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Abstract: Soil anoxia is common in the annually thawed surface (‘active’) layer of permafrost soils,
particularly when soils are saturated, and supports anaerobic microbial metabolism and methane
(CH4) production. Rainfall contributes to soil saturation, but can also introduce oxygen, causing
soil oxidation and altering anoxic conditions. We simulated a rainfall event in soil mesocosms from
two dominant tundra types, tussock tundra and wet sedge tundra, to test the impacts of rainfall-
induced soil oxidation on microbial communities and their metabolic capacity for anaerobic CH4

production and aerobic respiration following soil oxidation. In both types, rainfall increased total soil
O2 concentration, but in tussock tundra there was a 2.5-fold greater increase in soil O2 compared to
wet sedge tundra due to differences in soil drainage. Metagenomic and metatranscriptomic analyses
found divergent microbial responses to rainfall between tundra types. Active microbial taxa in the
tussock tundra community, including bacteria and fungi, responded to rainfall with a decline in
gene expression for anaerobic metabolism and a concurrent increase in gene expression for cellular
growth. In contrast, the wet sedge tundra community showed no significant changes in microbial
gene expression from anaerobic metabolism, fermentation, or methanogenesis following rainfall,
despite an initial increase in soil O2 concentration. These results suggest that rainfall induces soil
oxidation and enhances aerobic microbial respiration in tussock tundra communities but may not
accumulate or remain in wet sedge tundra soils long enough to induce a community-wide shift
from anaerobic metabolism. Thus, rainfall may serve only to maintain saturated soil conditions that
promote CH4 production in low-lying wet sedge tundra soils across the Arctic.

Keywords: metagenomics; metatranscriptomics; soil redox; permafrost soils; arctic tundra

1. Introduction

Permafrost soils consist of permanently frozen ground (permafrost) overlain by a
shallow, seasonally thawed active soil layer (the ‘active layer’). These soils store nearly half
of all global belowground organic carbon (~1300 Pg) [1]. The decomposition and net storage
of organic carbon is controlled in large part by redox conditions in the active layer that are
regulated by the availability of oxygen [2]. Permafrost affects redox conditions by confining
soil water to the active layer, resulting in soil saturation and thus periodic or persistent soil
anoxia [3,4]. Anoxic conditions develop when oxygen is consumed through biochemical
processes (e.g., aerobic respiration) or geochemical reactions (e.g., iron oxidation) faster
than it is introduced to the soil by diffusion, plant roots, or infiltrating rainwater [5,6].
Permafrost soils support anaerobic microbial metabolism and serve as a major source of
methane (CH4) when organic carbon is decomposed under anoxic conditions [7–9].

In the Arctic, permafrost soils serve as a net sink for atmospheric carbon [10,11],
but the net carbon dioxide (CO2) balance of these soils with the atmosphere is changing
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with recent warming [12,13] that has thawed large regions of permafrost and deepened
the active layer [14–16]. Warming has also increased rainfall intensity, frequency, and
accumulation in active layer soils [17–19] that has led to deeper permafrost thaw [20]
and greater CH4 release from thawing permafrost soils [21]. Thus, permafrost thaw and
changes in drainage and precipitation will likely lead to greater fluctuations in water levels
and redox conditions in the active layer [6], which may trigger increased microbial activity
that leads to faster rates of organic carbon decomposition and the release of CO2 to the
atmosphere [22–25]. Research has shown that soil draining and water-level variation leads
to rapid aerobic decomposition of soil organic carbon to CO2 [26–31]. Previous research has
also found that adding oxygen-rich simulated rainwater rapidly changed redox conditions
in saturated active layer soils, which increased the abiotic degradation of organic carbon
to CO2 [5]. What remains unknown is the impact of rainfall and altered redox conditions
on the microbial communities in these active layer soils, and specifically their metabolic
capacity for anaerobic CH4 production and aerobic respiration following soil oxidation.

Redox conditions regulate the microbial decomposition of soil organic carbon into
CH4 or CO2 by controlling microbial gene expression in response to oxygen availability [31].
Under anoxic conditions, organic carbon is degraded stepwise through anaerobic pathways
of fermentation and acetogenesis that supply alcohols and organic acids as substrates
for methanogenesis [32]. In oxidized soils, aerobic heterotrophic microbes decompose
biopolymers into simple sugars [33] or oxidize CH4 to CO2 as an energy source [34]. Thus,
the microbial response to rainfall within anoxic active layer soils will likely be controlled
by changes in soil redox conditions via an increase in dissolved oxygen (O2) concentration.
However, the extent to which microbial communities can respond to rainfall-induced
changes in soil redox conditions, or the duration of their response following rainfall, has
yet to be determined.

Rainfall and soil oxidation may also stimulate microbial community responses that
differ between distinct tundra types. The low arctic landscape is dominated by two tundra
types, tussock tundra and wet sedge tundra, that differ in landscape position, dominant
vegetation, soil properties, redox conditions, and microbial community composition [35–
40]. Previous studies in the low arctic that use next-generation sequencing techniques
to characterize the microbial taxa inhabiting permafrost soils have focused on polygonal
tundra of the coastal plains [32,41] or boreal forests and shrub-dominated tundra in the
discontinuous permafrost zone [42–44]. Current characterizations of the microbial com-
munities within tussock tundra and wet sedge tundra are limited to phospholipid fatty
acid (PLFA) analyses [38] and terminal restriction fragment length polymorphism (T-RFLP)
analyses [45], which limits our ability to predict how these distinct microbial communities
may respond metabolically to rainfall-induced changes in soil redox conditions. It is likely
that the extent of the microbial response to rainfall and soil oxidation among these tundra
types will be constrained by the microbial species composition and their functional genes,
as well as the expression of their genes under changing soil redox conditions; we test that
idea in this paper.

Here, we provide mechanistic explanations for the microbial community response
to rainfall-induced soil oxidation using an integrated meta-omics approach coupled with
soil oxygen modeling. Meta-omics studies reveal the composition and diversity of soil
microbial communities, their functional potential, and their in situ gene expression during
environmental disturbances without the need for cultivation [46]. As such, we determined
the taxonomic composition and genomic potential of the soil microbial communities within
tussock tundra and wet sedge tundra using 16S rRNA amplicons and metagenomics. Using
metatranscriptomics we determined microbial gene expression within the communities of
both tundra types under initial anoxic conditions and again following a simulated rainfall
event to oxidize the soil. To determine the magnitude and temporal extent of rainfall-
induced soil oxidation, we modeled both the accumulation of dissolved O2 added to the
soil in rainfall and the consumption of dissolved O2 following rainfall as the saturated
soils re-acclimated. Our modeled concentrations of dissolved O2 after rainfall were then
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coupled with the observed patterns in microbial gene expression in response to rainfall
at 4-h and 24-h following the rainfall event. We also conducted a separate soil incubation
experiment to measure rates of microbial respiration and CH4 production under anoxic and
oxic conditions that mimic pre- and post-rainfall soil redox conditions. We hypothesized
that an increase in soil oxygenation by rainfall would (1) decrease the microbial expression
for anaerobic metabolism genes as well as the rates of CH4 production, while (2) increasing
growth expression for aerobic microbial taxa and subsequent CO2 emissions in response to
the rapid shift in soil redox conditions. We also hypothesized that the extent of rainfall-
induced changes in microbial gene expression patterns depends on the genomic potential
of tussock tundra or wet sedge tundra microbial communities to respond to changing soil
redox conditions, as well as on the amount of dissolved O2 supplied to the soil.

2. Materials and Methods
2.1. Mesocosm Design

A total of 12 intact soil-plant cores (diameter 28 cm; length 31 ± 4 cm) were collected
from two dominant tundra types, tussock tundra and wet sedge tundra, near Toolik Lake,
Alaska (68◦38′ N, 149◦43′ W) between July and August 2017 and transferred to 20 L plastic
buckets to establish the mesocosm experiment. Triplicate mesocosms from each tundra
type were separated into two distinct study groups: (1) biotic response cores (N = 6) and (2)
abiotic response cores (N = 6), where results from the abiotic response cores are previously
described [5]. The full mesocosm experiment was split into two study groups to avoid the
effects of destructive soil sampling necessary for the biotic response cores. The mesocosm
experimental procedures for biotic and abiotic cores were identical and consisted of an
acclimation period under static waterlogged conditions (i.e., no flowing water) for 4–7 days
to generate reducing conditions observed in intact soils in the field [47,48], followed by
a flushing period over 1–4 h to mimic the effects of brief and rapid changes in redox
conditions induced by rainfall (Figure S1). The flushing period consisted of ten individual
flushes of 2 L of DI water per flush for each replicate mesocosm. The total volume of water
flushed was chosen to represent rainfall events up to and in excess of the natural rainfall
pattern near Toolik Field Station, which received ~270 mm of rainfall between 1 June and
30 September 2017 (Environmental Data Center, Toolik Field Station). Additional details of
the mesocosm design are provided in the Supplemental Materials.

2.2. Soil Properties

Soil properties for pH, conductivity (µS cm−1), temperature (◦C), dissolved soil O2
(mg O2 L−1), and soil moisture (% water), the latter of which was calculated as the volu-
metric water content (VWC) of the soil, were measured directly at 10–20 cm depth in the
biotic response cores at the end of the anoxic acclimation period prior to rainfall treatments.
Soil properties for bulk density (g soil dry cm−3), porosity (% soil volume), organic matter
content (%), and organic carbon content (% C) were determined from subsamples of the
biotic response cores taken at the end of the experiment. All tussock tundra soil cores
were composed of an upper organic soil layer (0–20 cm) and a lower mineral soil layer
(20–30 cm) whereas all wet sedge tundra soil cores were composed entirely of organic soil
(0–30 cm). Additional details are provided in the Supplemental Materials.

2.3. Soil Sample Collection

For all biotic response cores, an initial soil sampling event was conducted at the
end of the anoxic acclimation period, representing sampling time point “T0”. Mesocosm
replicates were then flushed to simulate rainfall as described above (Figure S1). Additional
soil sampling events were conducted at 4-h (“T4”) and 24-h (“T24”) following simulated
rainfall. At each sampling time point, duplicate soil cores (diameter 2.54 cm, length
30 cm) were extracted from each mesocosm replicate and homogenized by depth in 10-cm
increments. The 10–20 cm soil increment, composed of organic soil in all mesocosms, was
chosen for all downstream microbial analyses and preserved in RNAlater Stabilization
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Reagent (Qiagen, Hilden, Germany) in sterile tubes at 4 ◦C for 18 h and then stored at
−80 ◦C until thawed for extraction (N = 18).

2.4. Modeling Soil O2 Accumulation and Consumption Rates

A mass balance model was developed to estimate the rates of soil O2 accumulation
introduced through rainfall and soil O2 consumption following rainfall, as well as the
final concentrations of soil O2 at each sampling time point in the mesocosm experiment
(Figure S2). Measurements derived from both the abiotic response cores [5] and the biotic
response cores (this study) in the mesocosm experiment were incorporated into the mass
balance model to estimate the rates of rainfall O2 (Frain) and soil O2 consumption (Sall)
(Figure S2). The rates of soil O2 diffusion (Fatm) were considered to be zero during this
relatively short experiment, and there was no groundwater O2 (Fground) or soil O2 leaching
(Fleach) (Figure S2). The initial concentration of soil O2 (Mt; mg O2 L−1) in the biotic
response cores was measured at the end of the anoxic acclimation period (T0) prior to
simulated rainfall (details in Supplemental Materials). No additional measurements for
soil O2 concentration were taken in the biotic response cores, and soil measurements for
tussock tundra and wet sedge tundra reported for the abiotic response cores [5] were used
to model rates of soil O2 accumulation during the DI water flush (Frain; mg O2 L−1 h−1) and
calculate the final soil O2 concentration at the end of the DI water flush (Mf; mg O2 L−1)
in the biotic response cores (details in Supplemental Materials). Likewise, additional soil
measurements for tussock tundra and wet sedge tundra reported for the abiotic response
cores [5] were used to model the rates of soil O2 consumption during the re-acclimation
phase following simulated rainfall (Sall; mg O2 L−1 h−1) and calculate the final soil O2
concentration at 4-h (Mf+4; T4) and 24-h (Mf+24; T24) following the DI water flush (details
in Supplemental Materials).

2.5. Nucleic Acid Extraction and Sequencing

Microbial RNA and DNA were extracted from soil samples collected at the 10–20 cm
depth in each tundra mesocosm at each sampling time point (N = 18) in the biotic re-
sponse cores using the RNeasy PowerSoil Total RNA Isolation kit (Qiagen) and RNeasy
PowerSoil DNA Elution Accessory kit (Qiagen), respectively, following the manufac-
turer protocol. PCR amplicon sequencing of the 16S ribosomal RNA genes was con-
ducted on the extracted DNA following the Earth Microbiome Project protocol (https:
//www.earthmicrobiome.org/protocols-and-standards/16s/; accessed on 10 March 2021)
(N = 18; details in Supplemental Materials). Samples for 16S amplicons were sequenced at
the University of Michigan Microbiome Core with Illumina MiSeq 2 × 150 bp paired-end
reads. Metagenome sequences were generated from extracted DNA (N = 15; details in
Supplemental Materials) and sequenced at the University of Michigan Advanced Genomics
Core with Illumina HiSeq (4000) 150 bp paired-end reads. Metatranscriptome reads were
generated from total RNA extractions (N = 12; details in Supplemental Materials) and
sequenced at the University of Michigan Advanced Genomics Core with Illumina HiSeq
(4000) 150 bp paired-end reads.

2.6. 16S rRNA Gene Analysis

The 16S amplicon sequences were paired, quality filtered, dereplicated, and aligned
to the SILVA reference database [49] (v.132) with chimeras removed using the VSEARCH
algorithm [50], all using MOTHUR [51]. The remaining quality-controlled (QC) reads were
classified using a Bayesian classifier with the RDP training set [52] (set 16). Reads were
then clustered at 97% similarity to form operational taxonomic units (OTUs) and rarefied
to 9565 sequences per sample (average 14,562 QC sequences per sample prior to rarefying;
Table S1) with raw counts transformed into relative abundance (average 95% community
coverage for rarefied samples; Table S1). The consensus taxonomy for each OTU was
assigned using the RDP classifier trained to the SILVA database (v.132). OTUs classified as
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Eukaryote, Chloroplast, Mitochondria, and Unknown were removed, with raw counts for
remaining OTUs and their taxonomic classification provided in an OTU table (Dataset S1).

2.7. Metagenome Assembly

DNA sequences were trimmed and quality-filtered with the BBDuk algorithm from
BBMap [53] with dereplication. Quality-controlled metagenome reads from each sample
(average 36.8 × 106 QC reads per sample; Table S2) were normalized to 20× kmer cov-
erage with kmers below 5× coverage removed using BBNorm from BBmap [53] prior
to co-assembling using MEGAHIT [54]. The co-assembled contigs were indexed using
Bowtie2 [55] and short reads from each sample were individually mapped to the indexed
contigs using BBMap [53]. A contigs database was created from the co-assembly using
Anvi’o [56] with the abundance information for all contigs merged into an Anvi’o profile.
Coding sequences (CDS) within the contigs database were predicted with PRODIGAL [57]
while HMMER [58] was used to search for and tabulate the occurrence of single-copy
housekeeping genes for bacteria and archaea from two collections [59,60]. CDS were also
annotated to the Kyoto Encyclopedia of Genes and Genomes database (KEGG) [61] as well
as taxonomically annotated using the online GhostKOALA program [62] and imported
into the contigs database. Counts per annotation were normalized to genes per million
(GPM) [63] to reduce biases associated with library size and CDS length, and to express
all counts as a portion of one million (Dataset S2). The mapping information for each
sample mapped to the contigs database was merged into a single Anvi’o profile prior
to binning contigs into metagenome assembled genomes (MAGs) using CONCOCT [64]
and MetaBAT [65]. Redundant MAGs derived from the independent binning algorithms
were dereplicated using DASTools [66] to generate the final MAGs dataset, where MAGs
with >70% completeness and <10% redundancy were retained. Retained MAGs were
queried against the Genome Taxonomy Database (GTDB) [67] using the contigs and profile
databases within Anvi’o to generate a consensus taxonomy for each MAG and its relative
abundance across all samples.

2.8. Metatranscriptome Assembly

RNA sequences were trimmed and quality-filtered with the BBDuk algorithm from
BBMap [53] without dereplication to determine the abundance of transcribed genes.
Quality-controlled metatranscriptome reads (average 26.3 × 106 QC reads per sample;
Table S3) were mapped to KEGG-annotated coding sequences (CDS) indexed from the
metagenome assembly using BBMap to generate pile-up files (average read depth per
gene), while SAMtools was used to extract counts and CDS lengths from the BBMap
output [53]. On average, 65% of the metatranscriptome CDS were expressed (>1 count
per read) with 40% of expressed CDS assigned KEGG functional annotations, of which
99% were also assigned taxonomic annotations. Counts per annotation were normalized
to transcripts per million (TPM) [63] to reduce biases associated with library size and
CDS length, and to express all counts as a portion of one million (Dataset S3). This work-
flow assembled metatranscriptomic reads into functionally and taxonomically annotated
KEGG orthologs (KOs) by mapping reads to whole genome sequences derived from the
co-extracted DNA-based metagenomes.

2.9. Taxonomic Composition and Diversity

The taxonomic composition and diversity of the total microbial communities within
tussock tundra and wet sedge tundra soils were determined from the 16S rRNA amplicons
and metagenomes. Within the 16S rRNA amplicons, taxonomic composition was based on
the classification of OTUs clustered at 97% similarity (Dataset S1). Within the metagenomes,
the taxonomic composition and diversity metrics were based on the relative abundance of
GPM-normalized genes annotated as KEGG tier III “Ribosomes” (03010 Ribosome PATH:
ko03010) further separated at the KEGG tier IV level into annotations for “small subunit
ribosomal protein” (ssu) analogous to bacterial and archaeal 16S ssu rRNA and fungal 18S
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ssu rRNA (Dataset S4). Similarly, the taxonomic composition and diversity of the active
microbial communities within tussock tundra and wet sedge tundra soils were determined
from the TPM-normalized metatranscriptomes annotated as the KEGG tier IV ribosomal
category “ssu” (Dataset S4). Pairwise comparisons between microbial taxa within total or
active tundra communities were calculated using paired t-tests or between sampling time
points within tundra communities using two-way ANOVA based on differences in relative
abundance. Shannon-Wiener diversity index was calculated with raw taxonomic gene
counts and assessed via two-way ANOVA to determine the effects of tundra type on total
and active taxonomic alpha diversity. Beta diversity treatment effects were estimated using
permutational multivariate analysis of variance (PERMANOVA) based on Bray-Curtis
dissimilarity distance between taxonomic gene counts using the vegan package [68] in the R
software environment [69], and PCoA plots were generated using the ggplot2 package [70].
Throughout this paper, all statistical analyses were considered significant at p < 0.05.

2.10. Genomic Potential and Functional Gene Expression

The genomic potential and functional gene expression within the total and active
communities in tussock tundra and wet sedge tundra soils were determined from the GPM-
normalized metagenomes and TPM-normalized metatranscriptomes, respectively, based
on the relative abundance of genes annotated to KEGG tiers II-IV. Pairwise comparisons
among functional genes between tundra communities were calculated using paired t-tests
or between sampling time points within tundra communities using two-way ANOVA
based on differences in relative abundance and visualized with Z-score transformations
using pheatmap [71] in R. Diversity analyses of the functional genes were performed using
the vegan package [68] in R. Shannon-Wiener diversity index was calculated with raw
functional gene counts and assessed via two-way ANOVA with post hoc Tukey honest
significant differences tests to determine the effect of tundra type on functional alpha
diversity. Beta diversity treatment effects were estimated using PERMANOVA based on
Bray-Curtis dissimilarity distance between GPM- or TPM-normalized functional gene
counts with the R-vegan function adonis.

2.11. Differential Gene Expression

Differential gene expression (DGE) analysis was applied to the TPM-normalized
metatranscriptomes, where DGE between sampling time points within each tundra type
was determined using the glmFit function within edgeR [72] based on KO values, after
setting calcnormfactors to “none” to avoid default TMM normalization by edgeR (Dataset
S5). The generalized linear models were fit to a design matrix based on the experimental
design to test for differential expression between sampling time points while adjusting for
differences between mesocosm replicates at each sampling time point. This was considered
an additive linear model with mesocosm replicates at each sampling time point as the
blocking factor. DGE for TPM-normalized KOs were considered differentially expressed if
the false discovery rate (FDR) [73] value of p was < 0.05.

2.12. Oxygen-Regulated Gene Expression

Results from the DGE analysis (log fold-change) were evaluated for the differential
expression of oxygen-regulated functional KOs (i.e., genes) between sampling time points
within each tundra type. Genes identified as oxygen-regulated infers that their expression
can be either positively or negatively affected by O2 availability and the differential expres-
sion of these genes is an indication that simulated rainfall changed soil redox conditions
through an increase in dissolved O2 concentration. Select marker genes that are considered
to be oxygen-regulated were chosen from previous studies [74] and includes genes from
obligate anaerobic pathways of carbon fixation, fermentation, denitrification, and methano-
genesis, as well as genes from obligate aerobic pathways of carbon fixation and methane
oxidation. Additional oxygen-regulated genes from KEGG Metabolism categories were
chosen from the reference database in Wu and Moore [75], which identified KO groups of
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which gene distributions were statistically different for aerobic vs. anaerobic environmental
conditions. In the reference study, complete prokaryotic genomes in NCBI’s Microbial
Genome Project Database were used to statistically predict correlations between functional
KO groups and oxygen requirements (see [75] for details).

2.13. Iron Redox Cycling Gene Expression

The microbial pathways for iron oxidation and dissimilatory iron reduction were
quantified as additional proxies for obligate aerobic or anaerobic gene expression, respec-
tively. Established gene annotation pipelines such as GhostKOALA [62], used in this study,
generally do not incorporate hidden Markov models (HMMs) capable of annotated iron
redox cycling genes [76]. We re-annotated the metatranscriptome contigs using FeGe-
nie [76], which provides a comprehensive database of HMMs based on genes related to
iron oxidation or reduction in bacteria and archaea. Counts within each iron gene category
were summarized as their relative abundance against the sum of all identified iron genes
with only those genes identified for iron oxidation or reduction presented in this study.
Pairwise comparisons with two-way ANOVA were conducted across sampling time points
within the iron oxidation or reduction gene categories to determine if rainfall-induced soil
oxidation changed obligate redox-dependent gene expression.

2.14. Microbial Respiration and Methane Production

The rates of microbial respiration (CO2) and net methane (CH4) production were
measured from a separate soil incubation experiment using a subset of each homogenized
soil sample originally collected from the 10–20 cm sampling depth in each tussock tundra
and wet sedge tundra mesocosm in the biotic response cores at each sampling time point
(N = 18). Each soil sample (average of 15 ± 5 g per sample) was placed in an individual
250 mL glass jar sealed with an airtight lid containing a septum for gas sampling. Jars
containing soil collected from the T0 sampling time point were purged with N2 to reproduce
anoxic field conditions. Jars containing soil from the T4 and T24 sampling time points
were purged with compressed air to reproduce oxic field conditions. Jars were incubated
for 48 h in the dark at field temperature (5 ◦C). Following the 48-h incubation, 20 mL of
headspace gas was collected using an evacuated syringe and immediately analyzed for
CO2 and CH4 concentrations via gas chromatography on a Shimadzu GC-14A with TCD
and FID detectors (Shimadzu, Kyoto, Japan). Gas concentrations were converted to rates
of gas production per hour relative to the dry mass of soil. Pairwise comparisons with
two-way ANOVA were conducted between sampling time points within each tundra type
for the rates of CO2 and CH4 production.

3. Results
3.1. Soil Properties

We measured soil properties within tussock tundra and wet sedge tundra mesocosms
in the biotic response cores at the end of the anoxic acclimation period (T0) prior to
simulated rainfall. Soil pH and conductivity were lower in tussock tundra soil compared
to wet sedge tundra soil (paired t-test; p = 0.03, 0.05, respectively; Table 1), with measured
values consistent with previous studies conducted in younger landscape tundra soils in the
Toolik Lake region [5,47,48]. Soil temperature, moisture, and dissolved O2 concentrations
were similar between both tundra soils prior to simulated rainfall (paired t-test; p > 0.1 for
all; Table 1). Organic matter content and its corresponding organic carbon content were
lower in tussock tundra soil compared to the wet sedge tundra soil (paired t-test; p = 0.04,
0.04; Table 1). Bulk density was greater in tussock tundra soil compared to wet sedge
tundra soil (paired t-test; p = 0.02; Table 1), with lower porosity than in wet sedge tundra
soil (paired t-test; p = 0.02; Table 1).
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Table 1. The chemical and physical soil properties in tussock tundra and wet sedge tundra mesocosms
in the biotic response cores were measured at the end of the anoxic acclimation period (T0), and bulk
soil properties were measured at the end of the experiment (mean ± SD; N = 3 per tundra ecosystem).
Asterisks indicate significant differences in mean pairwise similarity between tussock and wet sedge
tundra soils (paired t-test; * p < 0.05; NS = no statistically significant difference).

Soil Properties Tundra Soil Mean Difference
between TundraTussock Wet Sedge

Chemical Properties
pH 4.58 ± 0.39 6.12 ± 0.06 1.54 *
Conductivity (µS cm−1) 65.9 ± 18.6 123.6 ± 14.4 57.7 *

Physical Properties
Temperature (◦C) 7.8 ± 0.3 8.5 ± 0.3 0.7 NS
Moisture (% water) 63.1 ± 7.6 70.1 ± 4.2 7.0 NS
Dissolved [O2] (mg O2 L−1) 1.21 ± 0.23 1.04 ± 0.05 0.17 NS

Bulk Soil Properties
Organic Matter Content (%) 67.6 ± 8.6 80.7 ± 4.5 13.1 *
Organic Carbon Content (%) 33.8 ± 4.3 40.3 ± 2.3 6.5 *
Bulk density (g soil dry cm−3) 0.53 ± 0.10 0.27 ± 0.04 0.26 *
Porosity (% soil volume) 63.3 ± 6.7 81.2 ± 2.6 17.9 *

3.2. Soil O2 Accumulation and Consumption Rates and Final Concentrations

We added 20 L of DI water to all tundra mesocosms in the biotic response cores during
the simulated rainfall event (Table 2). However, the duration of the DI water flush differed
between tundra type due to differences in soil drainage rates, with the DI water flush taking
an average of 3.77 h to completely drain through the tussock tundra soil and 1.13 h to
completely drain through the higher-porosity wet sedge tundra soil (paired t-test; p = 0.02;
Table 2). Our modeled rates of soil O2 accumulation (Frain; mg O2 L−1 h−1) at the 15-cm
sampling depth during the DI water flush were similar between the tussock tundra and
wet sedge tundra soils (paired t-test; p = 0.7; Table 2). Yet, due to differences in the duration
of the DI water flush among tundra soils, the soil O2 concentration (Mf; mg O2 L−1) at
the 15-cm sampling depth at the end of the DI water flush for tussock tundra increased
8.5-fold while increasing only 4-fold in wet sedge tundra (Table 2). Overall, the soil O2
concentration at the end of the DI water flush was 2.5-fold greater in the tussock tundra
soil than in wet sedge tundra soil (paired t-test; p = 0.02; Table 2). Our modeled rates of soil
O2 consumption (Sall; mg O2 L−1 h−1) during the re-acclimation phase following the DI
water flush were greater in the tussock tundra soil compared to the wet sedge tundra soil
(paired t-test; p = 0.03; Table 2).

Table 2. Soil modeling flush variables, rates of soil O2 accumulation, and concentrations of soil O2 after simulated rainfall
are for the biotic response cores. The soil O2 consumption rates are modeled from soil properties reported for the abiotic
response cores [5] and are representative rates within tussock tundra and wet sedge tundra soils under static, waterlogged
field conditions. Asterisks indicate significant differences in mean pairwise similarity among tundra soils (paired t-test;
* p < 0.05; NS = no statistically significant difference).

Soil Modeling Variables
Tundra Soil Mean Difference

between TundraTussock Wet Sedge

Flush Variables
DI Water Flushed (L) 20 ± 0 20 ± 0 0 NS
Duration of Flush (hr) 3.77 ± 0.42 1.13 ± 0.19 2.64 *

Soil O2 Accumulation and Consumption Rates
Soil O2 Accumulation (Frain; mg O2 L−1 h−1) 2.31 ± 0.95 2.61 ± 0.99 0.30 NS
Soil O2 Consumption (Sall; mg O2 L−1 h−1) 0.04 ± 0.01 0.02 ± 0.01 0.02 *

Soil O2 Concentrations after Simulated Rainfall
Soil O2 Concentration after Flush (Mf; mg O2 L−1) 10.26 ± 1.11 4.10 ± 0.53 6.16 *
Soil O2 Concentration at T4 (Mf+4; mg O2 L−1) 10.09 ± 1.11 4.01 ± 0.53 6.08 *
Soil O2 Concentration at T24 (Mf+24; mg O2 L−1) 9.20 ± 1.11 3.57 ± 0.53 5.63 *
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3.3. Taxonomic Composition and Diversity of the Total and Active Microbial Communities

Using 16S rRNA amplicons and metagenomes annotated as KEGG tier III “Ribo-
somes”, we found that the total microbial communities from both tundra types were
dominated by Bacteria (>98% relative abundance; Figure 1A,B), but there were signif-
icant differences in the relative abundance of bacterial phyla between tundra commu-
nities (paired t-test; p < 0.05 for all; Table 3). Specifically, bacterial taxa in the tussock
tundra total community were dominated by Acidobacteria, Actinobacteria, Alphapro-
teobacteria, Gammaproteobacteria, Planctomycetes, and Verrucomicrobia (>85% of total
community; Figure 1A; Table 3). Bacterial taxa in the wet sedge tundra total community
were dominated by the same phyla as the tussock tundra community, but with elevated
contributions of Betaproteobacteria, Deltaproteobacteria, Bacteriodetes, Chloroflexi, and
Firmicutes (Figure 1B; Table 3). Archaeal taxa were composed primarily of methanogenic
Euryarchaeota (Table 3), which were present only in the wet sedge tundra total commu-
nity and included dominant taxa such as Methanobacterium, Methanocella, Methanomicrobia,
Methanoregula, Methanosarcina, and Methanothrix (Datasets S1 and S4). Fungal taxa were
composed primarily of Ascomycetes (Table 3), which were present almost exclusive to the
tussock tundra community and included dominant taxa Aspergillus, Coccidioides, Glarea,
Histoplasma, Marssonina, Phialocephala, and Sclerotinia (Dataset S4).
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Figure 1. Microbial community composition within (A) tussock tundra and (B) wet sedge tundra soils based on the mean
relative abundance of 16S rRNA amplicons, GPM-normalized metagenome (MG), and TPM-normalized metatranscriptome
(MT) genes belonging to Ribosome KEGG tier III pathway.

As expected, the taxonomic composition of the total microbial communities did not
differ between sampling time points (24-h) within tussock tundra or wet sedge tundra
soils in any dataset (ANOVA; p > 0.05 for all). The total community from wet sedge
tundra had significantly higher taxonomic alpha diversity of ribosome genes than the
tussock tundra community (paired t-test; p < 0.01; Table S4). Beta diversity results indicated
significant differences in taxonomic composition between tundra communities (p < 0.01),
but no difference between sampling time points (p = 0.7) or the interaction of tundra
community by sampling time points (PERMANOVA; p = 0.6; Table S5). The majority of our
high-quality metagenome-assembled genomes (MAGs; >70% complete, <10% redundancy)
were classified to the dominant bacterial phyla Acidobacteria, Actinobacteria, Chloroflexi,
and multiple classes of Proteobacteria (Table S6). The majority of MAGs recovered were
found predominantly in the wet sedge tundra community compared to the tussock tundra
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community based on their relative abundance (Table S6). However, MAGs with greater
relative abundance in the tussock tundra community also had large genomes (Table S6).

Table 3. Relative abundance calculated for tussock tundra and wet sedge tundra communities averaged across all sampling
time points based on KEGG tier III “Ribosome” category from the GPM-normalized metagenome (MG) and TPM-normalized
metatranscriptome (MT) datasets (mean ± SD). Asterisks indicate the significance of differences in mean pairwise similarity
among tundra communities (paired t-test; *** p < 0.001, ** p < 0.01, * p < 0.05; NS = no statistically significant difference).

Taxonomy MG Rel. Abund. (%) MG Mean
Difference

MT Rel. Abund. (%) MT Mean
DifferenceTussock Wet Sedge Tussock Wet Sedge

Bacteria
Acidobacteria 34 ± 4.5 10 ± 0.3 24% * 41 ± 12 8.2 ± 0.8 33% **
Actinobacteria 24 ± 5.7 27 ± 1.9 3.0% NS 42 ± 12 40 ± 3.0 2.0% NS
Alphaproteobacteria 15 ± 3.6 8.3 ± 0.6 6.7% NS 4.5 ± 1.6 3.4 ± 1.5 1.1% **
Betaproteobacteria 2.0 ± 0.8 6.4 ± 0.7 4.4% ** 1.0 ± 0.5 3.5 ± 1.3 2.5% **
Deltaproteobacteria 4.1 ± 0.4 13 ± 0.4 8.9% ** 2.9 ± 0.8 13 ± 1.3 10% ***
Gammaproteobacteria 11 ± 0.3 1.7 ± 0.2 9.3% *** 3.5 ± 1.0 1.3 ± 0.5 2.2% **
Bacteroidetes 0.4 ± 0.0 1.9 ± 0.7 1.5% NS 0.7 ± 0.1 1.7 ± 0.6 1.0% *
Chloroflexi 0.2 ± 0.1 8.3 ± 0.3 8.1% *** 0.2 ± 0.0 8.3 ± 1.8 8.1% ***
Firmicutes 3.5 ± 0.5 15 ± 1.6 12% ** 1.7 ± 0.2 10 ± 1.5 8.3% ***
Planctomycetes 1.0 ± 0.2 0 ± 0 1.0% NS 0 ± 0 0 ± 0 0.0% NS
Verrucomicrobia 2.1 ± 0.6 2.1 ± 0.7 0.0% NS 0 ± 0 1.2 ± 0.1 1.2% NS

Archaea
Euryarchaeota 0 ± 0 1.7 ± 0.3 1.7% * 0 ± 0 6.5 ± 6.3 6.5% *

Fungi
Ascomycetes 1.1 ± 0.2 0 ± 0 1.1% * 1.5 ± 0.5 0 ± 0 1.5% *

We also determined differences in the relative abundance of active microbial taxa
between tussock tundra and wet sedge tundra communities using the TPM-normalized
metatranscriptomes annotated as KEGG tier III “Ribosomes.” Active taxa within each
tundra community were an expressed subset of the total community identified in the
metagenome (Figure 1A,B) with no significant differences in the relative abundance of
active microbial taxa between sampling time points for tussock tundra or wet sedge
tundra soils (ANOVA; p > 0.05). Within tussock tundra, Actinobacteria and Acidobacteria
accounted for 83% of the active community (Table 3). Methanogenic Euryarchaeota were
also detected in the tussock tundra active community, including taxa from Methanosarcina
and Methanothrix (Dataset S4), although at significantly lower abundance than in the wet
sedge tundra active community (paired t-test; p < 0.05 for all; Table S7). Within wet sedge
tundra, Actinobacteria and Acidobacteria accounted for only 48% of the active community
with high relative abundance of Deltaproteobacteria (13%), Firmicutes (10%), Chloroflexi
(8%), and archaeal Euryarchaeota (7%) (Table 3). Deltaproteobacteria were dominated
by Geobacter spp., representing 3% of the active community relative abundance (Table S7).
The high relative abundance of active Euryarchaeota is due mainly to an increase in
Methanosarcina and Methanothrix spp. (4%, 1%, respectively; Table S7).

3.4. Genomic Potential and Functional Gene Diversity of the Microbial Communities

The genomic potential of tussock tundra and wet sedge tundra microbial communities
indicated that the KEGG tier II category “Metabolism” had the greatest relative abundance
of annotated functional genes in both tundra communities, followed by genes annotated as
“Genetic Information Processing”, “Environmental Information Processing”, and “Cellular
Processes”, with significant differences in relative abundance between tussock tundra and
wet sedge tundra communities for all categories except Genetic Information Processing
(Figure S3). At the KEGG tier III level (sub-categories within tier II), we found significant
differences in the relative abundance of most functional gene categories (15 of 22 categories)
between tundra communities (ANOVA; p < 0.05 for all; Figure 2A,B). Specifically, there was
significantly greater abundance for Metabolism functional genes associated with amino
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acids, carbohydrates, nucleotides, biosynthesis of secondary metabolites, and xenobiotics
degradation in the tussock tundra community relative to the wet sedge tundra community
(Figure 2B). There was also greater relative abundance of functional genes associated with
folding, sorting and degradation, signal transduction, as well as cellular communities, cell
motility, and transport and catabolism in the tussock tundra community. In contrast, there
was greater relative abundance of functional genes associated with energy metabolism,
translation, and membrane transport in the wet sedge tundra community (Figure 2B).
The wet sedge tundra microbial community had significantly higher alpha diversity of
functional genes than the tussock tundra community (paired t-test; p < 0.001; Figure S3;
Table S4). Beta diversity results indicated significant differences in the relative abundance
of functional genes between tundra communities (p < 0.001), but no difference in relative
abundance between sampling time points (p = 0.8) or the interaction of tundra communities
by sampling time points (PERMANOVA; p = 0.6; Figure S3; Table S5).
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Figure 2. Heatmap (A) and barplot (B) of genomic potential based on the mean relative abundance of GPM-normalized
metagenome (MG) genes belonging to KEGG tier III functional pathways by sampling time point in mesocosm replicates of
tussock tundra and wet sedge tundra communities. Z-score transformations based on the mean relative abundance of genes
between sampling time points for each KEGG pathway. Error bars for each barplot represent standard deviation from the
mean. Asterisks mark the significance of differences in mean relative gene abundance between tundra communities for
each KEGG tier III pathway (paired t-test; ** p < 0.01; * p < 0.05).
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3.5. Microbial Community Expression in Response to Rainfall

The change in microbial gene expression in response to rainfall was determined using
the relative abundance of TPM-normalized metatranscriptomes annotated at KEGG tiers
II-IV. Within the tussock tundra community, the relative abundance of expressed functional
genes annotated to the KEGG tier II category of Metabolism was significantly greater at
T0 relative to the abundance of expressed genes at T4 and T24 (ANOVA; p < 0.01 for both;
Figure 3A). Following simulated rainfall, the relative abundance of expressed genes at T4
and T24 was significantly greater for the KEGG tier II category of Genetic Information
Processing relative to T0 (ANOVA; p < 0.01 for both; Figure 3A). The relative abundance of
expressed genes for the KEGG tier II category of Cellular Processes was also significantly
greater at T4 relative to T0 (ANOVA; p < 0.01; Figure 3A) but was not significantly different
at T24 relative to T0 (ANOVA; p = 0.1; Figure 3A).
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Figure 3. Barplot of microbial gene expression based on the mean relative abundance of TPM-normalized metatranscriptome
(MT) genes annotated as KEGG tier II functional pathways by sampling time point in (A) tussock tundra and (B) wet
sedge tundra communities (error bars represent standard deviation of the mean). Letters indicate significant differences
in mean pairwise similarity between sampling time points for each KEGG functional pathway (ANOVA; p < 0.05), with
non-significant differences among sampling time points indicated as N.S. The relative abundance of GPM-normalized
metagenome (MG) functional genes is provided for reference only and their abundance was not incorporated in the pairwise
statistical analysis.

In contrast to the tussock tundra community, broad patterns of microbial gene expres-
sion in the wet sedge tundra community for the KEGG tier II categories of Metabolism,
Genetic Information Processing, Environmental Information Processing, or Cellular Pro-
cesses showed no significant change in relative abundance between any sampling time
points (ANOVA; p > 0.05 for all; Figure 3B). Expressed gene abundance was greatest
in the Metabolism category and included numerous anaerobic pathways with oxygen-
regulated KOs for carbohydrate metabolism (K00128, K00161, K00656, K00975), amino
acid metabolism (K00146), lipid metabolism (K00763), and energy metabolism, the latter
of which included KOs from multiple pathways of methanogenesis (hydrogenotrophic:
K00200, K00204, K00319, K00672, K01499, K13942; acetoclastic: K00193, K00625, K00925,
K01895; and methylotrophic: K04480, K14080, K14081) as well as methanotrophy (K10944,
K14028, K16157, K16160, K23995) (Table S8). Additional pathways with oxygen-regulated
KOs included anaerobic carbon fixation (K00174, K00194, K00244, K00855, K01648), fer-
mentation (K00169, K00016), and denitrification (K00368, K00370, K00376, K02305, K02567,
K15864) (Table S8). Using DGE analysis, we found no significant differences in the expres-
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sion of any oxygen-regulated KO between sampling timepoints, but there were significant
increases in the expression of obligate anaerobic denitrification KOs including nitrite reduc-
tases (K00368, K00370, K15864), nitric oxide reductases (K02305, K04561), and nitrous-oxide
reductase (K00376) following rainfall at T4 relative to T0 (DGE; FDR < 0.05 for all; Dataset
S5). Overall, the alpha diversity of expressed functional genes was similar between sam-
pling time points throughout the experiment (ANOVA; p > 0.5; Figure S4; Table S4). Beta
diversity results indicated no significant difference in the relative abundance of expressed
functional genes between sampling time points within the wet sedge tundra community
(PERMANOVA; p = 0.2; Figure S4; Table S5).

Within the tussock tundra community, the relative abundance of expressed transcripts
in the Metabolism KEGG tier IV pathways of glycolysis/gluconeogenesis and butanoate
metabolism (tier III carbohydrates), nicotinate and nicotinamide metabolism (tier III co-
factors and vitamins), and carbon metabolism, fatty acid metabolism, and degradation of
aromatic compounds (tier III overview), were significantly greater at T0 relative to their
abundance at T4 and T24 (ANOVA; p < 0.05 for all; Figure 4). For Genetic Information
Processing, the KEGG tier IV pathway of ribosome (tier III translation) had significantly
greater abundance of expressed transcripts at T24 relative to T0, but not initially following
rainfall at T4 relative to T0 (ANOVA; p = 0.02, p = 0.07, respectively; Figure 4). The KEGG
tier IV pathway of RNA degradation (tier III folding, sorting and degradation) had signifi-
cantly greater abundance of expressed transcripts at T4 relative to T0 (ANOVA; p < 0.01;
Figure 4). For Cellular Processes, the KEGG tier IV pathway of Caulobacter cell cycling (tier
III cell growth and death) had significantly greater abundance of expressed transcripts at T4
relative to T0 (ANOVA; p < 0.01; Figure 4). Likewise, the relative abundance of expressed
transcripts in the tier IV pathway of ferroptosis was significantly greater at T4 relative to
T0 (ANOVA; p = 0.02, not shown).
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Within significant KEGG-Metabolism categories (ANOVA; Figure 4), we found several
KOs explicitly identified as oxygen-regulated [75] that were significantly differentially
expressed to a lower extent at T4 relative to T0 in the tussock tundra community using
DGE analysis (DGE; FDR < 0.05 for all; Table 4). This included oxygen-regulated KOs
that are negatively affected by O2 availability expressed in carbohydrate metabolism
(K00975, K00656), cofactor and vitamins metabolism (K00763), amino acid metabolism
(K01915), and carbon metabolism (K00873, K01623, K00626) (Table 4). Only aldehyde
dehydrogenase (K00128), an oxygen-regulated KO positively affected by O2 availability
expressed in carbohydrate metabolism, was expressed at a significantly higher rate at T4
relative to T0 (Table 4). We also found that oxygen-regulated KOs negatively affected
by O2 availability expressed in anaerobic carbon fixation (K00174, K00855), fermentation
(K00169), and acetoclastic methanogenesis (K00625, K00925, K01895), were all expressed
to a significantly lower extent at T4 relative to T0 in the tussock tundra community (DGE;
FDR < 0.05; Table 4).

Table 4. Differential gene expression (DGE) for oxygen-regulated KEGG orthologs (KOs). Each KO
represents an oxygen-regulated gene and was included based on DGE significance within Tussock
T4 vs. T0 sampling period (FDR < 0.05; Dataset S5), where a positive log-fold change (logFC) value
indicates higher expression at T4 relative to T0.

KEGG Tier Category logFC

Carbohydrate Metabolism
Glycolysis/Gluconeogenesis

K00128 aldehyde dehydrogenase (NAD+) 3.7 ± 0.0
Pyruvate Metabolism

K00656 formate C-acetyltransferase −4.4 ± 1.8
Starch and Sucrose Metabolism

K00975 glucose-1-phosphate adenylyltransferase −2.5 ± 0.0
Cofactors and Vitamins Metabolism

Nicotinate and Nicotinamide Metabolism
K00763 nicotinate phosphoribosyltransferase −3.5 ± 0.0

Overview Metabolism
Biosynthesis of Amino Acids

K01915 glutamine synthetase −3.2 ± 0.6
Carbon Metabolism

K00873 pyruvate kinase −3.6 ± 0.0
K01623 fructose-bisphosphate aldolase −4.0 ± 0.0
K00626 acetyl-CoA C-acetyltransferase −2.6 ± 0.2

Energy Metabolism
Anaerobic Carbon Fixation

K00174 2-oxoglutarate/2-oxoacid ferredoxin oxidoreductase −3.9 ± 0.4
K00855 phosphoribulokinase −3.8 ± 0.0

Methane Metabolism
K00625 phosphate acetyltransferase −5.3 ± 0.6
K00925 acetate kinase −3.0 ± 0.2
K01895 acetyl-CoA synthetase −3.7 ± 1.3

Fermentation
K00169 pyruvate ferredoxin oxidoreductase −3.1 ± 0.0

From our DGE analysis, we also found that KOs related to ribosome translation (KEGG
tier II Genetic Information Processing), including DNA repair proteins (K03584), RNA
polymerase (K03040, K03043, K03046), pre-mRNA-processing factors (K12856, K12821),
RNA-binding proteins (K12876), and more than 150 differentially expressed ribosomal
protein genes (small subunit, large subunit; ko03010 path) from multiple bacterial phyla and
even several species of fungi within the Ascomycetes, were all expressed to a significantly
higher extent at T4 relative to T0 in the tussock tundra community (DGE; FDR < 0.05;
Dataset S5). KOs related to Caulobacter cell cycling (KEGG tier II Cellular Processes),
including ATP-dependent Lon protease (K01338), ATP-dependent Clp protease (K01358),
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and cell division proteins (K03531) also had significantly higher expression at T4 relative
to T0 (DGE; FDR < 0.05; Dataset S5). KOs related to ferroptosis (KEGG tier II Cellular
Processes), including an iron-regulated transporter for solute carrier family 40 (K14685),
which regulates iron ion transmembrane transporter activity, also had significantly higher
expression at T4 relative to T0 (DGE; FDR < 0.05; Dataset S5).

Overall, the DGE analysis indicated that the greatest differential expression of KOs
was between tussock tundra and wet sedge tundra communities at each sampling time
point. Specifically, 24% of KOs (out of 166,754 total KOs) were differentially expressed
between tundra communities at T0 (DGE; FDR < 0.05; Table 5). Similarly, 28% and 10% of
KOs were differentially expressed between tundra communities at T4 and T24, respectively
(DGE; FDR < 0.05; Table 5). Within the tussock tundra community, DGE results indicated
that 1.3% of KOs were differentially expressed between sampling time points T4 and T0
(out of 100,055 total KOs; FDR < 0.05; Table 5), which included the oxygen-regulated KOs
(Table 4) as well as all KOs in the KEGG tier II categories of Genetic Information Processes
and Cellular Processes (Dataset S5) as described above. The DGE analysis for all remaining
time point comparisons in both tundra communities indicated that < 0.1% of total KOs
were differentially expressed (DGE; FDR < 0.05; Table 5).

Table 5. Summary of the differential gene expression (DGE) analysis. Values represent counts of
KEGG orthologs (KOs; i.e., genes) considered to be differentially expressed if the False Discovery
Rate (FDR) was < 0.05. “Higher” or “Lower” differential expression is relative to the first variable in
the comparison (e.g., T4 vs. T0 summarizes higher or lower expression in T4 relative to T0).

DGE Analysis
Unique KEGG Orthologs (KOs) Significant

DifferencesHigher Lower Not Significant

Tussock vs. Wet
Sedge

T0 27,239 12,732 126,783 24%
T4 32,366 13,512 120,876 28%
T24 12,123 4774 149,857 10%

Tussock Tundra
T4 vs. T0 667 588 100,055 1.3%
T24 vs. T0 75 67 101,168 <0.1%
T24 vs. T4 2 5 101,303 <0.01%

Wet Sedge
Tundra

T4 vs. T0 78 13 139,939 <0.01%
T24 vs. T0 9 2 140,019 <0.01%
T24 vs. T4 0 0 140,030 0%

3.6. Iron Redox Cycling Gene Expression

Within the tussock tundra community, the relative abundance of expressed obligate
aerobic genes associated with iron oxidation was significantly greater at T4 relative to
their abundance at T0 (ANOVA; p = 0.04; Figure 5A). The relative abundance of expressed
obligate anaerobic genes associated with dissimilatory iron reduction was negligible (<1%
of expressed iron gene relative abundance; Figure 5A). Furthermore, the relative abundance
of dissimilatory iron reducing genes in the tussock tundra metagenome dataset was negli-
gible (<1% of total iron gene relative abundance; Figure 5A), indicating a complete lack
of dissimilatory iron reducing genes in the genomic potential of the microbial community.
The mean relative abundance of expressed iron oxidation genes in the tussock tundra com-
munity was 43-fold greater than the mean relative abundance of expressed iron reduction
genes when averaged across all sampling time points (paired t-test; p < 0.01; Figure 5A).
In contrast, there were no significant differences in the relative abundance of expressed
iron oxidation genes or iron reduction genes between sampling time points in the wet
sedge tundra community (ANOVA; p = 0.2; Figure 5B). The mean relative abundance of
expressed iron reduction genes in the wet sedge tundra community was 4-fold greater than
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the mean relative abundance of expressed iron oxidation genes when averaged across time
points (paired t-test; p < 0.01; Figure 5B).
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Figure 5. Barplot of iron redox cycling gene expression based on the mean relative abundance of iron oxidation and iron
reduction genes at each sampling time point in (A) tussock tundra and (B) wet sedge tundra communities (error bars
represent standard deviation of the mean). Letters indicate significant differences in mean pairwise similarity between
sampling time points in each iron redox cycling functional category (ANOVA; p < 0.05), with non-significant differences
between sampling time points indicated as N.S. The relative abundance of each metagenome (MG) iron redox cycling
functional category is provided for reference only and was not incorporated in the pairwise analysis.

3.7. Soil Incubations

The rates of microbial respiration (CO2 as ng C g−1 soil h−1) did not differ significantly
between sampling time points in the tussock tundra or wet sedge tundra communities
(ANOVA; p = 0.9, 0.3, respectively; Figure 6A). However, the mean rate of microbial
respiration was 4.5-fold higher in tussock tundra compared to wet sedge tundra when
averaged across sampling time points (paired t-test; p < 0.001; Figure 6A). In both tundra
soils, the rates for CH4 production (CH4 as pg C g−1 soil h−1) measured at T0, which was
incubated under anoxic conditions, were significantly higher than rates measured at T4 and
T24, where soils were incubated under oxic conditions (ANOVA; p < 0.001 for all; Figure
6B). Negative values for CH4 production at T4 and T24 indicate aerobic CH4 consumption
under the oxic incubation conditions (Figure 6B).
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Figure 6. Barplot of production rates for (A) microbial respiration and (B) methane (CH4) production for tussock tundra and
wet sedge tundra communities (error bars represent standard deviation of the mean). Letters indicate significant differences
in mean pairwise similarity between sampling time points (ANOVA, p < 0.05), with non-significant differences between
sampling time points indicated as N.S. Negative values for CH4 production indicate CH4 consumption.

4. Discussion

We used rainfall to add oxygen and change redox conditions in the active layer of
saturated tundra soils, and measured gene expression of the microbial community. We
determined that the microbial response to rainfall was not consistent between tussock
and wet sedge tundra types, and the patterns of gene expression differed due to inherent
differences in microbial composition and their genomic potential. We also determined that
differences in soil drainage rates during the rainfall event led to a greater increase in soil
O2 concentration in the tussock tundra soil. We measured microbial gene expression at
broad metabolic levels as well as from select oxygen-regulated marker genes and coupled
our observed changes in microbial gene expression to the modeled changes in soil O2
concentrations following rainfall to determine the mechanistic response of the microbial
communities between tundra types.

4.1. Microbial Composition Differs among Tundra Communities

Previous research conducted in the Toolik Lake region showed that microbial commu-
nity composition is distinct among tundra types due to landscape-dependent differences in
plant community composition and litter biochemistry [37,38], as well as physical gradients
of soil drainage [77,78]. Tussock tundra is dominated by sedges (Eriophorum vaginatum)
and dwarf shrubs (Betula nana, Ledum palustre) that occupy hillslopes with greater soil
drainage than wet sedge tundra, which is dominated entirely by sedges (Carex chordorrhize,
C. rotundata, Eriphorum aquatilis, E. angustifolium) at the base of hillslopes and valley bot-
toms where soil water accumulates [79]. These ecological and physical differences lead to
compositionally distinct microbial communities between tussock tundra and wet sedge
tundra soils, but previous studies of these communities were limited to PLFA and T-RFLP
analyses [38,45], which provided limited information about the phylogenetic composition
of these communities.

Here, higher resolution meta-omics analyses showed significant differences in the rela-
tive abundance of nearly all bacterial phyla between tussock tundra and wet sedge tundra
communities (Table 3). Specifically, we found greater relative abundance of Acidobacteria
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in the tussock tundra community, likely related to the lower pH of the tussock tundra soil
compared to wet sedge tundra soil (Table 1). This is consistent with previous studies show-
ing strong negative correlations between Acidobacteria abundance and soil pH [80–82].
We also found a greater relative abundance of Alpha- and Gammaproteobacteria in tus-
sock tundra soil that could be related to their copiotrophic life strategies because nutrient
levels are normally greater in tussock tundra soils relative to the downslope wet sedge
tundra soils [83], albeit with seasonal soil nitrogen limitations on microbial growth [84].
In addition, our MAGs annotated as Acidobacteria, Alpha- and Gammaproteobacteria
had relatively large genomes (Table S6), which is a feature of copiotrophs that prefer
nutrient-rich environments [85]. The high relative abundance of Actinobacteria in both
tundra communities is likely due to the periodic (tussock tundra) or persistent (wet sedge
tundra) saturation of the active layer and subsequent anoxia because Actinobacteria play
an important role in the anaerobic degradation of soil organic carbon [80]. Firmicutes are
also known to contribute to anaerobic soil organic carbon degradation [80] and their greater
relative abundance in the wet sedge tundra community likely emphasizes the fact that wet
sedge tundra soils experience more persistent soil anoxia due to longer periods of soil water
ponding than in tussock tundra soils. Furthermore, we found that wet sedge tundra soils
also harbored greater relative abundance of Deltaproteobacteria (Table 3), which included
known anaerobic iron reducing Geobacter spp. (Table S7) that have previously been found
in high abundance in the Toolik Lake region [86].

The dominant archaeal taxa were primarily methanogenic Euryarchaeota, almost
exclusive to the wet sedge tundra community (Table 3; Figure 1A,B). Specifically, we found
that Methanobacteria, Methanosarcina, and Methanothrix were the dominant archaeal taxa in
the wet sedge tundra community (Table S7), which is consistent with previous findings in
organic soils across circumpolar arctic sites [32,42–44,87]. Members of the Methanobacteria
are hydrogenotrophic methanogens most commonly found in upper, saturated soils [42,88]
while members of Methanosarcina and Methanothrix are acetoclastic methanogens that
are typically the dominant archaeal taxa in organic peat soils [89,90]. The high relative
abundance of both groups of methanogens in the wet sedge tundra community suggests
an even greater genomic potential for CH4 production because multiple pathways of
methanogenesis can be carried out depending on substrate availability in the soil. In
contrast, we were only able to detect a very low abundance of archaeal taxa in the tussock
tundra community, mainly Methanosarcina and Methanothrix spp. (Dataset S4). This may
be due to the greater extent of soil drainage in the active layer that prevents substantial
colonization by anaerobic archaeal taxa, or it may be an artifact of our soil samples being
collected at the 10–20 cm depth in the organic active layer, which may have under-sampled
the bulk of methanogenic taxa reportedly found in deeper mineral soil layers in arctic
soils [42]. However, even the low abundance of these active acetoclastic methanogens in
the tussock tundra community led to significant declines in the expression of phosphate
acetyltransferase, acetate kinase, and acetyl-CoA synthetase genes (Table 4), which are
essential genes in the production pathway of CH4 from acetate, following rainfall-induced
soil oxidation.

Soil fungi were more abundant in the tussock tundra community than the wet sedge
tundra community (Table 3; Figure 1A,B), confirming previous findings using PLFA ra-
tios [38]. Historically, soil fungi have been under-sampled in arctic tundra [91] and we
provide some of the first evidence that numerous filamentous taxa within the Ascomycetes
are common in tussock tundra and absent from wet sedge tundra (Table S7). The lack
of fungi in the wet sedge tundra community may be due to environmental limitations
on filamentous fungi, which with few exceptions are obligate aerobes [92], and to their
inability to disperse into and colonize the persistently anaerobic conditions of the wet sedge
tundra soil [38]. Additionally, sedge species (Carex and Eriophorum) that dominate wet
sedge tundra vegetation do not typically associate with mycorrhizal fungi whereas most
dwarf shrubs in the tussock tundra plant community (Betula and Salix) form mycorrhizal
associations [93]. In addition, taxa within the Leotiomycetes class (Helotiales order) such as
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Glarea spp. and Sclerotinia spp. found here (Dataset S4) are known to express a broad suite
of functional genes that degrade cellulolytic plant litter [94]. The presence of fungi, even
though their abundance in the microbial community is relatively small, likely increases the
genomic potential of the tussock tundra community to degrade soil organic carbon under
aerobic conditions because of their unique suite of functional genes.

Differences in the relative abundance and diversity of microbial taxa between tussock
tundra and wet sedge tundra communities likely reflect landscape-dependent patterns
of community composition and lifestyle strategies. For example, the composition of the
tussock tundra community suggests a copiotrophic soil community dominated by relatively
few bacterial phyla and filamentous fungi that prefer more frequently aerated, nutrient-
rich soils. In contrast, the higher diversity and composition of the microbial community
within the persistently saturated wet sedge tundra soils appear more similar to oligotrophic
sediment communities measured from lakes and streams in the Toolik Lake region [37,95].
This comparison is reasonable given that the greater nutrient availability in tussock tundra
soils [83] likely supports more copiotrophic life strategies prevalent among the dominant
taxa found in the tussock tundra community. Likewise, wet sedge tundra borders stream
and lake margins [39], where groundwater flows through the active layer of wet sedge
tundra and into adjacent waterways, likely transporting the soil microbial taxa [37] that
constitute the bulk of the diversity in river or sediment communities [95].

4.2. Genomic Potential Differs between Tundra Communities

Consistent with the differences in microbial composition between tundra communities,
we found that the genomic potential of these distinct tundra communities differed from
each other at the broad KEGG tier II categories (Figure S3C). The wet sedge tundra commu-
nity had a greater relative abundance of genes belonging to the Energy Metabolism pathway,
suggesting a greater genomic potential for carbon metabolism, especially methanogenesis
under anoxic soil conditions. In contrast, the tussock tundra community had a greater
relative abundance of most other Metabolism categories at all sampling time points during
our rainfall experiment (Figure 2A,B), possibly due to the fact that the tussock tundra
community had lower alpha diversity of functional genes relative to the wet sedge tundra
community (Tables S4 and S5). Yet, stark differences in the relative abundance of functional
genes between tundra communities are seen in the beta diversity PCoA plot (Figure S3B)
where functional genes separate most strongly by tundra type independent of differences
in soil redox conditions between soil sampling time points. Taken together, our results
suggest that community composition and the associated functional genes (i.e., genomic
potential) are distinct between tundra communities, which in turn may constrain or predict
the microbial gene expression patterns following rainfall-induced redox changes in tussock
tundra and wet sedge tundra soils.

4.3. Soil O2 Accumulation during Rainfall Differs among Tundra Soils

A novel aspect of our mesocosm experimental design was our ability to model
(Figure S2) the rates of soil O2 accumulation introduced during the simulated rainfall
event (Frain) and soil O2 consumption (Sall) during the stagnant re-acclimation phase
following rainfall. Using the soil O2 accumulation rates, we estimated the final soil O2
concentration immediately following rainfall (Mf). Then, by incorporating the soil O2
consumption rates, we further estimated the final concentrations of soil O2 at the 10–20 cm
sampling depth within tussock tundra and wet sedge tundra at the 4-h (Mf+4) and 24-h
(Mf+24) sampling time points following the rainfall event. In our mass balance model
(Figure S2), we assumed that the contribution of O2 from atmospheric diffusion into satu-
rated soils (Fatm) to a depth of 10–20 cm was negligible following the rainfall event given
that gas diffusion in water is slower than in air by a factor of 104 [96,97]. We also assumed
that the extent of any atmospheric O2 introduced deep into saturated soils via diffusion
through the aerenchyma tissues of dominant sedge species [98,99] would be limited to the
immediate vicinity surrounding plant roots because of the slow diffusion rate of gas in
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water, thus limiting the role of plant-mediated increases in soil O2 concentrations. Likewise,
we assumed that the contribution of soil O2 introduced through groundwater flow (Fground)
or removed through soil leaching (Fleach) would be zero given that our mesocosm chambers
were only open at the top and sealed at the bottom, except during the rainfall event.

Our mass balance model found that the accumulation of soil O2 introduced through
rainfall differed among tundra soils, with tussock tundra soils accumulating 2.5-fold more
soil O2 than wet sedge tundra soils (Table 2). This greater accumulation of soil O2 in
tussock tundra occurred even though both tundra soils experienced similar rates of soil O2
accumulation and were flushed with identical volumes of DI water during the simulated
rainfall event. We found that the duration of the DI water flush, which took nearly 3.5 times
longer to complete in the tussock tundra soil, was the primary mechanism responsible for
the greater accumulation of soil O2. Soil drainage through the active layer of tussock tundra
is strongly inhibited by the dense mineral layer located below the surface organic layer.
Typically, the mineral layer in tussock tundra strictly limits deeper soil drainage under
field conditions and the surface organic layer remains saturated periodically following
rain events due to its high water-holding capacity [100,101] until the soil water drains
downslope through the organic layer into wet sedge tundra soils located at the base of
hills [102]. Thus, the longer residence time of oxygenated rainwater added to the surface
organic layer of tussock tundra led to greater O2 concentrations at the 10–20 cm sampling
depth at the end of the rainfall event compared with the wet sedge tundra soil, which
drained the oxygenated rainwater quickly through its porous organic soil. This rapid
flushing of the oxygenated rainwater through the saturated wet sedge tundra mesocosm
chamber is likely similar to field conditions where rainwater rapidly flushes through the
saturated active layer and into an adjacent stream or lake, thus limiting O2 accumulation
in the soil.

The greater accumulation of soil O2 in the tussock tundra soil compared to the wet
sedge tundra soil at the end of the rainfall event was based solely on the accumulation
rate of soil O2 introduced during the DI water flush. However, after applying the soil O2
consumption rates that were modeled from the re-acclimation phase following rainfall,
we still found that the final soil O2 concentrations at 4-h and 24-h following rainfall were
2.5-fold greater in tussock tundra soil compared with wet sedge tundra soil (Table 2). This
difference in soil O2 concentration between tundra soils was consistent among time points
even though the rate of soil O2 consumption was greater in the tussock tundra soil than in
the wet sedge tundra soil (Table 2). An important note is that the soil O2 consumptions
rates are likely minimum estimates of O2 consumption from abiotic reactions and biotic
processes because the rates do not account for O2 consumed during the slow diffusion of
O2 into the stagnant boundary layer of the soil cores [5].

4.4. Tussock Tundra Community Responds to Rainfall-Induced Soil Oxidation

For the tussock tundra community, we identified short-term (T4) and longer-term
(T24) changes in microbial gene expression (Figures 3A and 4A,B) following an 8.5-fold
increase in total soil O2 concentration introduced during rainfall (Table 2). These changes
suggest that the increase in soil O2 stimulated microbial taxa to invest more energy towards
growth by transcribing ribosomal protein genes, and to invest less in resource acquisition
via membrane transport and associated metabolic pathways. These changes also suggest
a shift in expression from lower-energy anaerobic metabolic pathways to higher energy
aerobic pathways (Figure 4A,B; Table 4). DGE analysis identified elevated expression of
more than 150 ribosomal protein genes across multiple bacterial and fungal taxa, and
of genes for DNA repair proteins, RNA polymerase, pre-mRNA-processing factors, and
RNA-binding proteins (Dataset S5). This functional gene response to rainfall was sim-
ilar to the response observed in a previous study investigating the effects of sunlight
photo-alteration of dissolved organic matter (DOM) leached from tussock tundra soils
on microbial gene expression [103]. This study concluded that photo-chemical changes
in DOM made available easily metabolized compounds that cause microbes to enter lag
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phase or log phase growth. This idea that rainfall and soil oxygenation releases compounds
that boost microbial growth in tussock tundra is further supported by results from the
abiotic response cores [5] showing that the composition of dissolved organic carbon (DOC)
changed during flushing. In these cores there was a significant decrease in the fluorescence
index of the DOC as the volume of water flushed through the soil increased, indicating
that the DOC exported was likely more aromatic [104], which could stimulate an increase
in microbial metabolism that leads to rapid growth.

The increase in expression of genes for microbial growth following rainfall was
coupled with a subsequent decrease in the expression of genes for anaerobic methane
metabolism associated with acetoclastic methanogenesis such as phosphate acetyltrans-
ferase, acetate kinase, and acetyl-CoA synthetase (Table 4). There were also significant
declines in the expression of genes for anaerobic carbon fixation and fermentation (Table 4).
We found lower expression for glucose-1-phosphate adenylyltransferase (Table 4), which
has been considered the rate-limiting step of bacterial glycogen biosynthesis [105] or the
first step of glycogen hydrolysis [106]. Glycogen can serve as an alternative carbon source
for bacterial survival in carbon-depleted anaerobic environments [106] or to prolong the
lifespan of microorganisms while dormant [107]. Thus, the lower expression of glucose-
1-phosphate adenylyltransferase, an oxygen-regulated gene negatively affected by O2
availability, following rainfall provides further evidence that the increase in soil oxygena-
tion made available more easily metabolized carbon substrates (e.g., aromatic DOC) [103]
such that microbes no longer needed to synthesize and degrade glycogen, or possibly that
microbial cells may have started to leave their dormant state. We found lower expression
for formate C-acetyltransferase (Table 4) in multiple Actinobacterial taxa, which is another
oxygen-regulated gene negatively affect by O2 availability that helps regulate anaerobic
glucose metabolism [108]. Furthermore, we found lower expression for pyruvate kinase
(Table 4), a negatively affected oxygen-regulated gene involved in glycolysis that helps
regulate anaerobic cell metabolism [109]. In contrast, we found higher expression for
aldehyde dehydrogenase (NAD+) (Table 4), an oxygen-regulated gene positively affected
by O2 availability that catalyzes the oxidation of aldehydes into carboxylic acids [110] or
promotes the production of acetate from acetaldehyde under aerobic conditions [111]. The
change in expression (higher or lower) of each of these marker genes that are positively or
negatively regulated by O2 availability following rainfall is consistent with our expectations
given the rapid increase in soil O2 introduced during the rainfall event.

We also investigated the microbial expression of aerobic Fe(II) oxidation by iron
oxidizing bacteria as further support that our rainfall event stimulated gene expression
by aerobic bacteria in the tussock tundra community. Previous studies showed that iron
oxidizing Betaproteobacteria such as Leptothrix and Gallionella spp. are found in abundance
in the Toolik Lake region [86]. Here, we found evidence of their ribosomal genes in our
metagenomic and metatranscriptomic datasets (Dataset S4). These iron oxidizing bacteria
use Fe(II) as their primary energy source to fix CO2 into cellular biomass by reducing
dissolved O2 to water [112]. Thus, the greater expression of aerobic iron oxidizing genes
following our simulated rainfall event in tussock tundra (T4; Figure 5A) is also consistent
with our expectations for aerobic gene expression following the rapid increase in soil O2
availability introduced during our rainfall event.

Our metatranscriptomic analysis also revealed an increase in ferroptosis gene expres-
sion following rainfall in tussock tundra (Figure 4). Ferroptosis is a form of regulated cell
death that results from the iron-dependent accumulation of lipid peroxides associated
with reactive oxygen species [113]. Previous research has found that the overproduction
of hydroxyl radical is significantly associated with lipid peroxidation in ferroptosis [114].
Here, it is likely that gene expression for ferroptosis is directly linked with the overpro-
duction of hydroxyl radical given that hydroxyl radical production associated with the
geochemical oxidation of Fe(II) can increase in tussock tundra following rainfall [5]. How-
ever, little is known about the regulation of ferroptosis in soil environments or even how
it is regulated within microbial cells regardless of environment [115]. While we find this
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potential association between hydroxyl radical generation and ferroptosis expression after
rainfall interesting, more studies need to be done to determine any direct link between
these two processes.

4.5. Wet Sedge Tundra Community Maintains Anaerobic Gene Expression Following Rainfall

Results previously reported from the abiotic response cores [5] indicate that the
amount of soil O2 introduced during rainfall was sufficient to increase geochemical (abi-
otic) oxidation reactions in wet sedge tundra soils, although these geochemical reactions
occurred at a lower rate than in tussock tundra soils. Here, we were unable to detect a
significant increase in the relative abundance of expressed genes involved in aerobic respi-
ration (Dataset S5) or bacterial iron oxidation (Figure 5B) following rainfall in wet sedge
tundra regardless of the 4-fold increase in total soil O2 concentration introduced during
the rainfall event (Table 2). Furthermore, we were unable to detect a significant change
in the relative abundance of any expressed gene pathways (Figure 3B), oxygen-regulated
genes (Table S8; Dataset S5), or iron redox cycling genes (Figure 5B) following rainfall.
Active microbial taxa continued to express genes that degrade organic compounds and
inorganic nutrients through anaerobic respiration or fermentation pathways (Dataset S3),
and actually increased their expression of numerous anaerobic denitrification genes follow-
ing rainfall (Dataset S5). This suggests that the redox conditions in the soil environment
were comparatively poor for microbial growth because they promoted anaerobic microbial
taxa to allocate more energy towards resource acquisition, which microbes only do when
resources are scarce [116].

The lack of microbial response to rainfall in our wet sedge cores may be due to an
insufficient accumulation of oxygenated rainwater during the rainfall event because it
drained through the porous organic soil too quickly. In addition, rainwater O2 may have
been consumed too rapidly by abiotic reactions before microbes could respond and shift
their expression to promote aerobic respiration pathways. For example, the higher pH in
wet sedge tundra (6.12 ± 0.06; Table 1) likely promotes the abiotic oxidation of Fe(II) over
biotic processes [112], which could account for the observed rates of Fe(II) oxidation in the
abiotic response cores [5]. However, we observed gene expression for the aerobic oxidation
of Fe(II) in the wet sedge tundra community (Figure 5B), which suggests that some soil
O2 was available and consumed through biotic processes throughout the experiment. It
is also plausible that energetic constraints caused by the low availability of dissolved O2
and alternative electron acceptors maintained anaerobic metabolism and fermentation
pathways throughout the rainfall event cf. [117]. The high abundance and diversity of
oligotrophic, and mainly anaerobic microbial taxa in the wet sedge tundra community
may also have constrained a community-wide shift from anaerobic metabolism following
soil oxidation. This argument applies well to the short timeframe of the rainfall-induced
oxidation event, where our soil model implies that the bulk of the oxygen in rainwater
was consumed back to pre-rainfall anoxic concentrations within several days. As such,
the oligotrophic community in wet sedge tundra soils may be poorly adapted to respond
rapidly to periodic bursts of soil oxygenation introduced during rainfall.

We also observed that the relative expression of genes for Fe(III) reduction by iron
reducing bacteria did not decline following our rainfall event, with expression for Fe(III)
reduction occurring at 4-fold greater abundance relative to the expression for Fe(II) oxi-
dation averaged across sampling time points (Figure 5B). Emerson et al. [86] found iron
reducing Geobacter spp. (Deltaproteobacteria) in high abundance in the Toolik Lake region.
We also found evidence of Geobacter spp. ribosomal genes in our metagenomic and meta-
transcriptomic datasets, but only in the wet sedge tundra community (Table S7). These
iron reducing bacteria use Fe(III) as a terminal electron acceptor to carry out anaerobic
respiration coupled to the mineralization of organic carbon under anoxic conditions [118].
The consistent expression of anaerobic iron reducing genes before and after rainfall, and
in greater abundance relative to the aerobic iron oxidizing genes in the wet sedge tundra
community further implies that rainfall does not appear to alter community-wide anaerobic
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gene expression regardless of the rapid increase in soil O2 availability introduced during
the rainfall event.

Taken together, rainfall events in wet sedge tundra may serve only to maintain persis-
tently saturated soil conditions that promote anaerobic metabolism and CH4 production.
The unaltered expression of anaerobic and fermentative pathways following an increase
in soil O2 concentration introduced during rainfall, coupled with the high diversity and
abundance of methanogenic archaea active within these soils provides support for this
interpretation. Additionally, the combination of warmer soil temperatures driven by an
increase in rainfall and the concurrent increase in active layer depth with persistently
saturated conditions throughout the active layer profile has led to an increase in CH4 emis-
sions by ~30% [21]. Here, we add further evidence that rainfall will likely enhance CH4
production from low-lying permafrost regions such as wet sedge tundra by maintaining
saturated soil conditions rather than altering the highly reduced soil redox conditions
through an increase in dissolved O2 availability.

4.6. Relating Microbial Expression to Rates of Respiration and CH4 Production

Our results showed no correlation between aerobic microbial gene expression and
rates of microbial respiration (CO2 production) following rainfall in tussock tundra soils.
Specifically, the consistent rates of microbial respiration before and after rainfall (Figure 6A)
did not reflect the increase we observed in aerobic microbial gene expression in the tussock
tundra community following rainfall (Figure 4). This result is not unexpected because
previous studies have also been unable to directly link microbial dynamics and carbon
emissions [119], likely because respiration is the product of many processes in microbial
communities. Here, the artificial conditions of the respiration rate incubations (i.e., N2
gas for anoxic conditions, compressed air for oxic conditions) were intended to replicate
field conditions, similar to previous incubation studies [38], but it is possible that other
conditions in these incubations such as total O2 availability and soil moisture differed from
conditions in the soil mesocosms where microbial gene expression was sampled. It should
be noted that our measured rates of CO2 production (Figure 6A) were similar to rates
previously measured from soil waters at our study sites (19.6 ± 3.0 ng C g−1 soil h−1) [36].
Additionally, the greater rate of CO2 production in the tussock tundra soil compared with
the wet sedge tundra soil was consistent with the ~3.4-fold greater release of carbon from
aerobic soils compared with anaerobic soils across circumpolar arctic sites [120].

Our measured rates of CH4 production under anoxic incubation conditions (Figure 6B)
were also comparable with previous rates (37.2 ± 51.8 pg C g−1 soil h−1) [36]. These results
support a common interpretation that CH4 was produced by methanogenic archaea in
the anoxic environment but likely consumed by CH4-oxidizing bacteria in the oxidized
environment. We have evidence of gene expression from multiple pathways of methano-
genesis associated with methanogenic archaea as well as evidence of gene expression
from methanotrophy pathways associated with Actinobacteria and multiple classes of
Proteobacteria in both tundra communities (Table S8; Dataset S3). However, the greater
production of CH4 under anoxic conditions at T0 from the tussock tundra soil compared
to the wet sedge tundra soil (Figure 6B) is inconsistent with the lower relative abundance
of methanogenic archaea in the tussock tundra community compared to the wet sedge
tundra community (Table 3) or with the broader suite of methanogenic pathways available
to the diverse composition of methanogenic archaea within the wet sedge tundra (Dataset
S3). It is possible that the rates of CH4 production measured from our tussock tundra
soil incubations (and to some extent measured in our wet sedge tundra soils) represent
the natural release of trapped CH4 following disturbance to the soil [3], rather than just
biological production under the saturated, anoxic soil conditions in this study.

5. Conclusions

Results from this study suggest that rainfall differentially affected soil redox conditions
between tundra soil types due to inherent differences in soil drainage rates between tussock
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tundra and wet sedge tundra. Measurements and our soil oxygen model indicate that
rainfall increased the dissolved O2 concentration among tundra soils, but the extent of soil
oxygenation was 2.5-fold greater in tussock tundra compared with wet sedge tundra. The
substantial difference in soil oxygenation between tundra types during rainfall appears to
be the primary mechanism controlling the microbial response following rainfall in both the
tussock tundra and wet sedge tundra communities. Gene expression from active microbial
taxa in the tussock tundra community experienced a significant shift following rainfall
from anaerobic metabolic pathways to aerobic pathways of Fe(II) oxidation and an increase
in ribosome transcription that indicates microbial growth. In contrast, gene expression
from active microbial taxa in the wet sedge tundra community remained consistent for
anaerobic metabolism, fermentation pathways, and Fe(III) reduction before and after
rainfall, regardless of the increase in dissolved O2 introduced by the rainfall event. As
such, the rates of microbial respiration were greater in the tussock tundra community but
did not correlate directly with our observed changes in aerobic microbial gene expression.
The rates of CH4 production and its consumption under oxidizing conditions were similar
among tundra soils but did not correlate proportionally with the greater abundance of
methanogenic archaea and their diverse suite of methanogenic pathways in the wet sedge
tundra community, possibly due to dissimilar soil conditions between the mesocosm
chambers and the incubation jars. Validation of our metatranscriptomic results for gene
expression involved in methanogenesis via quantitative PCR (qPCR) may provide clarity
on the relationship between changes in methanogenic gene expression and measured rates
of CH4 production in this experiment.

We conclude that differences in the extent of soil oxygenation introduced during
rainfall and their impact on soil redox conditions clearly control whether microbial commu-
nities will shift gene expression from anaerobic metabolism to aerobic microbial growth,
or simply continue to express anaerobic genes typical of anoxic soil conditions. Here, the
microbial response in the tussock tundra community was consistent with our hypothesis
that rainfall-induced soil oxidation would alter anaerobic gene expression and promote
aerobic microbial activity, in large part due to the greater abundance of aerobic bacterial
and fungal taxa and their suite of aerobic functional genes. In contrast, oxygen from
rainfall does not appear to accumulate long enough, or to a sufficient concentration, in wet
sedge tundra soils to induce a community-wide shift from anaerobic metabolism; rainfall
may serve only in maintaining persistently saturated conditions that could potentially
enhance CH4 production due to the high diversity of methanogenic archaea inhabiting
these low-lying permafrost soils across the arctic landscape.
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