
Article

The Ability of Soil Pore Network Metrics to Predict
Redox Dynamics Is Scale Dependent

Thomas Wanzek 1,* , Marco Keiluweit 2, Tamas Varga 3 , Adam Lindsley 1, Peter S. Nico 4,
Scott Fendorf 5 and Markus Kleber 1

1 Department of Crop and Soil Science, Oregon State University, 3017 ALS Building, Corvallis, OR 97331, USA;
adam.lindsley@oregonstate.edu (A.L.); markus.kleber@oregonstate.edu (M.K.)

2 Stockbridge School of Agriculture and School of Earth and Sustainability, University of Massachusetts,
411 Paige Lab, Amherst, MA 01003, USA; keiluweit@umass.edu

3 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory,
Richland, WA 99354, USA; tamas.varga@pnnl.gov

4 Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Building 85B,
Berkeley, CA 94720, USA; psnico@lbl.gov

5 Department of Earth System Science, Stanford University, Via Ortega 473, Stanford, CA 94305, USA;
fendorf@stanford.edu

* Correspondence: wanzekt@oregonstate.edu

Received: 31 August 2018; Accepted: 17 November 2018; Published: 5 December 2018
����������
�������

Abstract: Variations in microbial community structure and metabolic efficiency are governed in part
by oxygen availability, which is a function of water content, diffusion distance, and oxygen demand;
for this reason, the volume, connectivity, and geometry of soil pores may exert primary controls
on spatial metabolic diversity in soil. Here, we combine quantitative pore network metrics derived
from X-ray computed tomography (XCT) with measurements of electromotive potentials to assess
how the metabolic status of soil depends on variations of the overall pore network architecture.
Contrasting pore network architectures were generated using a Mollisol—A horizon, and compared
to intact control samples from the same soil. Mesocosms from each structural treatment were
instrumented with Pt-electrodes to record available energy dynamics during a regimen of varying
moisture conditions. We found that volume-based XCT-metrics were more frequently correlated
with metrics describing changes in available energy than medial-axis XCT-metrics. An abundance of
significant correlations between pore network metrics and available energy parameters was not only
a function of pore architecture, but also of the dimensions of the sub-sample chosen for XCT analysis.
Pore network metrics had the greatest power to statistically explain changes in available energy in
the smallest volumes analyzed. Our work underscores the importance of scale in observations of
natural systems.

Keywords: pore network architecture; pore network metric; computed tomography; soil redox
dynamics; available energy; scale dependence

1. Introduction

Microbial processes within soil have global impacts on carbon and nitrogen cycling, trace metal
mobility, and remediation of contamination with organo-chemicals. Soil conditions inducing anaerobic
metabolisms are among the most significant factors restricting soil carbon decomposition, owing
to a 60 to 95% decrease in respiration relative to aerobic conditions [1]. Anaerobic conditions
can further contribute to the contamination of groundwater systems with naturally occurring
metalloids, such as arsenic. Affected populations in East and Southeast Asia alone are estimated
to be 100 million and rising [2]. An upside of reducing conditions in the subsurface biosphere is the
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facilitation of molecular transformations involved in the decontamination of toxic halogenated organic
compounds. Polychlorinated biphenyls (PCBs) are an example of a widely used organic molecule
turned subsurface contaminant [3]. Commonly believed to be “indestructible”, PCBs have been shown
to be biodegradable via reductive dechlorination [4]. These examples illustrate the importance of a
robust representation of the soil redox state in reactive transport models as well as in earth system
models, yet large uncertainties exist regarding how, and to what extent, the potentially relevant
mechanisms should be included in such models [5].

The historic approach to the problem of representing reducing conditions in models has been
centered on the fact that O2 diffusion rates in liquid water are reduced by up to four orders of
magnitude compared to diffusion rates in gas [6]. This led to the notion that the development of
reducing conditions in soil can be understood based on three major assumptions (for critical discussion
and pertinent references compare [7]):

(a) Oxygen diffusion within aggregate domains can be estimated based on porosity alone;
(b) there is a single critical oxygen concentration at which heterotrophic respiration (the major energy

yielding process in soil) ceases in all organisms; and
(c) oxygen consumption is constant throughout “aerobic” aggregate domains.

However, despite a longstanding recognition of metabolic “hot spots” and “hot moments” in
soils [8,9], none of the modeling strategies explored to date have the capacity to isolate the effect
of either diffusive domain size or spatial void pattern on O2 availability and, by extension, on the
development of spatially-localized reducing conditions. The US Department of Energy sponsored
Community Land Model for instance, lacks features such as subgrid-scale hydrology, anaerobic
microbial carbon metabolism, and aqueous chemistry [10]. Current biogeochemical models [11–13]
are thus resorting to rather general approaches to account for the formation and relative quantitative
importance of (i) aerobic pore volumes with particularly efficient aerobic (O2-dependend) respiration
versus (ii) anaerobic pore volumes with specific functionality (metal reduction, CH4, and N2O
production). None of the existing models have provisions to estimate the spatial abundance of
the metabolically diverse microenvironments that are increasingly observed in soil [14]. Yet, we
know now that form and function of the soil microbial community involved in transformations of
matter and energy are tightly regulated by the pore network architecture [15]. The composition
of the microbial community that resides in soil aggregates is more related to the characteristics of
the intra-aggregate pore structure [16] than to the type of organic substrate available as an electron
donor [17]. These findings coincide with insights that, at the global scale, soil carbon stocks can
be modeled with much greater confidence when the model includes a representation of microbial
metabolic performance [18,19] and they suggest that ‘microbial metabolism is a less significant regulator
of soil organic decomposition than are microbial habitat properties’ (quoted from [20]).

At this point, the scientific community has progressed to a state where the importance of reducing
conditions for soil biogeochemistry has been recognized [21,22], but modeling concepts do not extend
beyond a provision to limit oxygen availability. Current models are thus unable to account for the
formation, spatial abundance, and relative quantitative importance of aerobic pore volumes with
particularly efficient aerobic (O2-dependent) respiration or anaerobic pore volumes with specific
functionality (e.g., Fe3+ reduction, CH4, and N2O production).

We assess that the greatest obstacle towards a robust implementation of soil redox state in models
is a lack of understanding of the process chain leading from (i) variation in climatic parameters (e.g.,
temperature, precipitation), to (ii) soil structure, to (iii) variations in soil redox state, and (iv) to
the resulting physiological disposition and subsequent metabolic performance of the microbiota.
Consequently, the purpose of this manuscript is to offer an initial answer to the overarching
question “How can pore network structure contribute to the propensity of a soil system to become
a heterogeneous mixture of reducing and oxidizing environments?”. To decipher the underlying
mechanisms, we pursued two major objectives:
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(a) constrain the size of the soil volume that is “seen” by the tip of a platinum probe; and
(b) find quantitative, numerical indices of soil structure that can be used to test assumptions about

causality regarding soil structure—redox state relationships.

Electron donors and acceptors vary in their tendency to acquire or release electrons. This
tendency is called the redox potential (E) of a given electron transfer reaction and can be quantified
using the difference in potential energy (∆E) between the donor and acceptor. The availability of
an easy formalism to relate the abundance of electrons (pe) in a system to its redox potential (E)
may have contributed to the longstanding [23] and widespread (for a compilation of applications
consult [24]) practice of treating soils as having a redox potential or electron activity (pe) analogous
to soil proton activity or pH. In an equilibrated reaction, variations in the concentrations of
reduced and oxidized forms of a given reaction pair will modify the measured redox potential as
described by the Nernst equation. However, complex systems, such as soils, are never at chemical
equilibrium and contain many coexisting redox couples with variable rates of production as well
as variable rates of interconversion fluxes. For this reason, soils cannot be considered as having a
unique redox potential [24] and the term should be reserved for the description of specific electron
transfer reactions [25]. Still, soil systems do respond to variations in electron acceptor availability
with measurable and predictable variations in the electromotive potentials sensed by platinum
electrodes [24]. Redox potentials characterize the free energy cost and direction of reactions involving
electron transfer, because ∆E is related to the associated free energy change (∆G) of the reaction via:

∆G = −nF∆E, (1)

where n is the number of electrons transferred and F is Faraday’s constant. In this sense, the potentials
registered by platinum electrodes can be taken as indicative of the amount of energy available through
an “average” electron transfer reaction in a soil at a given redox state.

Our conceptual approach consisted of comparing changes in electromotive potential within
the pore network layout (herein referred to as pore network architecture; PNA) of an intact,
well-aggregated topsoil to that of two artificially generated pore network architectures (PNAs) derived
from the same soil material. To facilitate recognition of the implications of variations in measured
platinum probe potentials, we express changes in measured potentials in terms of the energy available
through an average single electron transfer. To do so, we converted platinum probe potentials to energy
units using Equation (1) and applied the simplifying assumption that organic matter has the overall
donor characteristics of CH2O (Ered = −0.42 V). Following Trumbore, 1997 [26], we acknowledge
that soil organic matter is best represented as a continuum of many different carbon compounds. We
also acknowledge that the “average oxidation state” of soil organic matter tends to be at or close to
zero [27], as in CH2O. Based on these considerations, and on the fact that carbohydrates and lignin
type compounds make up in the order of 70% of organic substrates in soils, we decided to use this
energetic condition of carbon as our arbitrary reference point. We are aware that this amounts to
an operational decision and are ready to concede that in doing so, we are aiming for an illustration
of energetic differences rather than a robust thermodynamic analysis. In this sense, we define the
Available Energy Status (AE) of a pore network as the amount of energy that can be released by the
oxidation of CH2O as the system moves towards equilibrium [28].

In the chosen model systems, we focused on three aspects:

(1). Parameterization of soil structure using computed tomography. Diffusive domains and the
surrounding spatial void pattern within a given soil volume (i.e., soil structure) are considered as
quantifiable through X-ray computed tomography (XCT) (XCT, [29]). Nimmo and Perkins [30]
hypothesized that as a pore network was increasingly disturbed, macroporosity would decrease.
We assumed that, by manipulating saturation level and manipulating the geometry of the
pore network while measuring concomitant changes in electromotive potential in multiple
microenvironments, relationships between the XCT quantified pore network and the unique
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redox state contained within could be determined. In doing so, we aimed to contribute to
the development of parameters, procedures, and concepts for the application of XCT to the
investigation of structure—functionality relations in soil systems [31];

(2). variation of electromotive potentials in soil microenvironments. Our decision to use Pt-electrode
potentials for the identification of biogeochemically distinct soil microsites was based on previous
reports that Pt-electrodes are probing the redox state of very small individual volumes in the
order of a few cubic millimeters [32–34]. To address uncertainties regarding the soil volume
“seen” by the Pt-electrode tip, the relationships between virtual (i.e., defined by the settings of
the analytical software) sub-sections of the pore network (Volumes of Interest, VoI) and measured
electromotive potentials were examined; and

(3). variation in moisture content. To elucidate the relationship(s) between wetting and drying events
and the formation of anaerobic conditions we focus on short-term time brackets where moisture
conditions change how the resulting variations in redox state are predicted by XCT derived pore
network metrics.

Our experimental approach involved testing three operational (H1–H3) and one conceptual or
systemic hypothesis (H4):

Hypothesis 1 (H1). Electromotive potentials sensed by platinum electrodes respond to changes in water
saturation level in a predictable, non-random fashion. We hypothesize that for all electrodes probing the same
network architecture type (i.e., sieving treatment), the associated metrics to characterize the available energy of
reactions involving electron transfer (AE, parameterized as ∆EPt per time interval and expressed as fraction (%)
of the free energy released by the oxidation of CH2O with O2) are more or less constant. The null hypothesis
to falsify can then be stated as: AE-metrics compared between PVC rings (n = 3 per PNA) within a PNA are
significantly different.

Hypothesis 2 (H2). The ability of XCT-derived pore network metrics to predict AE-metrics improves with
decreasing average pore size, or ∆EPt, (a . . . j) = f(PNA), (PNM 1 . . . 18), where PNA = pore network
architecture, (a . . . j) are a set of available energy metrics, and (1 . . . 18) is a set of pore network metrics. The
associated null hypothesis reads: The number of significant correlations between AE-metrics and PNMs does not
increase as pore size decreases.

Hypothesis 3 (H3). The ability of XCT-derived pore network metrics to predict AE-metrics improves when the
volume of the observed pore network is small and immediately surrounds the platinum electrode tip, compared to
larger soil volumes or ‘the power of XCT derived network metrics to predict change in redox state = f(VoI)’. Here,
we formulate as a null hypothesis: The number of significant correlations between AE-metrics and PNMs does
not increase as VoI decreases.

Hypothesis 4 (H4). AE-metrics are specific to pore network architectures. When subjected to the same moisture
change, changes in AE-metrics should be significantly different between pore network architectures. This
assumption can be accepted if ∆EPt per time interval 6=∆EPt between pore network types, rendering the null
hypothesis as: AE-metrics are not significantly different for any two PNA comparisons.

2. Materials and Methods

2.1. Experimental Approach

2.1.1. Soil Description and Sample Collection

Soil was collected from the Ap horizon of a moderately well drained Woodburn soil series
(silt-loam Argixeroll) at Hyslop Farms in the Willamette Valley, Oregon. Basic soil characteristics were
measured following protocols detailed in the Kellog Soil Survey Laboratory Methods Manual [35] and
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are provided in Table S1. The site had been unmanaged for more than 10 years with the exception
of biannual mowing, and had a grassland vegetation mix dominated by Agrostis capillaris, Agrostis
stolonifera, and Hypochaeris radicata. Three intact, cylindrical cores with dimensions of 18 cm (height) by
25 cm (diameter) were taken by inserting PVC rings down to a depth of 20 cm (Figure S2). Bulk soil to
create the two manipulated pore network architectures was removed from the same depth and sieved
to ≤1 cm and to ≤2 mm. Sieved soils were filled into n = 3 cores for each treatment, to yield a total of 9
cores representing 3 different pore network architectures (PNAs): “Random” PNA; “Large Aggregate”
PNA (sieved to ≤1 cm), and “Small Aggregate” PNA (sieved to ≤2 mm).

2.1.2. Set Up and Instrumentation

A fine plastic mesh (~1 mm openings) was glued to the bottom of each core to retain the soil
and allow for water infiltration and drainage. Cores were stored at 10 ◦C for seven days prior to the
start of the experiment. A large fiberglass tub (125 cm × 98 cm × 23 cm) was used to house all nine
cores for simultaneous manipulations of the water saturation level (Figure S1). The bottom of the tub
was filled with 2 cm of coarse, autoclaved sand to allow for unrestricted water infiltration into and
drainage out of the soil cores. To monitor structure dependent variations in available energy, each
core was equipped with an array of three Pt-electrodes (width = 5 mm; Pt wire tip length = 10 mm,
overall electrode length including tip = 25 mm, see Wanzek et al. [24] for more detail), each installed
in one quadrant of the PVC ring such that the electrode tip was 9 cm above the base of the PVC ring.
Electrodes were connected to a 3 M Ag/AgCl InLab reference electrode (Mettler and Toledo, Columbus,
OH, USA) installed at the surface of the fourth ring quadrant (Figure S1). The electrodes were installed
in a strict geometric array (one per quadrant) to ensure that each Pt-electrode was exposed to the
same volume of soil. Prior to installation, Pt-electrodes were tested against a quinhydrone solution of
0.1 g quinhydrone per 50 mL deionized water buffered to pH 7 [36,37]. If the measured potential was
more than ±10 mV outside of the ideal potential at 20 ◦C (92 mV), the probe was cleaned and retested.
Electromotive potential data were measured each minute and an average value was recorded every
hour using a Campbell Scientific CR800 data logger and AM16/32B multiplexer (Campbell Scientific,
Logan, UT, USA). The data logger and multiplexer were assembled by Dynamax Inc. (Houston, TX,
USA). Electromotive potentials were normalized relative to the standard hydrogen electrode by adding
an individualized, temperature adjusted correction factor for each measurement [38].

2.1.3. Experimental Conditions

To investigate the effects of variations in pore network architecture on changes in available energy,
we subjected the cores to variations in water saturation levels. The first such event occurred on
day 1.5 and was a rapid transition from near field capacity to full inundation (simulating phreatic
conditions) of the electrode tips by flooding the tub to a water level just below the rim of the PVC cores
(Figure S2). Full saturation was maintained for 12.5 days until electromotive potentials had reached a
near equilibrium state in all PVC rings (Figure 1). Following day 14, water was drained from the sand
bed and PVC rings by removing a plug in the bottom outside wall of the tub, generating an average
matric potential of −10 cm. The PVC rings were allowed to drain for 8 days until electromotive
potentials returned to values similar to those at the start of the experiment. At day 22, water was
added to a level of 4.5 cm below the electrode tip to create conditions similar to partial saturation in
a simulated vadose environment. These conditions were maintained for another 5.5 days, when the
water was drained, and the PVC rings monitored for another 3 days until electromotive potentials
returned again to levels close to starting conditions. Overall duration of the experiment was 30.5 days.
During this time, the cores were kept in a greenhouse equipped with a climate control system allowing
us to exclude precipitation while maintaining ambient diurnal temperature variation.
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Figure 1. EPt curves for all three pore network architectures. Mean EPt curves (black) are shown for
each pore network architecture: Random (a), Large Aggregate (b), and Small Aggregate (c). EPt data
from each individual electrode per pore network architecture (n = 9 per pore network architecture) are
also shown (gray). Available energy (kJ per electron transferred, right y-axis) was calculated assuming
glucose (CH2O) as an electron donor and assuming standard temperature/pressure and soil pH. This is
not a rigorously accurate determination of energy levels, but is meant to provide an energetic dimension
to the EPt data. Timing and duration of complete saturation with water is represented by solid gray
box “saturated” (day 1.5 to 14) and partial saturation is represented by dashed gray box “partial” (day
22 to 27.5).

A set of 10 parameters (AE-metrics) was developed to enable a numerical description of the
response of electromotive potentials to manipulations of soil moisture status. These metrics are
illustrated and defined in Figure 2 (panels b and c). After samples were drained for the last time, they
remained in the fiberglass tub for two more days until further processing. They were then carefully
removed and transferred to the X-ray computed tomography (XCT) facility in the Environmental
Molecular Science Laboratory (EMSL), a division of the Pacific Northwest National Laboratory (PNNL;
Richland, WA, USA).
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Figure 2. Derivation of available energy metrics from the EPt curve. The raw EPt curve (panel a) was
divided into 10 different sections (panel b), with the numeric values of the mathematical functions
associated with these sections defined as available energy metrics (AE metrics; panel c). Panel c
contains the description of each metric and its corresponding location on the curve in panel b. Timing
and duration of complete saturation with water is represented by the solid gray box, “saturated” and
partial saturation is represented by the dashed gray box “partial”.

2.2. Pore Network Quantification Using X-ray Computed Tomography

2.2.1. XCT Theory and Scan Conditions

X-ray computed tomography (XCT) is a non-destructive technique for determining the internal
structure of an object [39] and has been used for nearly two decades [40] to quantify the 3D architecture
of pore spaces in natural soils [41,42]. XCT techniques are based on deriving an image using the
quantity of applied X-rays that pass or do not pass through the object of interest. The effective
atomic number and the density of the sample material being X-rayed determine the linear attenuation
coefficient representing the quantity of X-rays that pass through the sample. The denser the sample
material, the fewer X-rays can penetrate and the higher its linear attenuation coefficient [39,40]. When
using conventional two-dimensional X-ray techniques, depth information is lost, but when X-ray
attenuation information is obtained from multiple radiographic images, scanned at different angles
(i.e., projections), a complete three-dimensional image can be constructed [43].

Each sample was scanned on a Nikon (Metris) XTH 320/225 kV X-ray computed tomography
(XCT) System (Nikon Metrology Inc., San Francisco, CA, USA), within EMSL. This equipment allows
for the investigation of large samples of up to bucket-size. However, proof of concept work we carried
out using the same soil and sample containers revealed that the entire PVC rings would absorb too
much radiation to achieve satisfactory image quality. We thus decided to sub-section the PVC to allow
for sufficient beam penetration. Following the original layout of Pt-electrodes, each PVC core was
physically divided into four isometric quadrants (Figure S3), with the Pt-electrode at the center; and



Soil Syst. 2018, 2, 66 8 of 25

additional acrylic glass panels added to contain individual sub-samples. With 3 Pt-electrodes deployed
per PVC ring, this amounted to n = 3 quadrants per individual ring and a total of N = 27 samples for
CT-image analysis. The poly-chromatic beam conditions were set at 130 kV and 200 µA, and a Mo
target with a 0.25 mm Al filter were used to reduce beam hardening. A total of 2146 projections, with
four frames per projection, were taken of each PVC quadrant. Together with the reduced specimen
size (now 18 × 12.5 cm), these settings allowed us to achieve a final image resolution of 110 µm.

2.2.2. Image Pre-Processing

The pre-processing workflow was the same for all analyzed image files. The entire 16-bit raw
image file was imported into the open-source image analysis software, Fiji [44], and converted to
an 8-bit image stack. For image analysis, we identified volumes of interest (VoI, Figure 3) to test
three assumptions:

(a) The available energy sensed by the Pt-electrode tip represents the state of the soil solution in the
pore system connecting the soil surface and the electrode tip. The resulting Volume of Interest
(VoI100) was of a cylindrical shape centered around the electrode with a height of approximately
8 cm (minor variations between individual cylinders), a diameter of 4 cm, and an average volume
of 100 mL.

(b) The potential sensed represents a more constrained, but still sizable, region right below the
electrode tip. This VoI had a diameter of 4 cm and extended 2 cm down from the bottom of the
probe tip, resulting in a volume of approximately 25 mL (VoI25).

(c) Testing the suggestion of Fiedler [33] that Pt-electrodes are only sensitive to the conditions in a
space of few cubic mm immediately surrounding and connected to the platinum tip, we finally
selected a volume of interest surrounding the platinum wire in the fashion of a cylindrical sleeve
with a height of 7 mm, an inner diameter of 5 mm, and a wall thickness of 0.84 mm, yielding
a volume of 190 mm3 or approximately 0.2 mL (VoI0.2). The dimensions of the inner core were
chosen to avoid image artifacts created by the metal of the probe tip. Figure 4 demonstrates how
the respective images varied as a function of pore network structure. Representative curves are
added to reiterate significant differences in available energy dynamics. For each sub-sampled
VoI, the contrast was set using Fiji’s auto brightness/contrast setting. The binary threshold was
then set manually by comparing pore edges in four different images to the same pore edges in
the corresponding images from the 8-bit image stack prior to thresholding [45]. A 3D median
filter of the dimensions, 5 × 5 × 5 pixels, was then applied to each binary stack, which reduced
noise, but preserved pore edges [46].
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Figure 3. Volumes of interest (VoI): Three digital sub samples (n = 81) were created from the image
file for each soil sample (N = 27) using Fiji image analysis software. In relation to the location of
the Pt-electrode, the locations of the VoI sub-samples are as follows: The VoI100 (purple, r = 2 cm,
h = ~8 cm) sample extended from the electrode tip to the soil surface, the VoI25 sample (blue, r = 2
cm, h = 2 cm) extended from just below, but not including the electrode tip downward, and the VoI0.2

sample (red, rinner = 5 mm, router = 5.84 mm, h = 7 mm) immediately surrounded the Pt-tip itself. The
PVC quadrant (black) was 18 cm high and the Pt-electrode was inserted to the halfway point (9 cm;
black line through VoIs).

2.2.3. Image Analyses

To quantify the pore space architecture, each thresholded sub-sample was analyzed with the help
of two sets of metrics (pore network metrics, PNM). One set of metrics (skeleton-based metrics, # 1–9
in Table 1; Figure 3) was used to describe the interconnectedness and complexity of the pore network
in the VoI, while a second set (void-based metrics, # 10–18 in Table 2; Figure 3) was used to characterize
the three-dimensional reaction space that the pores occupied. The skeleton network of the pore space
is generated by eroding the voxels defined as pores in each image down to their single voxel width
medial axes. A skeleton network is defined as all interconnected medial axes, and a single image
stack can be comprised of multiple skeleton networks. The medial axes for each image stack were
generated using the Skeletonize3D plugin [47] and the shortest branches in circular skeletons were
pruned. Analysis of the medial axes of each sample using the AnalyzeSkeleton plugin [48] generated
the skeleton-based pore network metrics (Table 1; Figure 5). The void-based metrics (Table 2; Figure 5)
were calculated using the Particle Analyzer function of the BoneJ plugin as well as the Bone Volume
to Total Volume plugin to calculate the image based percent porosity [49]. All pore network metrics
generated by the above plugins as well as the metrics calculated using the output from the above
plugins are visualized in Figure 5.
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Figure 4. Example images of each pore network architecture and associated electromotive potential
curves. Example images of each pore network architecture (PNA) from the three VoIs are provided
for the “Random” (left column), “Large Aggregate” (center column), and “Small Aggregate” (right
column) pore network architectures. Pore space is realized in gray (intact pore) and white (pore that
has been sliced). The associated electromotive potential curves from the Pt-electrode specific to the
pictured PNA are in the bottom row. Maximum available energy (kJ; right y-axis) is also shown. All
PNA images are oriented such that the Pt-electrode is at the bottom with the Cu wire extending out
the top.
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Table 1. Medial axis based “skeleton” pore network metrics and associated descriptions.

Metric Number Pore Network Metric
(PNM) Unit Metric Description

1 Number of branches Count The number of slab segments (composites
of slab voxels) in a VoI

2 Total number of
junctions Count The total number of voxels in the VoI with

more than two neighbor voxels

3 Mean branch length mm Average length of a branch in the VoI;
calculated using all branches in the VoI

4 Maximum branch length mm Length of the longest branch in the VoI

5 Number of triple points Count/mL
The number of junctions in the VoI with
exactly three branches, expressed as a count
per unit volume

6 Number of quadruple
points Count/mL

The number of junctions in the VoI with
exactly three branches, expressed as a count
per unit volume.

7 Total number of
skeletons Count Number of individual (non-connected)

skeleton (centerline) networks in the VoI

8 Number of skeletons
with branches >1 Count The number of skeleton networks that

contain at least one junction and branch

9 Mean tortuosity n/a

Mean convolution of all pores in the VoI.
Calculated as the sum of all total branch
lengths in the sample divided by the sum of
the straight-line distances of all branches in
the VoI [50]

Table 2. Void-based pore network metrics and associated descriptions.

Metric Number Pore Network Metric
(PNM) Unit Metric Description

10 Image based void
volume mm3

Volume occupied by an individual pore.
Reported as average pore volume for each
sample. Calculated by counting the number
of voxels contained within a given void

11 Void surface area mm2
Calculated by fitting a triangular surface
mesh (via marching cubes) to the interior of
each individual void [51]

12 Enclosed void volume mm3
Volume of an individual void enclosed by
triangular surface mesh (0 if no mesh could
be fit)

13 Mean pore diameter mm
Calculated at several points as the diameter
of the greatest sphere that fits within the
void and which contains the point

14 Standard deviation of
mean pore diameter mm Standard deviation of sphere diameters

used in mean pore diameter calculation

15 Surface area to volume
ratio mm−1 Surface area divided by image based void

volume

16 Total number of
individual voids Count Number of individual voids identified in

the VoI

17
Number of individual
voids with enclosed

volume > 0
Count The number of voids to which a triangular

surface mesh was fit in the VoI

18 Image based porosity % Number of void voxels in the VoI divided
by the total number of voxels in the VoI
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Figure 5. Illustrations depicting each pore network metric. Generalized versions of pore network
metrics 1 through 18 are shown. 1–9 are skeleton–based (medial axis) metrics and 10–18 are void-based
metrics. Descriptions are in Table 1 (skeleton) and Table 2 (void).

2.3. Statistics

Statistics were performed using either OriginPro (Version X, OriginLab, Northampton, MA, USA)
or RStudio for Mac version 1.0.136 [52]. All PNMs were normalized to a unit per mm3 basis. Linear
regression was carried out between the mean value for each pore network metric (PNM; explanatory)
and the value for each available energy metric (AE-metric; response). A relationship between a PNM
and an AE-metric was deemed significant at the p < 0.05 level when the r2 value from a given regression
was greater than or equal to 0.44 (n = 9 VoIs per PNA, each representing one quadrant as illustrated in
Figure S3, d.f. = 8, f-value = 5.59). A two-tailed t-test was used to determine if there were significant
differences between available energy metrics within a given pore network architecture (Table S2).
Tukey’s honest significant difference test in RStudio was used to determine if there were significant
differences between the mean values (n = 9) from each PNA for (i) the pore network metrics for each
volume of interest (Tables S3–S5) and (ii) the available energy metrics (Table S6).

3. Results and Discussion

3.1. Pt-Electrodes Provide Robust and Reliable Information about Available Energy

There have been concerns about the ability of platinum electrodes to return meaningful
data [53,54]. These concerns are based on limitations of the Pt-electrode system and on the multispecies,
non-equilibrium nature of the soil solution [55]. Thus, when early researchers [56] noted deviations of
more than 300 mV among replicate Pt-electrodes installed in the same soil horizon, they attributed
such variability to the technical deficiencies of the Pt-electrode. An alternative explanation for
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variation among replicate electrodes installed in the same soil horizon would be that they are probing
biogeochemically distinct microenvironments [32,33].

In our setting, 27 soil-electrode systems were subjected to the same changes in moisture content
and all electrodes showed the same general response to changes in moisture content, with modifications
specific to the respective pore network architectures (Figure 1). For instance, in the “Large Aggregate”
pore network architecture (Figure 1, panel b), all nine electrodes registered the same rapid initial
decrease in available energy (=AE-metric a, Figure 2). This response is nearly identical in the
“Small Aggregate” pore network architecture (Figure 1, panel c) while the nine electrodes installed
in the “Random” pore network architecture with its native soil structure showed a much wider
range of trajectories and associated slopes of the AE parameter “a” (Figure 1, panel a). We take
these observations as supporting the view of Cogger, Kennedy and Carlson [32] and Fiedler [33]
that variations among the potentials registered by multiple, well calibrated Pt-electrodes installed
in the same soil horizon indicate corresponding variations in the biogeochemical states of the
microenvironments probed by the respective electrodes. Figure 1 further suggests the existence
of a complex link between pore network architecture and moisture state.

During the first inundation phase and while completely saturated, the potential registered by
the n = 9 electrodes in the “Large Aggregate” and “Small Aggregate” PNAs behave very similarly in
terms of timing and absolute value of the mean minimum electromotive potentials achieved (about
−150 mV). (Figure 1, panels b and c). However, the mean minimum electromotive potential in the
“Random” PNA continued to decrease over the entire period of complete inundation, only reaching
a minimum value near 0 mV (Figure 1, panel a). Following the second, partial inundation (days
22–27.5, Figure 1), however, biogeochemical conditions in the PNA “Random” (Figure 1, panel a) begin
to diverge widely while they stay relatively similar (with outliers) in the PNA’s “Large Aggregate”
and “Small Aggregate” (Figure 1, Panels b and c). These findings allow us to accept hypothesis 1
(AE-metrics are ± constant within the same pore network) with the qualification that over time, the
“Random” PNA (Figure 1, panel a; Table S2) offers greater opportunities for diverse biogeochemical
conditions to evolve independently in individual microenvironments.

3.2. The Pore Network Metric—Pore Network Architecture Relationship Depends on the Observed Soil Volume

The values of the pore network metrics (PNMs) chosen to quantify variations in pore network
architecture varied as a function of both network architecture and VoI. This can be illustrated using
PNM # 11: “Average Void Surface Area” as an example (for definition and illustration of PNM 11 see
Table 2 and Figure 5). Depending on the VoI considered, PNM values can be near identical across
pore network architectures (VoI0.2, Table S3), or significantly different (VoI25, Table S4). An analysis
including all 18 PNMs (Tables S3–S5) reveals that the occurrence of significant differences between
PNAs is greatest in the 25 mL VoI (30 significant differences, Table S4), followed by the 100 mL VoI (17
significant differences, Table S3) while PNMs in the 0.2 mL VoIs were largely constant, with only two
significant differences observed across PNAs. This trend is consistent with the fact that the selection
of a small VoI will necessarily limit the abundance of larger sized, more complex pores within the
observed VoI.

VoIs showed largely constant behavior across PNAs with only two significant differences observed.
This trend is consistent with the fact that the selection of a small VoI will necessarily limit the abundance
of larger sized, or complex pores within the observed VoI. The XCT analysis most closely scaled to the
dimensions of the soil pore network investigated in our study was carried out by Köhne, et al. [57],
who sampled two soils of contrasting texture using three different sample container sizes. Though
assessing the role of the pore network in regulating contaminant movement in soils as a function of the
scale of observation, their results suggest an intimate relationship between the pore network structure
and function for physical transport processes. To a similar end, where possible, we compared the
resulting pore network information in an effort to capture both the larger interaggregate pores and the
smaller intra-aggregate pores from a single sample.
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3.3. Pore Network Architecture Modifies Available Energy

The pore network has been thought to play a role in redox dynamics in soils for nearly 70
years [58–60]. Assessments of the extent to which the redox status of the soil and the pore network
are related usually end at differentiating between macro and micro pores (e.g., [61]) or changes in
porosity overall (e.g., [61]). Most major models of aerobic or anaerobic microsite formation depend
on estimating water-filled porosity or air-filled porosity to calculate diffusion coefficients (of gases
or dissolved organic carbon) and generally ignore pore network structure [7]. X-ray computed
tomography provides a method to more directly measure the structure of the pore network and its
impacts on soil processes. However, most applications focus on quantification of water fluxes [62],
saturated hydraulic conductivity [63,64], air fluxes [65–67], or pore space genesis as a function of
microbial activity [68], and not directly on the formation (or location) of microbial ‘hotspots’ (i.e.,
anaerobic soil volumes) [9]. Part of this may be due to the complex relationship between the pore
network and microbial activity; even studies specifically designed to generate contrasting results have
not necessarily produced conclusive outcomes [15]. To the best of our knowledge, very little attention
has been paid to purposefully manipulating the pore network and quantifying the resulting changes
in electromotive potential dynamics (e.g., [61]).

To test the null-hypothesis, “the dynamics of available energy are independent of pore network
architecture”, we evaluated the extent to which available energy (AE) metrics (Figure 2) differed
between individual PNAs. To do so, the Tukey’s honest significant differences test was used to
compare the means of all 10 AE-metrics developed to describe the dynamics of available energy during
the duration of the experiment (Table S6). The greatest number of significant differences, six in total,
was registered when comparing the PNA “Random” with the PNA “Large Aggregate”. The significant
differences occurred between AE-metrics a, b, c, d, f, and i (Table S6). Only one AE-metric had a
borderline significant p-value (p = 0.073) in the Random—Large Aggregate comparison (AE-metric j).
There were two significant differences and one borderline significant difference in AE-metrics when the
Random and Small Aggregate PNAs were compared (significant: c and d; borderline b, p-value = 0.053).
The AE-metrics for the Large and Small Aggregate PNAs were very similar, with only one borderline
significant difference identified between the AE-metrics (AE-metric d, p-value = 0.066). We refute
the null hypothesis that available energy is independent of pore network architecture based on the
clear differences noted in the comparison between the random (or native soil structure) and artificially
created structures. To our surprise, there were no significant differences in available energy between
the two artificially created PNAs, indicating that aggregate size is not likely to be the sole controlling
factor in the dynamics of available energy.

3.4. Pore Network Metrics Have Differential Power to Explain Available Energy Metrics

The pore network architecture is traditionally parameterized by generating moisture release
functions, a method that has been extensively used in the soil physics community. However, these
functions are typically obtained using soil samples in the 3 to 10 cm size range and the resulting
information provided on pore characteristics is an average across the entire sample [69]. For example,
basic physical soil properties were not significant predictors of saturated hydraulic conductivity when
compared to XCT derived macropore characteristics [63].

The use of 3D XCT to quantify the structure of the soil pore network has become almost ubiquitous
in recent years. Because of this, the associated parameters have become equally broad ranging. These
parameters can be broken down into two major categories: (1) Parameters that describe the reaction
space (i.e., the 3D pore space itself) and (2) parameters that describe the complexity or connectivity
of the pore network (i.e., the number of pore connections per unit volume). Variables that belong to
the first category are: Visible porosity [15,64,70–73], pore size distribution [50,70,73,74], pore surface
area [75–77], pore thickness (i.e., diameter) [71,77,78], and total visible pore volume [42,50,79]. Variables
that fall in the second category rely largely on what is referred to as the skeleton, or single voxel width
medial axes, of the pore network [47,80]. Examples here include: Tortuosity, calculated as total
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pore length/Euclidean distance [42,46,50,81] or using the Euler number [57,74,82]; pore connectivity,
calculated using (i) Euler number [75,83] or (ii) node density [50,67]; macropore length [42,50]; and
percolating pores [78].

Nine correlation matrices (three pore network architectures versus three volumes of interest,
Figure 6) were constructed to explore the existence of linear correlations between available energy
metrics (AE, dependent variable) and pore network metrics (PNMs, predictor variable). In these
matrices (Figure 6), the ability of each pore network metric (1 . . . 18) to predict any of the available
energy metrics (a . . . j) is represented by either a plus (positive correlation) or a minus symbol (negative
correlation). The existence of a significant correlation was assumed if the coefficient of determination
(r2) for the relationship between the respective PNM and a given AE-metric (n = 9 for each combination
of PNA and VoI) was ≥0.44 (f-value = 5.59, d.f. = 8).

Figure 6. Significant correlations between the available energy metrics (Figure 2; a–j; vertical axis) and
pore network metrics (Figure 3, 1–18; horizontal axis) are shown for each treatment and volume of
interest (VoI) (p < 0.05, d.f. = 8). Significant correlations are marked by a grey box; + indicates a positive
relationship between the pore network metric and available energy metric, and − indicates a negative
relationship. The vertical black line in each panel indicates the transition from skeleton based metrics
to void based metrics.

Examination of the entire cohort of nine correlation matrices allows the assessment of the ability of
somewhat arbitrarily chosen metrics to quantify the relationship between soil structure and available
energy dynamics. Figure 7a compares the ‘efficiency’ of individual AE-metrics as descriptor variables
and shows that variables f, a, and e were much more often correlated with a pore network metric
than any of the other AE-metrics. Figure 7a also illustrates the abundance of positive versus negative
correlations. For instance, the rate of EPt increase (i.e., available energy increase) after the first
drainage (AE-metric “f”) was mainly positively correlated with pore network metrics (PNMs), while
the subsequent decline in EPt (i.e., available energy decrease) following partial inundation (AE-metric
“i”) was always negatively correlated with PNMs.
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Figure 7. Frequency of correlation with available energy metrics. Frequency of correlations with
available energy metrics as a function of pore network metrics (a), skeleton-based pore network metrics
(b), and void-based pore network metrics (c). Positive correlations are diagonal-hatched, negative
correlations in gray. PNA = pore network architecture, AE = available energy.

A similar analysis can be conducted for the PNMs. Here, we find that void-base metrics (Figure 7c)
tend to appear more frequently in significant correlations with AE-metrics than skeleton-based metrics
(Figure 7b), with particularly high scores noted for PNMs 14 (seven instances), 12, and 11 (six and five
instances, respectively). Overall, void-based pore network metrics correlate on a total of 38 occasions
compared to 28 total correlations observed for skeleton-based metrics (Figure 7b,c). Considering
subtotals for the three different PNAs, we find a trend of an increasing number of correlations going
from PNA “Random” with seven total correlations, 20 correlations for the PNA “Large Aggregate”, to
39 correlations in the PNA “Small Aggregate” (Figure 8a). We found that the void-based pore network
metrics tended to have statistically stronger relationships with AE-metrics, evidenced by way of a
greater total number of significant correlations compared to the skeleton-based metrics.
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Figure 8. Incidence of correlations between available energy metrics and pore network metrics as a
function of pore network architecture (a), and volume of soil observed (b). Skeleton-based metrics are
diagonal-hatched, void-based metrics are in gray. PNA = pore network architecture; VoI = volume
of interest.

As the shape, size, or layout of the pore network changes, so must the relationship with available
energy, and subsequently the existence or lack of statistically significant correlations. We decided
to investigate four categories of AE-metrics, each representing different functionalities of the pore
network: (i) Decreasing EPt (negative slopes)—represents water movement into the pore network, an
increasing restriction on the resupply of atmospheric oxygen, and a facilitation of nutrient diffusion
and advection; (ii) extreme EPt values (maximums or minimums)—are seen as capacitive indicators,
potentially useful to parameterize boundary conditions for the system studied. A soil not returning to
fully aerobic state (high EPt) after rewetting may have a pore system with poor connectivity, while
a soil unable to achieve low available energy (low EPt) may lack electron donors, such as reduced
organic matter; (iii) timing of minimum or maximum potentials—along with the pore characteristics
necessary for point (ii) above, the timing of the extreme values depends on the rate at which water can
flow in or out as well as the rate at which nutrients or gases can move through the pore network; and
(iv) increasing EPt—requires that water flow out of the pore network in an unrestricted fashion, but,
more importantly, the uninhibited reentry of oxygen into the pore network.

Though the void-based PNMs incurred a higher total number of correlations compared to the
skeleton-based PNMs, the correlation of a void-based or skeleton-based PNM with an AE-metric was
always a function of VoI and PNA. In the “Small Aggregate” PNA, as the VoI decreased, the number of
significant correlations with skeleton-based metrics increased while they decreased in the void-based
metrics. This suggests that the reactions occurring in immediate proximity to the Pt-electrode tip
are more dependent on the connectivity of the pore network and not so much on the magnitude of
reaction space provided by the pores. The formation of anaerobic conditions (or ‘hotspots’) at scales
beyond the immediate vicinity of the Pt-electrode tip is likely more dependent on advective movement
of gases (e.g., oxygen) and solutes (e.g., nutrients and DOC) through macropores [9] as opposed to
diffusion-based transport, which has been thought to be the dominant mechanism in micropores [7,15].
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We summarize that our exploratory analysis of the relationship between pore network parameters
and parameters across different pore network architectures and volumes of interest suggests the
existence of a set of parameters with the potential to be particularly useful for the investigation of
structure—functionality relationships in soils.

3.5. The Explanatory Power of PNMs Depends on Pore Network Architecture

This picture becomes more differentiated when correlations between PNMs and AE-metrics are
examined separately for each individual pore network architecture (PNA) and volume of interest
(Figures 6 and 8a,b). Within the native pore structure (aka PNA “Random”) none of the skeleton-based
pore network metrics correlate with any of the AE-metrics (Figures 6 and 8a). The void-based metrics
show one, two, and four correlations going from VoI100, to VoI25, to VoI0.2, respectively (Figure 6).
Of the three PNAs and across all VoIs, the PNA “Random” had the fewest total number of correlations
(Figure 8a).

The total number of correlations increased to 20 for the PNA “Large Aggregate”, with six
contributed by skeleton-based metrics and 14 involving void-based metrics (Figure 8a). In this PNA
there was no trend with VoI: 10 correlations were found for the large VoI100, zero for the intermediate
VoI25, and 10 for the small VoI0.2 (Figures 6 and 8b). The correlations observed for the VoI100 were
generally not the same as the ones observed for the VoI0.2. There was one combination of metrics
(AE-metric “a” as a function of PNM “10”) that showed a significant negative correlation in both the
VoI100 and VoI0.2 (Figure 6).

In the “Small Aggregate” pore network architecture (PNA), where the soil had been sieved to
≤ 2 mm, 39 correlations between AE-metrics and PNMs were found. Within this PNA, correlations
involving skeleton-based metrics increased from two, to five, to 15 with decreasing VoI size (Figure 6),
while correlations involving void-based metrics remained nearly constant as the VoI changed.
Considering both skeleton and void-based metrics together, we observed a progression from eight, to
10, to 21 correlations going down in VoI size from VoI100, to VoI25, to VoI0.2, respectively (Figure 6).
Out of 39 correlations observed for PNA “Small Aggregate”, only two combinations occurred in more
than one of the VoIs, and both involved AE-metric “e”: This metric correlated negatively with PNM 6
in VoI100 and positively in VoI0.2. It also correlated positively with PNM 18 in both, VoI100 and VoI0.2.
We observed only one incidence of correlation occurring between the same parameter pair across pore
network architectures: AE “c” was negatively correlated with PNM “12” in PNA “Large Aggregate”
and in the PNA “Small Aggregate” (Figure 6).

The observed effects of manipulating the pore network varied as a function of VoI. We assumed
that the pore network would become more homogeneous in terms of both void and skeleton-based
metrics as aggregate-size decreased (reflected as smaller coefficients of variation). While this trend was
somewhat evident in VoI0.2 (coefficient of variation is similar across all PNMs, Table S5), most of the
pore network metrics from the “Large Aggregate” PNA tended to be more variable than those from
the “Random” or “Small Aggregate” pore network architectures in the two larger VoIs (coefficients of
variation in Tables S3 and S4). What arose by sieving the soil to ≤1 cm for the “Large Aggregate” PNA
was to effectively increase the pore network heterogeneity per unit volume.

An outcome of manipulating the pore network architecture (PNA) and varying the scale of
observation was contrasting results in terms of the types of relationships between AE-metrics and
PNMs. An example of VoI changing the relationship was in the “Small Aggregate” PNA. AE-metric
“e” (Figure 2) correlated negatively with PNM 6 (number of junctions with four branches; Figure 4 and
Table 1) in VoI100 and positively in VoI0.2 (Figure 6). In VoI100, as the number of junctions with four
branches increased, the lag time from the first drain to an EPt increase of at least 50 mV became shorter.
Because the 100 mL VoI was connected to the surface, as the number of pore connections from the
electrode tip to the soil surface increased, oxygen was able to reach the electrode more quickly [84–86],
thus decreasing the time required for the electromotive potential to change. In VoI0.2, the opposite
occurred, as the number of quadruple points increased, the lag time also increased. A large number of
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connections implies that there are many branches/pores in the immediate vicinity of the Pt-electrode.
As the number of branches/pores increases the pore volume able to be occupied with water increases,
it would then take longer for the pore network to drain and oxygen to reach the electrode tip [87].

An example of the type of change in relationship between AE-metrics as a function of PNA
occurred in the “Random” and “Large Aggregate” PNAs and pore network metric “12” (Figure 5 and
Table 2; average enclosed void volume). In the same VoI (VoI0.2), PNM “12” correlated negatively
with AE-metric “a” (Figure 2; rate of available energy decrease over the first 72 h after inundation)
in the “Random” PNA, while the same PNM correlated positively with AE-metric “c” (Figure 2;
maximum available energy during pore network inundation) in the “Large Aggregate” PNA. In the
“Random” PNA, as the enclosed void volume increased, the rate at which available energy increased
over the first 72 h after flooding became increasingly negative (the rate of change became larger).
In the “Large Aggregate” PNA, as the enclosed void volume increased, the maximum available
energy increased (EPt became less negative). These results suggest that the relationship between pore
network metrics and available energy dynamics is a function of aggregate size, and by extension,
the pore network architecture of the system as a whole. Therefore, the establishment and scaling of
such a relationship must take in to account the pore network architecture across a sufficiently sized
representative elementary volume to capture the majority of aggregate sizes.

3.6. Utility of Available Energy and Pore Network Metrics

Not all available energy or pore network metrics were equally useful in describing the available
energy dynamics over the duration of our experiment. Of the 66 total correlations between AE-metrics
and PNMs, Figure 7a shows that three out of the 10 AE-metrics accounted for over half of those
correlations (41 in total). Those AE-metrics (defined in Figure 2) were: “a” (rate of decrease in EPt

during the first 72 h after inundation), “e” (time elapsed from first draining to the inflection point
where the available energy increased by at least 50 mV from the potential at draining), and “f” (rate
of increase in EPt from the minimum value during inundation to the maximum value occurring after
first draining).

Similarly, there were certain pore network metrics (described in Tables 1 and 2, and Figure 5) that
correlated more often with AE-metrics than others. The top three skeleton-based metrics (Figure 7b)
were all concerning the number of pore junctions: “2” (total number of junctions), “5” (the number of
junctions with exactly three branches), and “6” (the number of junctions with exactly four branches).
The top three void-based metrics (Figure 7c) were: “11” (void surface area), “12” (enclosed void
volume), and “14” (the standard deviation of the mean pore diameter). These results indicate that
certain aspects of AE dynamics are more closely regulated by the pore network compared to others.
Similarly, the pore network metrics that were most often correlated with changes in AE-metrics
were those that have been directly tied to gas [67,81] and water movement [e.g. 61] through the
pore network.

3.7. The Explanatory Power of PNMs Is Greatest for a Small Soil Volume Immediately Surrounding the
Electrode Tip

Size and placement of the soil volume observed were found to have a profound influence on the
ability of PNMs to statistically explain variations in available energy metrics (Figure 8b). In VoI100,
pore network metrics were mostly correlated with AE parameters “f” (six incidences, all positive) and
“e” (five incidences, four negative, one positive). Out of 19 total correlations observed for this volume,
only one occurred in the PNA “Random” (Figure 6). In VoI25, 7 PNMs correlated with AE-metric
“i”, these correlations occurred in PNA “Small Aggregate” and all of them were negative. More than
half (35 out of 66 total) of all observed correlations occurred in VoI0.2; with AE variable “a” showing
nine correlations while variables “c”, “e”, and “f” had seven correlations each. Correlations with AE
variable “a” occurred overwhelmingly in PNA “Large Aggregate”, while correlations with variables
“c”, “e”, and “f” mostly occurred in the PNA “Small Aggregate”. This finding can be seen as supportive
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of the hypothesis that the Pt-electrode is most sensitive to the electrochemical conditions immediately
surrounding the platinum wire tip, as proposed by Fiedler [33].

AE-metric “i” is the rate at which available energy decreases during the second, partial fill, with
water. Water movement to the electrode tip during this portion of the experiment is dependent entirely
on capillary rise. It stands to reason then that the portion of the pore network that is most related
to these dynamics would be the portion of the pore network immediately below the Pt-tip. This
assessment partially breaks down on one other occasion in the “Random” PNA where AE-metric
“i” significantly correlates (again in a negative fashion) with PNM 14 (SD of mean pore diameter),
but this time in VoI100. Though the 100 mL VoI does not quantify the pores directly responsible for
capillary movement of water, it does capture the pores surrounding the electrode tip. These pores
will still be responsible for movement of water from the ‘water table’ (water level during the second,
partial inundation) to the electrode tip. Though the XCT resolution in this study did not allow for
pores < 220 µm to be resolved, we know that such pores exist in abundance. However, knowing that
there are smaller pores in the soil, which will inevitably lead to capillary rise, we feel justified to
tentatively attribute the correlation between these ‘coarse’ pores and AE-metric “i” to capillary rise.

Significant differences in AE-metrics between pore network architectures do not always mean
that there will be significant correlations between those AE-metrics and pore network metrics. For
example, AE-metrics “c” and “d” (the time elapsed at which the minimum available energy occurs)
were significantly different between the “Random” and “Large Aggregate” (p < 0.001), and “Random”
and “Small Aggregate” (p < 0.01) pore network architectures Table S6). However, AE-metric “d” only
had one total significant correlation across all VoIs and pore network architectures (Random VoI25,
PNM = 16) whereas AE-metric “c” had a total of seven: “Large Aggregate” VoI0.2, PNM = 12 (positive)
and “Small Aggregate” VoI0.2, PNMs = 2, 5, 6, 11, 12, 15 (all positive) (Figure 6).

AE-metric “b” only had one significant correlation in all VoIs and pore network architectures
(VoI0.2, PNA = “Large Aggregate”, PNM = 16) (Figure 6). The lack of correlations could be explained by
the fact that we completely flooded the pore networks, so the electromotive potential was left no choice,
but to decrease, and the pore network had little to no opportunity to influence the decrease. If this
were the explanation, then there should have been no significant difference in the rate of electromotive
potential decline. However, AE-metric “b” was significantly different between the “Random” and
“Large Aggregate” pore network architectures (p < 0.05) and nearly significant between the “Random”
and “Small Aggregate” pore network architectures (p = 0.053; Table S6).

We registered the strongest statistical relationship between AE-metrics and the pore network
when examining the pores immediately surrounding the Pt-electrode. One possible explanation for the
increased number of significant correlations between AE-metrics and PNMs in the smallest VoI and
PNA with the smallest pores is: As aggregate size decreased, large biopores, with smooth, potentially
hydrophobic surfaces [88], were increasingly destroyed. This lead to redistributed (i.e., more easily
accessible) electron sources [15] and the generation of rough pore surfaces [70,89,90]. Rough pore
surfaces have been shown to collect small, yet significant, pools of water [91], provide more attachment
points and habitable niches for microbes [62,92,93], along with increased diffusion of nutrients in
the pore water [94]. This result is also consistent with the assessment made by Fiedler [33] that the
Pt-electrode is most sensitive to the soil volumes and biogeochemical processes that are in immediate,
direct contact.

We summarize that the mechanisms that regulate water, gas, and nutrient transport (which
ultimately control available energy) are different across scales. At larger scales, water, gases, and
nutrients are dominantly moved by advection, while at smaller scales, diffusive movement dominates.
The PNMs that more tightly regulate diffusion (e.g., pore tortuosity or the number/class of pore
connections) will correlate at the small VoI, while the PNMs that are more involved in advective
movement (e.g., SD of mean pore diameter or void surface area) will correlate more often at larger
VoIs, or in the pore network architectures with larger aggregates/pores.
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4. Conclusions

To the best of our knowledge, there has not yet been a report of an attempt to investigate
variations in electromotive potential or redox status of soil environments with the help of metrics from
three-dimensional imaging methods, such as computed tomography. Similarly, we are not aware of
investigations that would have manipulated soil structure with the intent to explore resulting effects
on the dynamics of soil redox status. We demonstrate that the pore network and the dynamics of
electromotive potentials in soils are indeed correlated, but these correlations depended on both (i) the
type of pore network architecture and (ii) the soil volume chosen for imaging analysis. We recognize
an overall trend of increasing predictability as both aggregate sizes and volumes of interest get smaller,
but there were exceptions to the trend that prevent us from making generalizing statements at this
time. However, our work showed: The fact that a given CT-derived pore network metric does not have
much predictive power in a certain type of structural environment and at a certain scale of observation
does not necessarily mean that this would be the same in a different environment and at another
scale of observation. Our findings suggest that future investigations of physiological processes in
porous soil and subsurface systems should involve preliminary activities to determine the scale of
observation (volume of interest) and the associated kind of pore network metric best suited to generate
the answer sought.
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