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Abstract: Rising temperatures in the Arctic have led to the thawing of tundra soils, which is rapidly
changing terrain, hydrology, and plant and microbial communities, causing hotspots of biogeo-
chemical activity across the landscape. Despite this, little is known about how nutrient-rich low
molecular weight dissolved organic matter (LMW DOM) varies within and across tundra ecosystems.
Using a high-resolution nano-liquid chromatography-mass spectrometry (LC/MS) approach, we
characterized the composition and availability of LMW DOM from high-centered polygons (HCP)
and low-centered polygons (LCP) with Eriophorum angustifolium or Carex aquatilis as the dominant
vegetation. Over 3000 unique features (i.e., discrete mass/charge ions) were detected; 521 were
identified as differentially abundant between polygonal types and 217 were putatively annotated
using high mass accuracy MS data. While polygon type was a strong predictor of LMW DOM
composition and availability, vegetation and soil depth were also important drivers. Extensive
evidence was found for enhanced microbial processing at the LCP sites, which were dominated
by Carex plant species. We detected significant differences between polygon types with varying
aboveground landscape features or properties, and hotspots of biogeochemical activity, indicating
LMW DOM, as quantified by untargeted exometabolomics, provides a window into the dynamic
complex interactions between landscape topography, vegetation, and organic matter cycling in Arctic
polygonal tundra soils.

Keywords: untargeted metabolomics; nano-liquid chromatography/mass spectrometry; Arctic; soil;
dissolved organic matter

1. Introduction

The Arctic is warming at least twice as fast as any other landscape on the planet and
stores nearly half the Earth’s terrestrial carbon (C) in soil organic matter (SOM) associated
with permafrost soils [1–3]. Rising temperatures have accelerated permafrost degradation,
resulting in physical, hydrological, and chemical shifts across the landscape that have led
to previously frozen SOM suddenly becoming available for microbial decomposition [4–6].
Mobilizing even a fraction of this C-rich SOM via these physical and biochemical processes
may accelerate the release of greenhouse gases (GHGs) (i.e., CO2, CH4, N2O) from the
landscape, creating a significant positive feedback to climate change [7–10]. Reliably
predicting where (hotspots) or when (hot moments) this C loss is most likely to occur across
the Arctic landscape, however, depends on multiple interacting factors. These include
landscape heterogeneity [11–13] and the associated shifts in hydrology (topography) [14,15],
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vegetation [16,17], microbial community composition [18]. Furthermore, the chemical
composition of SOM, or its inherent availability to soil microbial communities, varies
strongly with landscape heterogeneity [19–21], and this molecular-scale information is
currently poorly understood and poorly characterized in process-based models [22–24].

Polygonal tundra, a primary landscape type in Arctic systems, is often dominated by
characteristic features called ice-wedge polygons that form when freeze-thaw cycles physi-
cally move the soil. This creates a unique and visible microtopography across the landscape
that has been shown to strongly influence hydrology, vegetation, and microbial community
structure [16,18,25]. There are different polygon types including low-centered polygons
(LCP) that have a topographically low and generally wet center and high-centered poly-
gons (HCP) that have topographically higher and dryer centers (Figure 1) [25]. Typically
~5–20 m in diameter, these two endpoints of a gradient of topographic variation can act
as distinct, repeatable units whose metabolomic composition can be used for studies in-
volving scaling measurements and initializing terrestrial model integrations [26]. Recently,
numerous studies have reported a strong relationship between polygon type, vegetation,
and biogeochemistry (i.e., inorganic ions, pH, redox potential, bulk C/N) [14,15,27,28],
especially in the organic-rich active layer [29].
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Low molecular weight (LMW) dissolved organic matter (DOM) is the water-soluble
fraction of SOM most available to microbial decomposers and is a complex and dynamic
mixture of small molecules (<1500 Da) of both biotic and abiotic origin (i.e., plant root
exudates, products of microbial metabolism or turnover, photodegradation products) [30].
In laboratory incubations of Arctic soils, LMW DOM composition has been shown to
be sensitive to variations in both temperature [31–33] and moisture [34]. Analogously,
the structure and function of soil microbial communities have been shown to be strongly
influenced by the molecular composition of this highly labile substrate pool [35–37]. Despite
it representing an information-rich chemical fingerprint of biological function in soil and,
thus, a potential indicator of C vulnerability across space that could help reduce uncertainty
in process-based predictive models of C cycling [23,24], the spatial variability of LMW
DOM composition across Arctic polygonal tundra landscapes is largely unknown.

Some of this uncertainty stems from analytical challenges in LMW DOM detection,
isolation, and quantitation. While there is not a single analytical platform that can charac-
terize all LMW DOM species in a given soil sample, liquid chromatography (LC) coupled
with high-resolution mass spectrometry (HRMS) and a soft ionization technique such as
electrospray ionization (ESI) is a powerful approach that allows for the detection and rela-
tive quantitation of thousands of molecular species in a single measurement [38–42]. Here,
we use two complementary LC phases, reversed-phased (RP) and hydrophilic interaction
chromatography (HILIC), and both MS-polarities (positive- and negative-ion mode) at the
nano-scale, as this was recently shown to be an effective approach to detect and resolve
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an expanded range of LMW DOM in soil [43]. We applied this untargeted approach in
soil organic horizons with contrasting aboveground vegetation community composition,
obtained from the centers of a high- and low-centered polygon, to elucidate the molecular
distribution and differential abundances of LMW DOM across space and yield new insights
into the diversity of organic substrates available to plant and microbial communities in
these polygonal tundra systems.

2. Materials and Methods
2.1. Study Site and Sample Description

A detailed description of the study site, soil cores, and sample collection can be found
in the Supporting Information. In brief, four soil cores were collected from a polygonal
tundra landscape on the northern coastal plain of Alaska on the Barrow Environmental
Observatory. A total of two cores were collected from the organic soil horizon to a depth
of 15 cm from the center of an LCP and two from the center of an HCP. The aboveground
vegetation at these locations varied by polygonal type [44]. In order to assess differences
in LMW DOM potentially associated with aboveground vegetation, in each polygonal
center, we took one soil core from an area dominated by sedge Carex aquatilis and one soil
core from an area dominated by sedge Eriophorum angustifolium. The cores were shipped
frozen to Oak Ridge National Laboratory (ORNL, Oak Ridge, TN, USA) where they were
stored at −80 ◦C until processing. Using a band saw, each frozen core was cut into three
5-cm sections (top, middle, and bottom) to enable the evaluation of any within-horizon
variation. The sections were thawed overnight at 4 ◦C and then homogenized by hand
removing all inorganic, mineral, or live plant material [45]. Live roots were also removed
from each section, dried, and weighed to evaluate any correlation between LMW DOM
abundance and root biomass. A subsample from each of the core sections (n = 12) was
taken for determination of water content, total carbon and nitrogen, and total organic
carbon (Table S1) using conventional techniques, which are described in detail in the
Supporting Information.

2.2. Soil Extraction and Sample Preparation

Biological replicates were obtained by extracting each core section in triplicate (n = 36,
nine per core), along with three controls (extraction with no soil), using the procedure
we previously optimized for these soils [43]. Briefly, a single aqueous extraction (LC/MS-
grade H2O, pH = 5, 1:3 w/v, 1 h) was employed to maintain high throughput and extract
compounds that would be found free in the soil solution and bioavailable to both plant
and microbial communities [38,46]. A pooled quality-control (QC) sample, consisting of
equal volumes of all 36 samples and an internal standard, 4-amino-6-methyl-8-(2′-deoxy-
β-D-ribofuranosyl)-7(8H)-pteridone (6-MAP), was also prepared to monitor instrument
performance and assist with normalization procedures in post-processing [47]. Extracts
were centrifugal filtered (Amicon Ultra, 3 kDa, 4 ◦C, 15 min), concentrated (12×) using
a SpeedVac Concentrator, and then separated into two aliquots. One aliquot was further
evaporated to near-dryness and brought back up in 95:5 (v/v) acetonitrile:water, creat-
ing one organic and one aqueous aliquot per sample for analysis by HILIC and RP-LC,
respectively. Extracts were stored at −80 ◦C until LC/MS analysis.

2.3. Instrumentation and LC/MS Data Collection

Samples and controls were thawed and prepared immediately prior to injection.
Separations were performed using a Dionex UltiMate 3000 HPLC pump (ThermoFisher
Scientific, Waltham, MA, USA), and 100 µm i.d. fused-silica (Polymicro Technologies,
Phoenix, AZ, USA) columns laser-pulled and pressure-packed in-house to 20 cm with
either Kinetex C18 material (5 µm, 100 Å, Phenomenex, Torrance, CA, USA) or zwitterionic,
polymer-based ZIC-pHILIC material (5 µm, Sequant, bulk material provided by EMD
Millipore (Burlington, MA, USA). Optimized mobile phase compositions (Table S2) and
gradients (Table S3) can be found in the Supporting Information. Quality controls were
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run every six injections and samples were randomized to reduce instrument-derived
variation. Technical blanks representing the column re-equilibration conditions were also
run regularly to monitor background ions and carry-over between samples.

To obtain high-mass accuracy measurements, columns were coupled to an LTQ-
Orbitrap Velos Pro mass spectrometer (ThermoFisher Scientific) equipped with a nano-
electrospray ionization source (Proxeon, Syddanmark, Denmark) operated in either positive-
or negative-ionization mode under direct control of the XCalibur software, v2.2 SP1.48
(ThermoFisher Scientific) resulting in four separate LC/MS analyses per sample (HILIC
+/− and RP +/−, n = 144). Full precursor (MS1) scans were acquired over a mass range
of 50–1500 m/z in centroid mode at a resolving power of 30,000. Fragmentation spectra
(MS2) were also collected to provide an additional dimension for annotation by database
matching or eliminating candidates for features that match to multiple hits. Additional
details about chemicals, instrumentation settings, calibration, and standards, can be found
in the Supporting Information.

2.4. Untargeted LC/MS Data Processing

Raw LC/MS files were processed using the freely available MZmine (v2.30) soft-
ware [48,49]. Detailed descriptions of each of the modules and parameters used for
peak detection (Table S4), chromatogram alignment, peak list generation, and annota-
tion (Table S5) are in the Supporting Information. Briefly, chromatograms were built using
high-resolution MS1 and MS2 data and retention time (RT) within a specified m/z and RT
tolerance, resulting in an assigned peak area. All chromatograms within each LC/MS
condition were aligned across the sample set (including blanks and controls) to assist with
normalization and relative quantitation. Although a soft-ionization technique, electrospray
ionization can create in-source fragments, adducts, or ion complexes that can complicate
spectral analysis and annotation. Using the identification module in MZmine, each spec-
trum was searched for adducts, complexes, and fragments using specified RT and m/z
thresholds. The proportion of each LC/MS dataset identified as either adducts, complexes,
or fragments did not exceed ~10% (Figure S1).

2.5. Data Filtering, Normalization, and Statistical Analyses

To evaluate the ability of the LC/MS approach to detect quantitative variations in
LMW DOM abundance across space, in addition to peak detection and alignment, it is also
important to remove as much noise, background signal, and unwanted variation as possible.
To accomplish this, multiple conservative LC/MS-based metabolomic data processing
techniques were applied, including normalization procedures, data transformations to
remove intragroup batch effects (Figure S2), a blank/control correction, and reproducibility
and abundance thresholds [40,41,50]. This resulted in a matrix of features—defined here
as a unique RT, MS1 m/z, and MS2 fragmentation spectrum with a corresponding peak
height (intensity) and a peak area. Any duplicate features or features that had zero
peak area after normalization were also removed, resulting in a matrix of high-quality
features (HQFs). The number and complexity of HQFs detected by each LC/MS condition
were used to evaluate LMW DOM coverage, measurement depth, and the qualitative
and quantitative reproducibility across samples by comparing the accurate mass of the
corresponding [M+H]+ or [M-H]− molecular ion and the peak area for each feature. Only
the HQFs that were observed in at least three replicates per core were carried on to
subsequent quantitative analyses. This step helps reduce the probability of false positives
and creates a more conservative list of only the most reproducible and abundant HQFs to
be compared between samples. Missing values were imputed for statistical analyses and
various univariate and multivariate statistical analyses (e.g., Students t-test, ANOVA, PCA),
and data visualization techniques (e.g., volcano plots, heat maps) were used to help identify
clusters of features that were consistently and significantly different between samples for
annotation and to examine the relative abundance differences between extraction replicates
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and polygon or vegetation types. Additional details about normalization procedures,
selected statistical tests, and thresholds can be found in the Supporting Information.

2.6. Feature Annotation

Annotation of features that were consistently observed and significantly differentially
abundant due to polygon type or vegetation was carried out in a three-step procedure
described in detail in the Supporting Information. In brief, features were compared against
a series of databases and assigned putative chemical formulas using high mass accuracy
measurements, Kind and Fiehn’s “Seven Golden Rules”, and parameters modified from
Kujawinski and Behn’s compound identification algorithm (CIA) for small molecules [51–53].
Databases included KEGG [54], METLIN [55], MMCD [56], PubChem [57], HMDB [58],
LipidMaps [59], or Plant Cyc [60]. Features that matched to multiple hits in a database
or multiple formulas were manually scrutinized in an iterative approach by assessing
high-resolution mass spectral data for consistent fragmentation profiles.

3. Results

Given that this was the first application of this untargeted exometabolomics technique
across multiple Arctic sampling sites, we began with an evaluation of the analytical perfor-
mance of the approach. Due to the large number of samples and data generated, we then
applied a series of data mining techniques and multivariate statistical analyses to reduce
the dimensionality of the data in order to discriminate ecologically relevant features and
compositional variations due to polygon type or vegetation. Features that were signifi-
cantly and reproducibly differentially abundant between sites were further investigated
and putatively annotated using high-mass accuracy MS data and database searching.

3.1. Evaluation of Analytical Performance Across Multiple Sites

Given that a detailed analysis of the analytical performance of this untargeted LC/MS
approach in Arctic soils was conducted previously [43], only a few primary figures of
merit—measurement depth, reproducibility, and LMW DOM coverage—were examined
here. All data processing, filtering steps, and statistical analyses were conducted separately
for each LC/MS condition (HILIC +/−, RP +/−) to eliminate any confounding effects such
as different ionization efficiencies or noise levels for example. Across the four conditions,
13,673 molecular species (RT, MS1, and MS2) were detected, aligned, and exported for data
filtering and analysis (Table 1).

Table 1. LMW DOM coverage by HILIC and RP in positive- and negative-ion mode at each level
of data filtering, expressed as the number of features detected across all 36 soil water extracts from
4 cores obtained from 2 polygon types and 2 species of vegetation.

HILIC (+) HILIC (−) RP (+) RP (−)

Aligned peaks a 4686 2853 4213 1921
Features b 4352 2249 3655 1762

High-Quality Features c 3929 2170 3618 1541
Unique HQFs d 3414 1942 3494 1287

Abundant HQFs e 1966 776 1259 99
Differentially abundant f 322 76 122 1

Annotated g 283 74 117 1
a Aligned peaks with same RT, MS1, and MS2 data from MZmine, b After zeros and artifacts (observed in blank
or control) were removed, c Single RT, MS1 (duplicates removed) and corresponding MS2 spectrum, d Number of
features remaining after overlap analysis where isomers and isobars were removed, e Observed in at least three
samples across each core, f Passed paired t-test p-value of <0.001 and FC > 4, g Database match within 5 ppm,
MS/MS confirmation, and biologically relevant compound or elemental formula assignment using high-mass
accuracy MS1 data and element heuristics.

A preliminary PCA for each LC/MS dataset, prior to any filtering, normalization, or
statistical procedures, revealed a clear separation between blanks, controls, and samples
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(Figure S3), indicating that variations observed between samples were not experimentally
derived but instead due to biogeochemical variation. However, ~18% of the aligned
peaks were observed in nearly all the runs including the blanks and controls (Figure S4a),
suggesting these were background signals from the sample preparation procedures or
LC/MS analyses. After removing these, as well as any zeros or duplicate features, 11,258
HQFs remained for downstream analyses. When we plotted the frequency at which the
HQFs were observed across the dataset, we noted a recurrent trend in the data where the
number of features observed increased sharply at approximate intervals of nine (Figure S4b),
corresponding with the sample set size for each core (9 extracts). These results indicate that
the data filtering protocol employed here effectively reduces the false discovery rate (FDR)
and increases the proportion of LMW DOM analytes represented.

These results also suggest that a common set of LMW DOM features exists within
each core, and across all four cores, despite variations in aboveground vegetation or
topography. Indeed, when we examined the overlap between the four cores for each
LC/MS condition using the neutral mass for each [M+H]+ or [M-H]− singly charged
precursor ion within 0.005 Da, on average there was a 37% overlap in the features detected
(Figure S5). Contrastingly, on average, 15.5% of the features detected were found to be
unique to each core indicating there was unique biogeochemical activity within each core
as well, and that the optimized LC/MS approach employed here was sensitive enough to
detect these subtle variations between sites.

To examine the variability of LMW DOM across each of the LC/MS conditions prior
to data filtering and normalization and evaluate the reproducibility of the untargeted
approach across biological replicates, we built a correlation matrix using the calculated
Pearson coefficients for each extract (Figure 2) and PCA plots using the unique identifiers
and peak areas for each HQF (Figure S7). While there was some variability among replicates,
which was more noticeable in the RP datasets, in general, there was a fair amount of
correlation across each of the nine samples within each core. Interestingly, while it may be
expected that aboveground vegetation dictates belowground SOM composition, the cores
from the same polygon type were more highly correlated to one another than the cores
with the same aboveground vegetation (Figure 2). The PCA components accounted for
58, 51, 54, and 61% of the variation across the HILIC (+), HILIC (−), RP (+), and RP (−)
datasets, respectively, indicating both polygon type and vegetation have a major effect on
the LMW DOM composition.

3.2. Impacts of Polygon Type and Vegetation on LMW DOM Abundance

To reduce the dimensionality of these data and identify features that were significantly
differentially abundant between cores, we performed pairwise comparisons by t-test and
fold change analysis between cores of the same polygon or vegetation type, followed by
an ANOVA to determine features that were in higher relative-abundance uniquely due
to polygon type or vegetation (p-value < 0.001, FC > 4). To visualize these differentially
abundant features, we first used volcano plots to isolate the features that had the greatest
FC and lowest p-value between conditions (Figure 3). There were more features found in
higher relative abundance in the Eriophorum cores versus the Carex cores and at the HCP
sites versus the LCP sites.



Soil Syst. 2021, 5, 10 7 of 19Soil Syst. 2021, 5, x  7 of 21 
 

 

 

Figure 2. Correlation plots for each LC/MS condition of the log2 peak areas (abundance) for the 36 samples analyzed after 

normalization procedures. C = Carex aquatilis, E = Eriophorum angustfolium, A = Site A or LCP, and B = Site B or HCP. 

3.2. Impacts of Polygon Type and Vegetation on LMW DOM Abundance 

To reduce the dimensionality of these data and identify features that were signifi-

cantly differentially abundant between cores, we performed pairwise comparisons by t-

test and fold change analysis between cores of the same polygon or vegetation type, fol-

lowed by an ANOVA to determine features that were in higher relative-abundance 

uniquely due to polygon type or vegetation (p-value < 0.001, FC > 4). To visualize these 

differentially abundant features, we first used volcano plots to isolate the features that 

had the greatest FC and lowest p-value between conditions (Figure 3). There were more 

features found in higher relative abundance in the Eriophorum cores versus the Carex cores 

and at the HCP sites versus the LCP sites. 

  

Figure 2. Correlation plots for each LC/MS condition of the log2 peak areas (abundance) for the 36 samples analyzed after
normalization procedures. C = Carex aquatilis, E = Eriophorum angustfolium, A = Site A or LCP, and B = Site B or HCP.

To then evaluate the quantitative reproducibility of the differentially abundant fea-
tures, an analysis of the coefficient of variance (CV%) for the peak areas across replicates re-
vealed that 95% of these differentially abundant features showed acceptable reproducibility
(CV < 10%, Figure S8) indicating the optimized data collection and processing techniques
were robust and that the data filtering protocols were conservative, selecting for LMW
DOM features that were consistently detected across replicates. It is important to note that
some variability observed among replicates is not unexpected. Despite the subsamples of
soil being relatively small (4 g), it has been well-established that LMW DOM composition
and abundance can vary at even the micro-site or aggregate scale (10 s–100 s if µm) [61,62].
That the untargeted approach applied here can detect these subtle differences is an added
benefit, as it demonstrates the sensitivity of the technique to detecting variation in the
abundance of LMW DOM across space and capturing both the biotic and abiotic impacts
on this pool.
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3.3. Molecular Characterization of Differentially Abundant LMW DOM Features

We further investigated the relationship between polygon type or vegetation and
LMW DOM abundance by directly contrasting the differentially abundant LMW DOM
features using molecular data obtained from the high-resolution LC/MS measurements.
Differentially abundant features ranged in molecular weight (~56–900 m/z) and polarity,
exhibited by their elution across the full retention time window for each LC/MS condition
(Figure S9). The m/z distribution did not vary appreciably between cores (Figure S10) or
between the operationally defined depth increments we employed (Figure S11) as has
been found in previous work [43]. These data support that the LC/MS conditions were
not biased toward any particular class of compounds and that molecular weight alone is
not adequate at differentiating LMW DOM abundance across space and that additional
molecular information is required.

Of the 521 differentially abundant features, 217 (42%) were assigned molecular formu-
las while 304 (58%) did not meet the criteria for a confident assignment or were possible
adducts, complexes, or fragments identified by the MZmine modules during annotation.
As described above, we estimate approximately 10% may have been adducts; including
sodium (Na+) or chloride (Cl−) adducts as these are commonly seen in the characterization
of OM using positive- and negative-ESI, respectively [63,64]. Additionally, these soils have
been shown to have high iron concentrations [34,65–67], and since organo-iron complexes
can be soluble in soil water, they may have been extracted here as part of the LMW DOM
pool. Because organo-metal complexes generally dissociate upon ionization, however, they
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would not appear in the mass spectrum, or would appear as an ion ([M-Fe+H]+) less the
mass of iron (55.9349 m/z) requiring a manual search of the data to annotate these. Across
the 217 assigned features, the average mass error was 0.65 ppm and the average molecular
weight was 379.9353 m/z [68].

Elemental data from formula assignments were then used to assign a biomolecular
compound class—lipids, proteins (amino acids and amino sugars), lignins, carbohydrates,
unsaturated hydrocarbons, condensed aromatics (phenolics), tannins, and aliphatics—to
each differentially abundant feature based on their H/C and O/C ratios (Figure 4) in a
van Krevelen plot [69,70]. There is a clear density of formulas in the low O/C and high
H/C regions of the plot, indicating an abundance of aliphatic compounds—such as lipids,
sugars, and amino acids—possibly derived from microbial biomass or root exudates and
plant leachates. The high presence of formulas consistent with phenolics, lignins, and
proteinaceous (i.e., peptides, amino sugars) material is indicative of microbially digested
lignocellulosic biomass or freshly deposited plant material.
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New methods have recently been proposed to improve biomolecular assignment
of molecules from ecological samples, for example, by including N and P as well [71].
Since N-containing compounds made up over 70% of the differentially abundant features
detected at each polygon and are vulnerable to microbial degradation, here, we have
also included a van Krevelen analysis between the two polygon types using the N/C
ratio (Figure 5); though this technique may also be used with the S/C or P/C ratios to
visualize the distribution of heteroatoms across LMW DOM features detected. Using this
approach, the results show a separation between the N-containing features at the LCP
and HCP sites. More features with a low N/C ratio (N/C < 0.2) and high H/C content
(H/C > 1.5), which are consistent with lipid-like compounds, were found at the HCP site,
consistent with our findings from above. Features in the region N/C < 0.1 and H/C < 1.5,
indicating a high number of amino groups and the presence of phytochemicals (bioactive
plant compounds) [71], were similar between the two polygon types. Features with higher
N/C > 0.2, consistent with LMW DOM compounds having secondary or tertiary amines
(i.e., alkaloids, cyclic amines), were more dominant at the LCP site.
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Arctic LMW DOM pool.

For a more detailed view of the LMW DOM chemistry at these sites, the average
molecular properties for the differentially abundant features that were assigned formulas
have been reported (Table 2). Due to polygon type being a stronger predictor of LMW
DOM abundance, features that were in higher relative abundance at either the HCP or LCP
sites have been highlighted. A selection of LMW DOM features that had the highest fold
change between sites have been further characterized in Table 3.

Table 2. Average molecular properties for HQFs that were in higher relative abundance due to polygon type or vegetation.

HCP LCP Due to Vegetation All Differentially
Abundant Features

Number of features 92 95 30 217
Average formula C17H21.5O4.9N1.2S2.0P0.2 C11.9H7.8O6.5N1.1S2.3P0.5 C20.3H20.6O6N0.9S0.5P0.2 C15.2H15.4O5.7N1.1S1.9P0.3

m/z 393.0249 361.4926 398.1955 379.9353
DBE 7.88 9.51 11.5 9.09
AI 0.37 0.75 0.42 0.54

H/C 1.12 0.75 1.12 0.81
O/C 0.45 3.40 0.38 0.62
N/C 0.15 0.17 0.08 0.20
O/S 2.6 3.4 5.13 3.26

DBE/C 0.59 0.79 0.56 0.67
DBE/H 1.15 2.10 0.76 1.51
DBE/O 3.2 2.35 3.62 2.89

C:N 14.4 10.9 23.4 13.9
% lipid 16.3 2.11 6.67 8.75

% protein 7.61 6.32 6.67 6.91
% lignin 13.0 4.21 30.0 11.5

% carbohydrate 5.43 6.32 6.67 5.99
% unsaturated 12.0 4.21 10.0 8.29

% aromatic 30.4 51.6 33.3 40.1
% tannin 15.2 25.3 6.67 18.4
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Table 3. Selection of LMW DOM features detected in higher relative abundance at each of the sites.
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site, and cluster 4 shows 44 features that were in higher relative abundance in the LCP 

cores, but that this varied with depth in the Carex core at that site. 

In addition to the volcano plots, another more detailed way we examined the differen-
tially abundant features was to distinguish clusters of features that vary similarly across
cores using two-way hierarchical clustering with the normalized log2 peak areas and a
unique identifier for each feature (Figure 6). This allows for the visualization of LMW DOM
features that were consistently and similarly varying across space indicating hotspots of
biogeochemical activity. Consistent with analyses described above, the cores clustered into
two main groupings corresponding to polygon type, LCP or HCP, samples 1–9 with 19–27
and samples 10–18 with 28–36, respectively. A total of four clusters have been highlighted
to show the subtle, but consistent and significantly different variations between cores due
to polygon type, vegetation, or in some cases, depth. For example, cluster 1 shows 76
features that are more abundant across all of the cores except for the Eriophorum core at the
LCP site where those features were found in lower relative abundance. Cluster 2 shows 71
features that were depleted in both LCP cores but not the HCP cores. Cluster 3 indicates
that 67 features were depleted in the Eriophorum core at the HCP site, and cluster 4 shows
44 features that were in higher relative abundance in the LCP cores, but that this varied
with depth in the Carex core at that site.
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In cluster 1, of the 75 differentially abundant features, 52 (69%) were assigned a
chemical formula (average mass error = 0.406 ppm) based on high mass accuracy MS1

measurements, and 4 others that were not assigned a chemical formula but did match to a
database (<5 ppm), for a total of 56 (75%) features annotated in the cluster (Table S6). When
a compound was annotated by both elemental formula assignment and database matching,
most of the time the formulas matched. However, there were instances where different
formulas were assigned to the same molecule, which occurred twice in cluster 1, indicated
by the asterisks in Table S6. In these cases, we were able to use MS2 fragmentation data to
match to available data or eliminate incorrect assignments, highlighting the value of MS2

data in providing information about both known (already in a database) and unknown
compounds, and adducts or complexes. As an example, in the case of the [M-H]− ion
detected at 192.0527 m/z, characteristic neutral losses of formamide (-CH3NO, 45.0214 Da)
and multiple dehydrations (-H2O, 18.0098 Da) were observed (Figure S12), indicating a
structure consistent with glucuronamide, a monosaccharide derivative of beta-D-glucuronic
acid, a common microbial metabolite involved in ascorbic acid synthesis [72].

It is important to note that although no formula or database match was made for the
compounds at the bottom of Table S6, each of those features were reproducibly (n > 3)
and reliably (S/N > 3) detected, and were robustly and conservatively determined to
be significantly (p < 0.001) differentially abundant between samples. In addition, each
feature has a reproducible RT and peak area, and both MS1 and MS2 high-mass accuracy
measurements. This demonstrates the value of this information-rich signal and shows how
it can be used diagnostically for both qualitative and quantitative inquiries.
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4. Discussion

While the total number of features varied some between soil cores, overall, HILIC (+)
detected the greatest number of HQFs across the four cores with 3929 (34.9%) followed
by RP (+) with 3618 (32.1%), HILIC (−) with 2170 (19.3%), and finally RP (−) with 1541
(13.7%) (Table 1). This is likely due to the more favorable ionization conditions in positive-
mode, and more reproducible retention on the HILIC columns for the small, highly polar
compounds that dominate LMW DOM [73]. Despite some differences in performance,
the optimized LC/MS conditions were still highly orthogonal with just 94 (2%) HQFs
observed by all four conditions (Figure S6). These results confirm that the dual-LC, dual-
polarity approach is effective at expanding coverage of the LMW DOM pool and is sensitive
enough to capture both shared features as well as those unique to Arctic soils obtained
from different sampling sites with varying aboveground characteristics.

Soil cores from the same polygon type were more highly correlated to one another
than the cores collected in areas of each polygon type that were dominated by the same
aboveground vegetation (Figure 2). This suggests polygon type (topography) is a stronger
predictor of LMW DOM abundance than vegetation cover at this scale and that it may
be a useful scaling parameter to connect biogeochemical measurements with landscape
properties (i.e., thaw depth, hydrology) [18,26,29].

The lower abundance of LMW DOM at the LCP site (Figure 3) may be due to increased
transport (horizontal or vertical) of LMW DOM out of the organic horizon [74,75], likely due
to the lower topography and more saturated conditions, or increased microbial processing.
The higher relative abundance of LMW DOM features in the Eriophorum cores suggests
either an accumulation or an increase in the rate at which LMW DOM is made available,
possibly due to higher root biomass (Table S1), which has been shown to enhance substrate
availability [76]. Alternatively, this could indicate a depletion of LMW DOM in the Carex
cores, which could be due to increased microbial processing (biogeochemical hotspot), or
plant uptake, of DOM at those sites. Plant uptake of DOM has been observed in Arctic
vegetation as a way for plants to overcome nitrogen limitation [77–79]. Further analysis
of the molecular details or additional studies that include isotopic labeling or gas flux
measurements could be conducted to verify increased mineralization of LMW DOM at the
LCP and Carex sites.

As both Carex and Eriophorum are vascular plant species and decomposition is gener-
ally slowed in Arctic systems, an accumulation of lignified LMW DOM across the cores
was expected (Figure 4). Most of the differentially abundant features between cores were
more abundant in the Eriophorum cores and were dominated by formulas consistent with
low O/C and high H/C (i.e., aliphatic) content. This may have been due to the higher root
biomass present in those samples (Table S1) or, more likely, necromass found beneath the
Eriophorum cores [80,81].

In contrasting the molecular details of the two polygon types, there were readily ob-
servable differences reflected in the LMW DOM pool. Consistent with our hypothesis above
from the van Krevelen analysis, there are multiple lines of evidence to support a hotspot of
increased microbial processing and C cycling at the LCP site. First, both the average m/z and
double bond equivalents (DBE) were lower in the LCP cores, characteristic of SOM that has
undergone microbial decomposition (Table 2). Second, the proportion of features characteristic
of compounds with higher biodegradability—lipids, carbohydrates, aliphatics—were also
lower in the LCP cores (Figure 4), suggesting they may have been preferentially degraded and
released as GHGs [31,32,82]. Third, there was a higher relative abundance of tannins and other
condensed aromatics at the LCP site, as shown in Figure 4 and by the higher aromaticity index
(AI) and 25.3% tannin content as shown in Table 2, suggesting an accumulation of these more
recalcitrant features. Finally, although LCP centers are generally more anaerobic due to
saturated conditions, the average oxygen content (demonstrated by the average molecular
formula, O/C, and O/S ratios) of the differentially abundant LMW DOM features at the
LCP was higher than the HCP (Table 2), further supporting enhanced microbial processing
of OM at the LCP site.
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Additionally of note, although there were a similar number of chemical formulas
detected in higher relative abundance at each polygon, the features at the HCP site were
more chemically diverse as indicated by a more equitable distribution among the assigned
compound classes (Table 2). One explanation for this is that although the aboveground
vegetation in each core represented primarily a single species, the HCPs generally have
higher plant diversity [44]. This has been associated with more diverse plant inputs into the
soil and increased microbial diversity, in turn leading to a more diverse substrate pool [83].

Interestingly, of the assigned formulas at the HCP and LCP sites, 88% and 72%, respec-
tively, contained N, suggesting root exudation of organic N and/or microbial processing
of SOM may be an important process occurring at these sites, especially in the HCP cores.
This could be a result of the priming effect. Because HCP polygons are drier [84], plant and
microbial activity may be more limited. As such, vegetation may allocate more N below-
ground to try and stimulate microbial processing of organic matter to release nutrients for
uptake [85,86]. Somewhat surprisingly, ~11% of the differentially abundant formulas across
all four cores contained both sulfate and nitrate groups (O > 6), which are characteristic
of secondary organic aerosols (SOAs) [87]. Secondary organic aerosols are formed in the
atmosphere through a complex interaction of sunlight and volatile organic compounds
that originate from industrial emissions, cars, burning biomass, or even vegetation [88].
They have been shown to be an important input of organic C to alpine systems where
they influence a range of biogeochemical processes [89]. However, while they have been
observed near Utqiaġvik before, it has generally been along the coastline or in the marine
environment closest to anthropogenic activities [90]. To the best of our knowledge, this
is the first evidence of water-soluble SOAs in polygonal tundra soils on the BEO. These
results suggest that some portion of LMW DOM that is available for microbial processing
or plant uptake is derived from volatile organic carbon precursors.

Among the LMW DOM features annotated in Cluster 1 by database matching, there
were amino acids, plant hormones, microbial metabolites, lignin-like molecules, and
DNA/RNA fragments/derivatives (Table S6). These data support that this approach
can detect key compounds involved in biogeochemical cycling. For example, a urea deriva-
tive (N-hydroxymethyl urea, [M-H]− detected at 89.0358 m/z), was found to be in higher
relative abundance in every core except the Eriophorum core at the HCP site. As a key
metabolite in N cycling (i.e., ornithine cycle), urea is produced/excreted when there is an
accumulation of highly toxic ammonia. An accumulation of extracellular urea in these
soils may suggest increased inorganic N availability. This example demonstrates the utility
of this untargeted approach for targeting additional compounds of interest; here, those
involved in the urea cycle (i.e., glutamate, glutamine, arginine, citrulline) and in elucidating
ecologically relevant molecular information to be used in mechanistic modeling.

In conclusion, this study implemented a dual-LC, dual-polarity nano-LC/MS ap-
proach to examine the variation in LMW DOM relative abundance in soil cores with two
contrasting aboveground vegetation profiles and polygon types. Taken together, these
results reveal a complex picture of C and N cycling at these sites, yielding insights into the
chemical processing and relative degradability of the LMW DOM features found across
the Arctic landscape. These results support that a broad range of compounds with varying
physicochemical properties and concentrations were detected by the optimized approach
and that the untargeted platform is sensitive, robust, and reproducible even when applied
across multiple cores from different sites across the landscape. We provide evidence that
LMW DOM is a diverse and reactive pool, and while there were a common set of metabo-
lites among the cores, there were significant differences observed between sites as well
indicating LMW DOM may be an important indicator of biogeochemical variation across
the landscape. In addition, the untargeted LC/MS approach was sensitive to variation at
multiple scales. While polygon type was a strong predicter of LMW DOM composition
and relative abundance, vegetation also had an impact, indicating LMW DOM provides
a window into the dynamic and complex interactions between landscape topography,
vegetation, and SOM cycling.
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Furthermore, this study revealed evidence of enhanced microbial processing at the
LCP and Carex sites demonstrating its ability to detect hotspots of biogeochemical activity
across space. Of the 521 differentially abundant features detected, 217 were putatively
annotated by formula assignment, database matching, and evaluating the fragmentation
data. For some compounds, this is the first time they have been reported in Arctic soils, in-
cluding the 11% of detected formulas consistent with secondary organic aerosols, although
additional studies are needed to understand the relative importance of this process in these
systems. With an average mass error of <1 ppm, these high-mass accuracy measurements
combined with reproducible retention times and peak areas provide an information-rich
chemical profile of LMW DOM features in polygonal tundra soils. Correlating these quali-
tative and quantitative variations with additional landscape-scale features (i.e., hydrology,
gas fluxes) would yield additional insight into how this chemical signal may be used to
predict various processes impacting C cycling in the Arctic.

Supplementary Materials: The following are available online at https://www.mdpi.com/2571-8
789/5/1/10/s1: Table S1: Polygon soil core sample summary and corresponding TOC, TN, TC,
C:N, and dry root weight results. Table S2: Optimized mobile phase conditions and additives for
each LC phase and MS polarity, injection volume, and flow rates. Table S3: Optimized gradient
conditions for nano-LC separations, for positive- and negative-MS modes on C18-RP and ZIC-
pHILIC columns. Table S4: MZmine parameters used for the peak detection modules applied in the
analysis of the polygonal tundra soil organic horizons. Table S5: MZmine parameters used for the
peak list generation modules applied in the analysis of the polygonal tundra soil organic horizons.
Table S6: “Cluster 1”, listing the differentially abundant LMW DOM features found in lower relative
abundance in the Eriophorum—HCP core. Figure S1: Percent aligned peaks that were annotated my
MZmine as an adduct, complex, or fragment of another peak within 10 ppm and +/− 0.1 min RT
for each core grouped by LC/MS condition. C = Carex, E = Eriophorum, A = Site A or Low-Centered
Polygon (LCP), and B = Site B or High-Centered Polygon (HCP). Figure S2: Box plots of raw log2
abundance values for HILIC (−) dataset which had a systematic shift in quantitative values (a) due
to experimental variation (i.e., instrumentation, ionization efficiency, extraction efficiency). Plot (b)
shows how the normalization procedure removes this systematic error. Figure S3: PCA plots of raw
log2 abundance values from the blank, controls, and samples before normalization, imputation, and
filtering procedures. Figure S4: (a) Histogram of the frequency of observations for each aligned peak
(RT, MS1, and MS2) across the entire dataset (all 4 cores), including blanks and controls (55 total runs),
before any data quality filtering steps and (b) a histogram of the HQFs across the 36 samples, after
filtering out zeros, duplicates, and signals that were observed in the blanks or controls. Figure S5:
Venn diagrams showing the overlap of features between cores for each LC/MS condition. C = Carex
aquatilis, E = Eriophorum angustifolium, A = Site A or low-centered polygon (LCP), and B = Site B or
high-centered polygon (HCP). Figure S6: Venn diagram (top) showing the overlap of HQFs between
LC/MS conditions across all four cores obtained by calculating the neutral molecule from the MS1

data, [M+H]+ and [M-H]− ions (+/− 0.005 Da), excluding isomers and isobars. Bar graphs (bottom)
show the total number of unique HQFs observed by each LC/MS condition and the number of
LMW DOM features that were observed only once or multiple times across the four conditions.
Figure S7: PCAs of HQFs by LC/MS condition. Figure S8: Pie chart with the results from a coefficient
of variance analysis for peak areas of the differentially abundant LMW DOM features. Figure S9:
Distribution of molecular weight (m/z) and retention time (RT) for differentially abundant features,
detected across the 36 extracts, separated by LC/MS condition. Figure S10: Distribution of molecular
weight (m/z) against fold change for LMW DOM features that were differentially abundant due to
polygon (E-HCP_E-LCP and C-HCP_C-LCP) or vegetation type (C-HCP_E-HCP and C-LCP_E-LCP).
Figure S11: Distribution of m/z by core and depth; solid color = top, stripes = middle, dots = bottom,
C = Carex aquatilis, E = Eriophorum angustifolium. Figure S12: Fragmentation spectrum of [M-H]− ion
at 192.0527 m/z showing characteristic neutral losses used for putative annotation.
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