organic carbon dynamics of soils, imposing substantial
loss to “no detectable” loss of soil organic carbon [49]. A considerable uncertainty exists on the soil
carbon loss due to global warming as reported in the literature. The focus of our review avoids an
explicit explanation of this aspect. However, Crowther et al. [50] reported that up to 1 ◦C of soil surface
warming would lead to the loss of carbon (30 ± 30 petagrams to 203 ± 161 petagrams) from the upper
soil horizons (0–15 cm). Furthermore, modeling predicted that the effects of elevated temperatures
would slightly increase soil organic carbon (SOC) but decrease dissolved organic carbon (DOC) in the
soils of forest systems, but both would decrease in agricultural soils [38]. Using a carbon-nitrogen
model, Peng et al. [51] reported an overall decrease of SOC in the forest soils of north-eastern China
in response to increased CO2 emissions and air temperature. However, in that case, the net primary
productivity and carbon biomass were increased in the forest soil. In addition to temperature, other
climate change-affected factors, such as hydrological process and the relative abundances of organic-C
substances, influence the sensitivity of SOC decomposition in soils [52].

In the case of precipitation, the dissolved organic carbon (DOC) is affected higher than SOC [38].
The leaching rate of DOC is an important factor for assessing the effect of precipitation. Water-logging
in an extreme precipitation event affects the carbon flux in soil and the plant’s uptake of ambient CO2.
Also, topsoil erosion, in this case, could accelerate this loss of particulate organic carbon and DOC [53].

The dynamics of pH in soil is slow in comparison to freshwater and ocean. The acidification
of waterbodies is due to the anthropogenic addition of sulfuric and nitric acids (mainly through the
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oxidation of sulfur and nitrogen gas) and increased amount of atmospheric CO2 [54]. On the other
hand, ion exchange by the available soil minerals buffers the soil pH and therefore the pH of soil
does not change rapidly. From the climate change perspective, increased rainfall could accelerate the
leaching of basic cations and thus increase soil acidity [55]. The deposition of atmospheric N coupling
with acidic species (SO3

2−, NO3
−, etc.) has a positive effect on soil acidification. In a field simulation

experiment, Zheng et al. [56] reported that these acid dispositions decreased soil respiration by 0.23%,
which were further exacerbated up to 1.54%, while both acid and N deposition occurred in soil.

As discussed in Sections 2 and 3, the contamination of soils by pollutants and their transport,
diffusion, and persistence in soils are affected by physical, chemical and biological properties and
processes [57] (Scheme 1). In the following sections, we will expound linkages among climate
change drivers, soil processes, and the exposure of chemical pollutants from empirical and predictive
research perspective.

Scheme 1. The impact of climate change drivers on the soil dynamics, resulting in further risk to
the exposure of chemical pollutants. The left circle indicates that climate changes and any factors
responsible for climate changes influence soil properties and processes directly and via the atmosphere
and hydrosphere. On the other hand, the right circle represents the physical, chemical, and biological
processes involved in that soil system and the effects of these on the contaminants’ fate and exposure.

4. Effects of Climate Change on Soil Properties and Processes and the Exposure of Pollutants

Under climate change scenarios, direct impacts on the fate of contaminants have been reported,
especially on their transportation between the environmental compartments of the atmosphere,
water, soil, sediment, and biota [18]. This occurs through physical, chemical, and biological
processes, including possible dilution, concentration, and bifurcation of contaminants [20,45,58].
In addition, under climate change-induced alternations of soil conditions, climate can change surface
runoff, air-surface exchange, wet and dry deposition, dissolution by rain, and the transformation of
contaminants (e.g., photolysis, biodegradation, oxidation in air, and dilution) [20,43,59].

4.1. Soil Temperature, Water, and Erosion

In relation to the warming world, the changed and changing transport pathways of contaminants,
including volatilization, precipitation, surface runoff, degradation and transformation have been well
documented during the past decade [20,45,58] (Scheme 2). Briefly, the major events are as follows:
(i) In the atmosphere: persistent organic pollutants and particulate matters can be deposited into
the soil and water by increased rainfall; (ii) Polar, ice and glacier region: increased temperature
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could increase the release and mobility of persistent organic pollutants towards the downstream;
(iii) On soil surface: volatilization and degradation of organic contaminants are positively correlated to
temperature; on the other hand, increased precipitation might increase runoff of contaminants from
soil to water system; and (iv) In waterbodies: warming conditions could enhance the volatilization,
hydrolysis, and microbial degradation of contaminants, while both temperature and acidic condition
of water favor solubility of heavy metals in water (Scheme 2).
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Scheme 2. Generalized view of the impact of extreme warming and precipitation on the dynamics of
the chemical pollutants. The upside arrow (↑) indicates “increased” while downside arrow (↓) is for
“decreased”. T = temperature, P = precipitation, A = acidification, POPs = persistent organic pollutants,
and PM = particulate matter. The content in the scheme is presented in detail and further instructed in
the text. The scheme was modified after Noyes, et al. [20] with copyright permission of Elsevier Ltd.

Soil warming due to climate change has resulted in an increased transportation of contaminants
in soils [60]. For example, simulating geomembrane assisted contaminant remediation in Arctic
landfill resulted in elevated temperature (+2 ◦C) in the soil surface and geomembranes increased the
mobility of benzene, toluene, ethylbenzene, and xylene (BTEX) [61]. Also, higher soil surface and air
temperatures, and faster wind speed enhanced the volatilization and dispersion of volatile organic
and inorganic contaminants such as methane, ammonia, nitrous oxide, sulfides, and mercury from
soils to air [43]. For example, the elevated temperature can increase the methylation rate of inorganic
mercury in soil [62] and water and sediment [18,63]. In an anoxic environment, Yang et al. [62] reported
that arctic soil temperature increased from −2 ◦C to +8 ◦C and favored the methylation of freshly
added inorganic mercury by 10-fold, mainly as a result of methanogenesis. In the case of elemental
mercury (Hg0), a 1 ◦C–3.7 ◦C increase of surface soil warming in a climate change vulnerable region
(Qinghai-Tibet Plateau permafrost) could increase the concentration of Hg0 by 9.4–40% in the surface
soil (0–5 cm). The conversion from a less bioavailable form to a more bioavailable form of mercury
is reported for mainly aquatic systems due to the increase of temperature [43,63]. However, due to
the very limited evidence that exists of the bioavailable species of mercury in various soils, it is not
known how the more bioavailable and toxic species of mercury (e.g., methylmercury) will affect
humans. Using environmental biological receptors, the toxic effects of some other metal(loid)s have
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been reported [61]. For example, comparing two air temperatures (20 and 25 ◦C) and using a drought
simulation (50% and 30% moisture of water holding capacity of soil), González-Alcaraz and van
Gestel [64] reported that in an extreme scenario (30% moisture but 25 ◦C temperature) invertebrates in
watercourse soil could accumulate more Cd, Pb, and Zn in their body and become severely damaged.
In the Arctic, except for the above-mentioned changes of contaminant pathways, the temperature
warming may shift ice/snow into water or trigger the thawing of previously permanently frozen
soil layers and hence have immense consequences for physical and biological systems [58,65,66].
Such thawing/melting might trigger the exposure of previously frozen compounds in the arctic
soils, alter hydrological flow paths, accelerate soil erosion and an increase in the surface runoff of
contaminants [65]. In mining sites, downstream could also face an inflow of pollutants and increased
temperature could accelerate this mobility. For example, temperature-induced snowmelt and its runoff
carried a burden of Zn, SO4, and Mn to the riven basis from the adjacent mining sites in the Colorado’s
rocky mountain areas [67]. In the case of organic contaminants, the volatilization could increase
biotransformation, photodegradation, and biodegradation so that their removal or degradation occurs
more favorably than transportation by surface runoff [20,43,58–60,68,69]. Some pesticides could also
cause a higher level of oxidative stress to the soil organisms (e.g., earthworms) while they are exposed
to the elevated ambient temperature (25 ◦C compared to 20 ◦C) [70].

Precipitation also strongly affects the transfer of contaminants in soils [45]. In areas affected by
climate change, the annual precipitation may decrease [42], increase [43,59] or extremely fluctuate
depending on the latitude and regional atmospheric circulation pattern [71]. For example, with a
climatic condition of increased precipitation, the concentration of perfluorooctanesulfonic compound
(PFOS) was projected to be lower in urban soil and freshwater due to the surface runoff flow towards
the rural soil and coastal habitat [45]. In some cases, increased flooding caused by climate change
(e.g., rain surge) may lead to the mobilization of toxic chemicals (e.g., pesticide) stored in the soil or
the remobilization of chemicals adsorbed on the soils [17]. For example, Pb and Cd appeared in soils
of floodplains after the flooding of the river Meuse during the winter of 1993–1994 [17]. Increased
soil moisture can increase the exposure, accumulation and ecotoxicity of inorganic mercury (e.g.,
Hg(II)) [72] in soils when they have been impacted by mercury deposition from the air. Submergence
by flooding or rising sea level leads to oxygen deprivation and reducing conditions in soils (low redox
potential, Eh) [37,41,43]. This affects the speciation, degradation, mobility, transport and cycling of
various contaminants [37,43]. Arsenic methylation can occur in flood-affected anaerobic soils [73].
Another compelling example is that the reducing condition in coastal soils caused by sea or river
water inundations induces a reductive dissolution of geogenic As-bearing mineral oxides and thereby
releases As [37].

On the other hand, surface runoff and erosion, caused by the increased intensity and frequency
of rainfall, storms or flooding, can increase the transportation of contaminants outside the parental
soils. Dioxins, heavy metal(loid)s, cyanide, hydrophobic organics, ammonium, and hydrocarbons,
from contaminated soils can be transported in a runoff to uncontaminated water and soil [40–43].
Intense rainfall events enhance the transfer of agrochemicals particularly from arable land to aquatic
ecosystems with surface runoff and erosion [42]. On the other hand, soil tilling and crop harvesting can
cause the release of soil particle-bound contaminants like steroids, pesticides, and polycyclic aromatic
hydrocarbons from soils to air [74]. The hotter and drier summers as a result of climate change can
worsen the contaminant release during these processes. At mining sites, more contaminant runoff or
interruption of mining activities can occur following a possible disruption of the hydraulic structures
like dams, ditches, spillways and holding ponds during heavy rainfall and flooding events under
climate change scenarios [69].

4.2. Soil Organic Carbon

Climate change can alter organic carbon cycling and SOC dynamics in soils, leading to changes
in the bioavailability of contaminants that are bound to SOC [66]. Increased soil temperature can
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accelerate the biological degradation of SOC, leaching, and surface runoff of DOC from soils, resulting
in decreases in both SOC and DOC concentration in agricultural systems [38,43,60,75]. The released
SOC-bound contaminants after erosion and contaminants bound to DOC in suspended particles in
runoff increase accession of soil contaminants to water bodies [43,75]. Organic matter degradation
showed little temperature sensitivity in a highly weathered clay-rich mature tropical forest soil due
to the chemical protection of C by mineral surfaces, whereas a higher temperature sensitivity would
be expected for the SOM in a freshly tilled temperate prairie soil [52]. Studies by Giardina and
Ryan [76] also demonstrated that SOC decomposition rates in mineral forest soils were not dependent
on temperature alone. Similarly, Melillo et al. [77] showed that the acceleration of organic matter
decomposition by soil warming is limited and short-lived for mid-latitude forests, which was attributed
to the small labile SOC pool. Hence, global warming may increase SOC-bound contaminant release
from some soils, but this is not necessarily the case for all soils, especially mineral soils.

4.2.1. SOC for the Exposure of Organic Contaminants

Increasing concentrations of organic matter in soil reduce the toxicity of some contaminants as they
interact and diffuse into the organic matter [78,79]. Semple et al. [78] proposed that the bioavailability
and extractability of hydrophobic organic contaminants can be represented by four fractions: (i) readily
available, (ii) degradable and removal fraction, (iii) recalcitrant, and (iv) non-extractable fraction
(Figure 2). Certain factors manipulate those fractions. For instance, organic matter and soil texture
influence how much of a contaminant would be readily available or lost from the soil system over
time. Similarly, microbial composition and abundance in soils and the oxidative and catalytic status
(e.g., light intensity and soil enzyme) could determine the extent of removal and degradation of the
readily available fraction of contaminants. As proposed in Figure 2, some consequences of climate
change such as the alteration of SOC and microbial composition have governing roles in the model
proposed by Semple et al. [78]. For example, in the global warming scenario, a sequestered portion of
contaminants may become labile or the labile portion becomes more readily bioavailable [80]. A rise
in temperature, generally, increases the toxicity of organic contaminants and is likely to enhance the
rates of chemical and photodegradation [20] by increased light intensity. The oxidized but partially
degraded final product could be more toxic than the original substrate [81].

Figure 2. Various states of hydrophobic organic contaminant’s bioavailability and extractability and
the responsible soil properties that are vulnerable to climate changes. The figure is modified after
Semple, et al. [78]. For the explanation of each line graph, see the text in Section 4.2.1.
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4.2.2. SOC and Release of Metal(loid)s

The availability and mobility of heavy metals depend on their adsorption and desorption in
soils [82], which are strongly related to SOM (see Section 2). SOM affects the bioavailability and
retention of heavy metals (e.g., Cd, Pb, Cu, Ni and Zn) in an exchangeable or complex form [83].
SOM acts either as a source of organic chemicals to the pore water or as a sink, strongly binding with
heavy metals [84–87].

Warming and CO2: As discussed in Section 3, increased temperature [88] and CO2 enrichment [89]
both exert almost equipotential influence on organic carbon contents in soil, but in opposite directions.
Thus globally, in warmer areas where increased atmospheric CO2 concentration is dominating,
SOC content is expected to increase, whereas decreased SOC content may be observed in cooler
regions where the effect from an increased temperature dominates [90]. Therefore, changes in soil
temperature may affect the behavior of metal(loid), such as the adsorption-desorption process in soil,
indirectly through their impacts on SOM [91,92]. Such changes in SOM have been reported to be
responsible for a higher load of heavy metal (e.g., total Hg) in soil subjected to CO2 enrichment [93].
It is generally agreed that the decomposition of SOM due to the increased temperature could reduce
cation exchange capacity and therefore the soil lost capacity to retain heavy metal (research reviewed
by Rajkumar et al. [94]). In other words, biological receptors, such as plant, could uptake more
heavy metals of these available fractions in soil solution [94]; the insights are discussed in Section 4.5.
Other variable soil properties such as pH and ionic strength relative to climate changes [55] could
influence the extent of reaction between organic matter (e.g., humic acids) and metal ions and also the
stability constant of metal-humic complexes [95].

Soil erosion: Climate change-induced soil erosion would increase the loss of surface soil that
contains significantly greater amounts of SOM than deeper layers. Some scenarios predict a greater
frequency and intensity of storms, which will have significant impacts on soil erosion [96]. This could
lead to a significant loss of surface soil in any single year, 70–300 t ha−1 in comparison with typical
losses of 60–80 t ha−1 (bare fallow), 8 t ha−1 (under a crop) and 0.24 t ha−1 (under pasture) [97].
This could lead the transport and migration of pollutants bound to SOC at transboundary scale
and thus has become a great concern for human health [98–100]. In addition to its effect on SOM,
soil erosion results in losses of the finer mineral fractions from the surface soil so that the suspended
sediment has a greater sorption capacity for metals than the original soil (see Section 4.4.1 below).

4.3. Soil Nitrogen and Phosphorus

There is compelling evidence on the effect of chemical pollutants (e.g., heavy metals) on the
N and P cycle due mainly to the interruption of microbial functions in these processes by those
pollutants [101–103]. However, the coinciding phenomena has rarely been addressed. Considering key
climate change effects, such as increased temperature, precipitation, and soil erosion, the soil runoff
that contains N and P nutrients can cause eutrophication in lakes and coastal waters [104].

In a long-term study (May 2004 to April 2005) in the Mediterranean shrubland, Sardans et al. [13]
reported a decrease of soil enzyme activities, such as urease, protease and β-glucosidase, which might
further manipulate N cycle in soil. For example, applying artificial soil warming, these researchers
argued that a ~5 ◦C to 1 ◦C increase of soil temperature might result in an excess amount of NO3

−,
but a low amount of NH4

+ species. Drought imposed a similar interference in the soil enzymes but the
net loss/gain of N in the soil was not concluded [13]. On the other hand, the soil deposition of the
atmospheric NOx and N2O can change soil processes such as leaching, acidification, mineralization
of organic matter, and nitrification rates [105]. It is not known whether the nitrogen stock and the
speciation of nitrogen in soil have a direct effect on the mobility contaminants. However, the process
related to N has a direct effect on the N accumulation on plants [13]. Nitrogen addition caused
increased growth and dominance of some grass types and has been linked to increased rates of soil
acidification and a loss of species diversity [106–108]. These two changes with soil pH and loss
of biodiversity impact the mobility of heavy metals and the biologically mediated degradation or
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transformation of chemical pollutants. For example, in a study of a Dutch forest, van Breemen and
van Dijk [109] reported that excess deposition of atmospheric N might cause soil acidification and
therefore some pollutants (e.g., Al3+) could become more available to the biological receptors living in
soil. Further on, the fate of soil biological processes and contaminants is discussed in Section 4.5.

Extreme climatic conditions could increase P runoff from land erosion in soil. For example, the
higher precipitation and lower temperature in winter in northern temperate coastal regions led to a
3.3–16.5% higher amount of P runoff [110]. Apart from the nutrient pollution of such runoff [104],
the fate of pollutants present at the point of soil erosion can also be influenced. For example, in soils
contaminated with a high concentration of heavy metal(loid) ions, the presence of HPO4

2− along
with other anions such as SO4

2−, CO3
2− and OH− cause the immobilization of metal(loid)s [111–113].

McGowen et al. [114] observed a decrease in the leaching of Cd, Pb, and Zn due to the formation of
metal(loid)-P precipitates. However, in the P-limiting condition in agricultural soil (e.g., paddy
soil), iron plaque is formed, which immobilizes heavy metals (e.g., Cd) [115]. In the case of
temperature-induced soil acidification, this metal-binding complex is affected and thus a greater
amount of metals becomes available to the plant-root system [116]; it further influences the plant
accumulation of metals, such as the translocation of metals from root to shoot and disperses them into
the shoot systems.

4.4. Soil Minerals and the Exposure of Chemical Pollutants

4.4.1. Clay Minerals

Clay minerals are naturally occurring phyllosilicate found in soil, sediments, and rocks.
The history of clay mineralogy in soil is several decades old and still prospective in earth science [117].
The clay minerals in soil are complex and dependent on the weathering process in specific types of
geological status; however, commonly occurring or exploring clay minerals in soils are mica, illite,
smectite, kaolinite, etc. Descriptions of the structure and properties of clay minerals and their modified
products can be found elsewhere [118,119].

There is no conclusive evidence that climate change directly impacts soil clay minerals. However,
their fine particle size and associated organic matter strongly influence the bioavailability, and transport
of pollutants [35,120]. In particular, organo-clay complexes in soil respond to soil warming and the
release of bound heavy metals that may become available in soil [121,122].

Increased soil erosion caused by climate changes [123] causes the loss of clay from the surface of
agricultural soils [124] and affects the transport of chemical contaminants bound to clay fractions [125].
Extreme rainfall and other means of erosion can also leach out dissolved salts from the soil
surfaces that further destabilize the soil due to the lack of conductivity, leading to a loss of clays
from the soil structure through the dispersion of clay particles. The mobility of contaminants is
subjected to such destabilization of soil [41]. Clay minerals suspended in runoff could increase the
adsorption of pollutants from solution to the solid phase. On the other hand, emerging research
has shown the potential synergistic interaction between bacteria and clay minerals [126] for the
enhanced bacteria-modulated biodegradation of organic pollutants such as PAHs [35,127–130],
and pesticides [35,131].

Another aspect of the effects of climate change is the photodegradation of organic pollutants
due to the direct effects of soil warming and light intensity [81,132]. The authors argued that partial
degradation creates toxic intermediate metabolites in soils. In this instance, the photodegradation
changes were affected by the texture of soil—the more clay minerals in soils the more degradation of
PAH and atrazine [81,132]. However on balance, the benefits of clay minerals in the rhizosphere [133],
for the stabilization of enzymes [134] and carbon in soils [135], might outweigh any detrimental effects
in the challenge of increased radiation at the soil surface resulting from climate change.
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4.4.2. Non-Clay Minerals

In addition to clay minerals, other minerals such as feldspar, carbonates, micas, iron oxides,
sulfides and chlorites [136] influence the behavior of contaminants. Under increased CO2 and
temperature conditions, weathering and dissolution of these minerals might be the key process
to consider [137,138] and hence the sorption and mobility of contaminants in soil. However,
direct evidence is rare in the available literature whether these climate change factors are governing
the fate of such contaminants; rather, pH-mediated contaminant mobility can occur. As discussed
in Section 3, the soil minerals help buffer pH in soil. However, under elevated soil temperature,
the availability of some minerals drops or raises soil pH. For example, dissolution of pyrite,
arsenopyrite and marcasite could generate acidity in soil and thus release mineral-bound heavy
metal(loid)s into the soil solution [40,69]. On the other hand, the presence of other minerals such
as calcite, dolomite, and limestone, dissolution of native and rock dust gypsum or weathering of
aluminosilicate minerals can lead to higher pH that favors the precipitation of oxides and hydroxy
sulfates and binds metals from solution [69].

Another important impact of climate change on soil non-clay minerals relates to flood immersion
or rising sea levels that alter soil hydrological regimes featured by oxygen deprivation and also
lower redox potential (Eh) [37]. Under submerged conditions, the reductive dissolution of As-bearing
Fe- and Mn(hydro)- oxides may occur due to oxygen deprivation [37]. This dissolution caused
elevated levels of arsenic from geogenic and anthropogenic sources along many coasts around the
world, including south and southeast Asia and the United States [37]. However, when high SO4

2− is
present under such anoxic conditions, metals can be immobilized as insoluble sulfides through their
surface complexation. This reduction reaction of sulfate inhibited the dissolution of metal-bearing
Fe oxides [37]. Flooding and the drying cycle of soils leads to fluctuating soil redox conditions,
exerting direct or indirect influence on trace metal dynamics through changing soil pH, DOC, and the
chemistry of Fe, Mn, and S minerals [139]. The redox cycling of trace metals and/or their host
minerals determine the immobilization of these inorganic contaminants [140]. When the flooded
soils are dried, the oxidation of reduced solute and solid-phase species occurs. A particular case
is extreme soil acidification caused by pyrite oxidization when flooding recedes or sea level drops.
Such soil acidification may release a range of contaminants including soil adsorbed NH4

+, Al from
clays, and other metal(loid)s such as As, Co, Fe, Mn, Ni, and Zn from pyrite [141].

4.5. Soil (Micro)organisms, Enzymes, and Plant Receptors

Soil microorganisms and enzymes play pivotal roles in the decomposition of organic matter,
nutrient cycling, energy flow, improvements in soil physicochemical qualities as well as pollutants’
transformation [47]. The ecosystem services provided by the microbial community in soils are greatly
influenced by climate drivers due to the fact that the growth and functions of microorganisms
are largely driven by soil temperature and moisture [142,143]. In fact, a projected soil warming
by +4 ◦C in temperate forest could significantly increase (34–37%) soil respiration in whole-soil
(0–100 cm depth) due to the decomposition of decadal-aged carbon [144]. With such insights of
the decomposition of mineral-associated SOC in the subsoil, it will be an interesting future study
to understand the fate (e.g., degradation and re-immobilization) of adsorbed pollutants using the
in situ depth-gradient approach. Under climate change, CO2 enrichment is also thought to have
positive effects on plant productivity and growth, and in reducing heavy metal(loid) accumulation and
increasing phytoremediation [145,146]. The increased photosynthesis and photosynthate allocation
to the root system might increase root exudation and so enhance the bioavailability of contaminants
to plants [147]. Root exudates act as ecological drivers for the microorganisms by supplying them
with carbon and energy, and enhancing hydrocarbon degradation in the rhizosphere [148]. As a
result, a distinct contaminant distribution gradient develops opposite to the gradient of root exudates,
with the least contaminant concentration and the highest exudate concentration close to the roots [149].
The main role of root exudates in petroleum hydrocarbon degradation is a provision of energy
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and nutrients for microbial growth and activity [150]. A recent review by Hussain et al. [151]
demonstrated that the remediation of total petroleum hydrocarbons (TPH) is effective with the
synergies of phytoremediation and bioremediation (collectively called “rhizoremediation”). However,
concern emerges with convincing evidence that soil warming and excess N input to soil impose stresses
on the rhizobial microbial community [152]. In particular, changes in arbuscular mycorrhizal fungi
(AMF) have been reported in several crop systems and the damage to AMF communities could reduce
plants’ capacity to resist chemical pollutants. In addition, increased atmospheric CO2 concentration
may increase soil acidity by an increased input of carbonic acid released from root and microbial
respiration [153,154]. Decreased pH decreases the adsorption of trace metals onto organic matter and
metal oxides [91], thereby increasing their bioavailability and uptake by plants [155,156]. This may
result in higher bioavailability of pollutants to humans and other animals that consume affected
plants [157].

In an in situ experiment using a thermal gradient of 4–40 ◦C in Antarctica, the Arctic, and the
tropics [158] reported that the relative activity of fungal hydrolase enzyme increased with rising
temperature in the soils in polar regions. This indicates the potential for warming climates to lead to
more decomposition of organic molecules in the soil, which is related to the bioavailability of chemical
pollutants in those regions. However, the reverse consequence can also occur if released heavy metals
are toxic. In other words, the interactive effects of heavy metals and soil warming might have negative
impacts on the microbial enzymatic functions [159]. In various contrasting soils, Tan, et al. [159]
reported that higher temperatures, especially in alkaline soils, might cause damage to the alkaline
phosphatase activity of soil microorganism. The mechanisms underpinning such damage could be
the temperature-induced Cd availability that posed an inhibitory effect on microorganisms [159].
Sardans et al. [160] noticed an increased As solubility (67%) and decreased total As (21%) in soil while
soil warming was recorded as a 0.95 ◦C increment at−5 cm soil depth. The higher phosphatase activity
in such warming soil releases a greater amount of soluble phosphorous, and the anion exchange of
arsenate by phosphate increases soil soluble As, hence an available element for the plant’s uptake [160].

However, the overall effects of climate change on the bioavailability of contaminants depends
on the interactions between contaminants, soil factors, and environmental receptors. For example,
during an eight year warming and drought manipulation of a Mediterranean shrubland, drought
increased total Hg concentrations by 350% in soils but had no significant effects on trace element
accumulation in aboveground biomass [160]. Sardans et al. [160] showed increased bioavailability of
heavy metals due to changing environments and soil properties. The authors found that warming
increased aboveground accumulation of Al, As, Cr, Cu, and partially Pb by plant root uptake, and this
increase varied with plant types. Drought increased As (40%) and Cd (55%) in Elaeagnus multiflora
stems, whereas it decreased Cu (50%) in leaves, Ni (28%) in stems and Pb (32%) in leaf litter of Globularia
alypum [160].

5. Conclusions, Challenges, and the Way Forward

In summary, major mechanisms by which climate change influences soil contaminant processes
are the changes in contaminant exposure and alteration of transport pathways related to changes
in precipitation, including surface runoff, precipitation, evaporation, and degradation. The other
primary pathway was that climate change induces changes of soil conditions such as soil temperature,
soil moisture, pH and redox potential, SOC, nitrogen and phosphorus, soil minerals and alter
contaminant’s binding/releasing, oxidation/reduction and species of contaminants. This review
summarized several of such processes that are affected by climate changes (Table 1).
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Table 1. Summary of climate change drivers on soil properties and processes and toxicological aspects
of chemical pollutants.

Properties and
Processes

Potential Impact of Climate
Changes Generalized Toxicological Results Details in

Section

pH

Warming: pH can drop due to
formation of sulfate and rhizosphere
acidification; pH can raise due to
presence of calcite, dolomite or
dissolution/weathering of gypsum
and aluminosilicates

Soil acidification could increase desorption of heavy
metal(loid)s from their mineral-bound complex or
favor re-mobilization

Sections 3, 4.1
and 4.4

Inundation: pH can raise (if pyrite is
formed in the initially during
inundation; pH can drop when flood
recedes or water level drops due to
dissolution of pyrite.
Atmospheric deposition: N coupling
with acid species increase soil acidity

Temperature

Global warming: Increase of soil
temperature; Degradation of SOC
increases/more labile fractions to
microorganisms; microbial feedback
to temperature might be positive

More bioavailability of chemical pollutants;
Biodegradation of organic pollutants might increase;
Dissolution of metals from its substrate

Section 3,
Section 4.1

SOC

Warming: Degradation of SOC
increases/both persistent and labile
fractions are vulnerable

More bioavailability of chemical pollutants Section 3,
Section 4.2

Erosion: Loss of SOC from soil Mobility of chemical pollutants

Moisture/rainfall

Water repellence: Growth of
microorganism decreases; less
vegetation

Longer residence of pollutants Section 3,
Section 4.1,

Section 4.4.2Inundation: Anoxic environment in
soil

Redox controls the mobility of chemical pollutants;
mineral’s dissolution can release toxic metals, such
arsenic

Extreme rainfall pattern: Soil
inundation, surface runoff and salt
imbalance in soil

N and P
Deposition of atmospheric N and load
of P from land-use practice: Increase
of N and P in soils; acidification of soil

(Im)mobilization of metals (e.g., Cd) in
P-supplemented soils; nutrient pollution and surface
runoff

Section 4.3

Clay minerals
Erosion: Loss of surface soils Clay-organic matter disintegration might release heavy

metals; loss of clay could reduce microbial function in
rhizosphere; partial photodegradation could result in a
more toxic metabolite of organic pollutants and thus
increased bioavailability of them

Section 4.4.1Warming: Increase of soil temperature
Intensity of light: Light penetration in
soil is high

Other minerals
(e.g., oxides)

Extreme rainfall pattern: Inundation
of soils affects redox of soils

Redox controls the mobility of chemical pollutants;
mineral’s dissolution can release toxic metals, such as
arsenic

Section 4.4.2
Temperature: Increase of soil
temperature

Microorganisms,
enzyme and

plants

Warming: Microbial activity may
increase but community structure
changes

Biodegradation of organic pollutants may be increased
but the contaminant-specific microbial functions could
be affected; plant uptake of metal(loid)s is affected due
to climatic influence in rhizosphere

Section 4.4.2

GHG in soil: Community structure
changes

Overall, humanity’s exposure to contaminants could be increased due to climate change. The key
mechanisms for this risk may be the desorption and remobilization of soil contaminants. However,
reaching a conclusion on whether climate changes have any direct effects on the magnitude of chemical
toxicity is difficult due to the limited availability of studies. The extent of identified pathway depends
on both the state and properties of contaminants; these includes the solubility, hydrophobicity and
volatility of the contaminants. From toxicological perspective of soil contaminants, one important factor
is the speciation of contaminants. This review finds limited evidence that few species of contaminants,
such as methylation of mercury and arsenic or metabolites of polycyclic aromatic hydrocarbons or
pesticides, might increase the toxicity risk for humans. This aspect should be studied and priority
contaminants identified. The microbial feedback to climate change could be another key aspect that
should be counted in relation to the fate of chemical pollutants and the exposure of them and their
metabolites to humans. Although our charge in this study is not to review the molecular details of
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the potential change in the microbial community structure due to climate change, we observed that
microbial feedback to the addition of greenhouse gases in soil is the alteration of their community.
Hence, further research should be directed at how these changes at the molecular level influence
the microbial-assisted transformation and degradation of pollutants at the short-and long-term scale.
The knowledge summarized by this review and future insight can pave our way to addressing the
connections between the two critical planetary boundaries that are ‘climate change’ and ‘chemical
pollutants’.
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