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Abstract: Microbial communities throughout the 6.5 m depth profile of a boreal ombrotrophic bog
were characterized using amplicon sequencing of archaeal, fungal, and bacterial marker genes.
Microbial populations and their relationship to oxic and anoxic batch sorption of radionuclides
(using radioactive tracers of I, Se, Cs, Ni, and Ag) and the prevailing metal concentrations in the
natural bog was investigated. The majority of the detected archaea belonged to the Crenarchaeota,
Halobacterota, and Thermoplasmatota, whereas the fungal communities consisted of Ascomycota,
Basidiomycota, and unclassified fungi. The bacterial communities consisted mostly of Acidobac-
teriota, Proteobacteria, and Chloroflexi. The occurrence of several microbial genera were found to
statistically significantly correlate with metal concentrations as well as with Se, Cs, I, and Ag batch
sorption data. We suggest that the metal concentrations of peat, gyttja, and clay layers affect the
composition of the microbial populations in these nutrient-low conditions and that particularly parts
of the bacterial and archaeal communities tolerate high concentrations of potentially toxic metals and
may concurrently contribute to the total retention of metals and radionuclides in this ombrotrophic
environment. In addition, the varying metal concentrations together with chemical, mineralogical,
and physical factors may contribute to the shape of the total archaeal and bacterial populations and
most probably shifts the populations for more metal resistant genera.

Keywords: microbial communities; heavy metal tolerance; boreal environment; radionuclide sorption

1. Introduction

Heavy metals and radionuclides polluting the environment originate mainly from
anthropogenic sources, including uranium mining, coal combustion, and accidental or
purposeful release of radionuclides. Heavy metals and radioactive isotopes may present
variable threats to biota, due to, e.g., atmospheric deposition and enrichment in soils and
sediments, build-up into water bodies, and their high toxicity [1–6]. Radioactive isotopes
and heavy metals can have toxic effects on soil microorganism activity if bioavailable and
present in sufficient concentrations [7]. Heavy metals may also inhibit the growth and
vitality of microorganisms and cause changes in the community structure [6,8].

In the Finnish concept for the disposal of spent nuclear fuel, the fuel will be placed
in copper-sheeted canisters and disposed of in a deep bedrock repository constructed on
Olkiluoto Island. During the last glacial period, this area was covered by the Scandinavian
Ice Sheet and after the ice retreated, gradual post-glacial land uplift still continues in the
area. The land uplift will result in a formation of new bogs in the area on which the first
possible releases from the deep nuclear repository to the upper biosphere (through the
clay, gyttja and peat layers in this order) would, based on biosphere safety assessment
calculations, be possible if some of the copper canisters would leak. The Lastensuo Bog,
sampled in our study, approximates the bog type likely to form in this area and has
therefore been used as an analogue biotope in the biosphere safety assessments of the
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disposal of spent nuclear fuel in Finland [9]. 59Ni, 108mAg, 135Cs, 79Se, and 129I, with
calculated potential geosphere release rates between 101 and 103 Bq/a starting 103 years
after the start of disposal, are among the most important radionuclides, as the potential
radiation doses for humans in the biosphere safety assessment calculations of spent nuclear
fuel are considered [10].

Non-radioactive Ni may end up in the environment from antropogenic sources, see,
e.g., in [11–14]. Ni occurs in several forms in soils, e.g., as inorganic crystalline minerals
or precipitates, adsorbed or complexed on various organic or inorganic cation exchange
surfaces, chelated to metal complexes in soil solution where a decrease in soil pH increases
its mobility, or as a water-soluble free ion [15]. From the radioecological point of view,
radioactive isotope of Ni, 59Ni, with long half-life of 76,000 years has classified as one
of the high priority radionuclides in the biosphere safety assessments of the disposal of
SNF in Finland due to the high calculated potential biosphere release rates of this nuclide
(maximum of ~103 Bq a−1 at t = 105 years after the beginning of the disposal) [10]. Ni
has high metabolic impact on living organisms because it is an important component in
many enzymes [16,17]. In addition, many microorganisms can bind Ni by using various
uptake mechanisms, including intracellular accumulation, straight biosorption on cell
surfaces (through physical adsorption, complexation, or ion-exchange), and extracellular
precipitation [18–22]. Retardation may occur through cell surface metal-binding functional
groups, like carboxyl, hydroxyl, phosphate, and sulfate groups [18–20]. In addition, many
microbes are able to accumulate Ni also inside the cells (see, e.g., in [22]) and until this date
at least two different uptake mechanisms have been reported: ATP-binding cassette (ABC-
type) transporters as well as Ni-specific permeases [23]. The possible toxic effects of Ni
may be suppressed during active accumulation inside bacterial cells through detoxification
reactions and previously we observed that Ni(II) concentrations between 0.01 and 1 mM
had no toxic effects on Pseudomonas sp. strains isolated from the same Lastensuo Bog [22]
studied in present study.

Silver (Ag) has been released to the biosphere especially through the photographic and
imaging industry [24]. Ag is a non-essential metal with a high toxicity to many organisms
already at very low concentrations [25] and is used as an effective bactericide [26,27]. Ag
accumulates effectively in food chains and can cause various diseases and disorders, and
even death [28–30]. It has been estimated that 5% of the total soil Ag is bioavailable [25].
In heavily contaminated soils, this proportion may be enough to harmfully affect the soil
micro- and macrobiological populations. The radioisotope of Ag, 108mAg (T1/2 418 years), is
found in SNF and is assumed to be one of the instant release fraction (IRF) radionuclides if
the copper canisters of the SNF are compromised and thus 108mAg can cause a substantial
part of the radiation dose from potentially released SNF to the biosphere [31].

Radioisotopes of cesium, including 137Cs and 135Cs, are typically considered a greater
health risk than stable cesium [32]. In soils, cesium is relatively rare and the stable cesium
(133Cs) concentrations are roughly 5 mg/kg [33]. In addition to the above-mentioned iso-
topes of Ni and Ag, 135Cs, with its long half-life of 2.3 My and large inventory in SNF, is also
among the most important radionuclides in the SNF repository long-term biosphere safety
assessments [34]. Typical for alkali metals, cesium is highly soluble and therefore in SNF it
is expected to occur in the instant release fraction [33]. Cesium occurs at oxidation state I
(Cs+), and in soils it is typically sorbed by outer-sphere complexation, although in mica and
clay minerals also inner-sphere complexes are formed [34–36]. In addition, cesium retains,
e.g., on organic matter an on iron, manganese and aluminum oxides. Bacteria, including
boreal Pseudomonas sp. Paenibacillus sp., Burkholderia sp., Rhodococcus sp. [37] and anaerobic
iron- and sulfate-reducing bacterial mixtures [38] have been reported to accumulate low
(Kd values below 100 L/kg) concentrations of cesium. Arbusculat mycorrhizal fungi have
been shown to facilitate the uptake of the radioactive 137Cs and translocate it to a plant
host [39] or concentrate in the fungal fruiting bodies [40]. Mycorrhizal fungi have also
been shown to transport radio-cesium between plant individuals connected via the same
hyphal network [41].
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79Se is a high-priority radionuclide in the long-term safety assessments of the disposal
of SNF into deep bedrock repositories [33]. Therefore, the possible radiation doses caused
by radioactive selenium for humans are taken into consideration in the long-term safety
calculations of SNF disposal [33]. The radioactive selenium isotope 79Se (T1/2 65,000 years)
is a fission product of uranium used in nuclear reactors and is also formed by neutron
activation from stable selenium. Moreover, substantial amounts of stable selenium enter
the biosphere through anthropogenic activities including coal combustion, mining, refining
of sour crude oils, and agricultural irrigation of seleniferous soils [42–46]. Selenium is a
vital micronutrient for humans and other mammals, but it is toxic at higher concentrations
and the range between deficient and toxic dosed is characteristically narrow [47,48]. For
humans, the effective daily dietary doses vary between 40 and 400 µg per day [49] and
the mean abundance of selenium in the soil crust is 0.083 mg/kg [50]. In most soils, its
concentrations are between 0.1 and 2 mg/kg [51]. However, exceptionally high Se con-
centrations up to 1200 mg/kg have been reported from different areas of the world (like
organic-rich soils in Ireland) [52]. In soils, selenium occurs in different oxidation states, and
in alkaline agricultural soils, selenium mainly occurs as selenate (Se(VI), SeO4

2−) as for
acidic forest soils its most profound form is selenite (Se(IV), SeO3

2−) [52]. The retention and
mobility of selenium is dependent, in addition to other factors like pH and organic matter
content of the soil, on its speciation [53]. Especially, selenite is highly reactive and may
react with glutathione thiol groups (GSH), explaining, at least in partly, its toxicisity [54].
Selenite spontaneously reacts with glutathione producing, e.g., glutathioselenol and selen-
odigluthatione [55]. It has been also reported that different species of Se-reducing bacteria
produce elemental Se0 biominerals, which can have different atomic structures [56,57]. In
soils, selenite and selenate are quickly reduced (also under oxic conditions), and this occurs
mostly through microbial reduction [58–60]. Certain bacteria may use selenate and selenite
as terminal electron acceptor [61] and may facilitate selenium uptake in plants [62,63].
Fungi have also been found to reduce selenite and selenate in oxic conditions [64]. In
addition, under highly reducing conditions slow abiotic reduction is mediated by inor-
ganic Fe(II,III) [65]. Previously, we showed that Pseudomonas sp. strains isolated from
the same Lastensuo bog as was studied in the present study, were able to reduce selenite
at 6 mM concentrations into reduced elemental selenium inside the bacterial cells even
though the bacterial growth rate (as increased lag phase duration) was affected by the
Se(IV) amendment [63].

129I, with its very long half-life of 15.7 My, large inventory in SNF, and high mobility,
is one of the most significant radionuclides in the long-term safety assessments of SNF [33].
Iodine is also vastly biophilic, and via the food chain or by inhalation can bioaccumulate,
particularly in the thyroid glands of both humans and other mammalians [48]. The migra-
tion and sorption behavior of iodine in the bio- and geosphere is affected by several factors,
such as chemical speciation, organic matter content, mineral properties, redox potential,
pH, and microorganisms [66–71]. Although iodine is primarily retained in soil organic
matter (SOM) [72–76], microorganisms may affect its sorption, see, e.g., in [77–79].

Copper may also leach into the biosphere from the spent nuclear fuel canisters (the cop-
per canisters in the KBS-3 model) through both abiotic and microbially induced corrosion
mechanisms [80,81], locally increasing the environmental Cu load. Cu is a cofactor in many
enzymes and is an essential micronutrient but is generally toxic to microorganisms, see,
e.g., in [82,83]. However, many microorganisms have developed resistance mechanisms
for coping with elevated Cu concentrations [83,84]. Elevated concentration is a relative
term, but for, e.g., E. coli, the minimal inhibitory concentration (MIC) of Cu2+ has been
determined to be 1 mM [85].

The resident microbial community has different mechanisms to interact with radionu-
clides and heavy metals, including biosorption, accumulation, precipitation, enzymatic
transformations (redox reactions), and detoxification reactions [84–86]. Biosorption may
occur both in living cells as well as in dead cells and cell fragments, but other mech-
anisms in which uptake occurs through active biological processes are present only in
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living cells [84,86,87]. For example, in prokaryotic cells, Ni and Se can be transported
inside the cells using ABC transporters [84,87]. In the active uptake mechanisms, Ni is
incorporated into Ni-dependent enzymes like urease, carbon monoxide dehydrogenase
or certain superoxide dismutases and methylenediureases [84]. In the case of Se, the use
of various enzymes like sulfite reductases and OYE enzymes is also possible [87], and
often uptake is followed by detoxification reactions utilizing reduction (see, e.g., in [58,64]).
For iodine, bacterial oxidation processes are well documented (see, e.g., in [88–91]) and
H2O2-dependent iodide oxidation mechanism has been reported, e.g., in bacteria from the
Savannah River Site [72]. In soil, organic matter iodine sorption has been suggested to
occur through catalytic oxidation of I− into reactive iodine species, such as I2 and HIO,
by environmental (microbial) peroxides, which after reactive iodine is bound into organic
matter [80]. However, uptake (probably through I2 and HIO oxidation) of iodine has been
described in fewer studies (see, e.g., in [88,92–94]). However, filamentous fungi have also
been shown to bioaccumulate both iodide and iodate, but the mobilization of iodate is
more efficient [95]. Typical for the metabolism-dependent mechanisms is that they are
slower than biosorption on cell walls [22]. Bacterial and fungal surfaces contain multiple
functional groups that may serve as sites for adsorption (and possibly subsequent desorp-
tion) (see, e.g., in [96,97]). Such functional groups, found both in Gram-negative and in
Gram-positive bacteria, may be carboxylic, phosphate, and hydroxyl sites that deprotonate
with increasing pH and therefore straight sorption on to the cellular structures is considered
pH dependent [98]. On these sites the uptake follows the displacement of protons and
therefore depends on the protonation [99,100]. However, typical bacterial cells have high
buffering capacity, which can range, e.g., through the whole environmentally relevant pH
range from pH 3 to pH 9 [100]. Vast prokaryotic buffering capacity results from distinct
acidic sites that are located in the cell walls [100] and is of great importance in chancing
environmental conditions. Microorganisms also have mechanisms for removing heavy
metals, metalloids and transition metals from their cells, by using e.g., ATP-coupled pumps
more or less specific for different ions, such as copper or silver ATPase transporters in
bacteria, archaea and fungi [101–103].

In the present study, the objective was to study the effects of the total microbiome on
the sorption behavior of the radioactive isotopes of Ni, Ag, Se, I, and Cs in an ombrotrophic
boreal bog, and vice versa. In addition, the relationship between the microbiome and
measured soil metal concentrations and correlations between soil metal concentrations, pH,
water content and organic matter content and bacterial, archaeal, and fungal populations
was studied.

2. Materials and Methods
2.1. Sampling Site and Sample Pretreatment

The sampling site, Lastensuo Bog, is an ombrotrophic, nutrient-poor bog with a
maximum peat thickness of 5–6 m with a bottom soil consisting of gyttja and clay [9,104].
The bog is located on the western coast of Finland and our sampling point (Figure 1, WGS84
coordinates 61◦17′31” N, 21◦50′22” E) is located in the center parts of the bog, which consist
of treeless or near treeless Sphagnum fuscum bog. The surrounding bog area also contain
ridge hollow pine bog and hollow bog, with low sedge bog, cotton grass pine bog, tall
sedge pine fen, and forested peatland at the edges [105]. The main peat types include
Sphagnum peat (58%), sedge peat (19%), and few-flowered sedge (15%).

Discontinuous depth-wise samples of peat, gyttja and clay for oxic and anoxic studies
were obtained in 2013 [80]. In addition, surface Sphagnum moss was collected. Values for
pH, humification degree, sulfur content (g/kg DW), organic matter, and water content of
the studied moss, peat, gyttja, and clay layers and bog water samples were determined
previously [80,104,106] (Table 1). X-ray diffraction analysis for the mineral gyttja and
clay layer samples was performed to examine the presence of clay minerals as described
previously in [80] (Table 1).
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Figure 1. (A) Map of Lastensuo bog, (B) sampling point in the center of the bog, and (C) sampling with a peat corer. 

Discontinuous depth-wise samples of peat, gyttja and clay for oxic and anoxic studies 
were obtained in 2013 [80]. In addition, surface Sphagnum moss was collected. Values for 
pH, humification degree, sulfur content (g/kg DW), organic matter, and water content of 
the studied moss, peat, gyttja, and clay layers and bog water samples were determined 
previously [80,104,106] (Table 1). X-ray diffraction analysis for the mineral gyttja and clay 
layer samples was performed to examine the presence of clay minerals as described pre-
viously in [80] (Table 1).  

Table 1. pH of bog water and bog layer, humification degree (%), organic matter content (%), water content (%), and 
number of bacterial 16S rRNA genes g−1 DW of the bog samples from Lastensuo bog [80,106]. S concentrations (g/kg DW) 
were calculated as average concentrations obtained from the data of Aro et al. [104]. Data for mineral fractions and ex-
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Sample 
Bog Water 

pH 
Bog Layer 

pH 
Humification 

Degree  
Organic Mat-

ter  
Water 

Content 

Number of Bacte-
rial 16S rRNA 

Genes 

S Content g/kg 
DW 

Surface moss 3.8 3.1 H1 99.2 92.0 5.0 × 1010 1.7 
Peat 0.5 m 4.7 3.1 H3 99.5 88.8 5.0 × 1010 1.3 
Peat 1.5 m ND 3.1 H4 99.6 90.9 1.0 × 1010 2.7 
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Figure 1. (A) Map of Lastensuo bog, (B) sampling point in the center of the bog, and (C) sampling with a peat corer.

Table 1. pH of bog water and bog layer, humification degree (%), organic matter content (%), water content (%), and number
of bacterial 16S rRNA genes g−1 DW of the bog samples from Lastensuo bog [80,106]. S concentrations (g/kg DW) were
calculated as average concentrations obtained from the data of Aro et al. [104]. Data for mineral fractions and exchangeable
cations (meq/100 g) from 1 M ammonium acetate extractions as well as the sum of extractable cations (meq/100 g) were
obtained from in [38,80]. ND = no determination.

Sample Bog Water
pH

Bog
Layer pH

Humification
Degree

Organic
Matter

Water
Content

Number of
Bacterial 16S
rRNA Genes

S Content
g/kg DW

Surface moss 3.8 3.1 H1 99.2 92.0 5.0 × 1010 1.7
Peat 0.5 m 4.7 3.1 H3 99.5 88.8 5.0 × 1010 1.3
Peat 1.5 m ND 3.1 H4 99.6 90.9 1.0 × 1010 2.7
Peat 2.5 m 4.9 3.2 H4 99.8 66.2 2.0 × 109 2.4
Peat 3.5 m ND 3.2 H4/H5 99.8 94.1 1.0 × 1010 2.4
Peat 3.7 m ND 3.3 H5 99.8 91.0 1.0 × 1010 ND

Gyttja 5.5 m 5.2 4.0 H6 95.0 83.3 1.0 × 1010 1.2
Clay 6.5 m ND 5.3 Clay 15.3 73.2 5.0 × 109 17.3

Na
NH4AC

K
NH4AC

Ca
NH4AC

Mg
NH4AC

Al
NH4AC

Sum (K+, Ca2+, Mg2+,
Na+, Al3+)

Surface moss 1.1 4.4 2.6 3.4 1.5 13
Peat 0.5 m 0.2 0.3 1.0 3.0 1.1 6
Peat 1.5 m 0.2 0.2 1.8 3.4 0.6 6
Peat 2.5 m 0.3 0.4 2.5 4.3 0.5 8
Peat 3.5 m 0.4 0.2 2.8 7.0 0.4 11
Peat 3.7 m 0.3 0.2 5.6 9.1 0.5 16

Gyttja 5.5 m 0.2 0.3 18.7 11.8 6.2 37
Clay 6.5 m ND ND ND ND ND ND

Minerals in <2 µm fraction Minerals in >2 µm fraction

Gyttja and Clay Illite, clinochlore and kaolinite Quartz, microcline, plagioclase, pyrite, Fe-hornblende
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2.2. Nucleic Acid Isolation

Microbial community DNA was isolated from two parallel samples, A and B, of
approximately 0.5 g subsamples of thawed surface moss, peat, gyttja, and clay samples with
a NucleoSpin® Soil DNA extraction kit (MACHEREY-NAGEL GmbH & Co. KG, Dürren,
Germany). Sample types with different characteristics, such as high content of organic
material, high mineral content, varying pH, etc., may require dissimilar lysis conditions
for optimal results. In order to increase the possibility to lyse as many different types of
microbial cells as possible and detect the widest microbial diversity, the replicate samples
were treated with different lysis buffers provided in the DNA extraction kit. Sample A was
extracted with Lysis Buffer SL1 and sample B with Lysis Buffer 2. Enhancer solution SE
was used with both samples and the extraction proceeded according to the manufacturer’s
instructions. Negative DNA isolation controls were included in the isolation protocol.
The DNA was eluted in 100 µL elution buffer and the DNA concentration of each extract
was measured using the NanoDrop-1000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA).

2.3. Amplicon Library Preparation

The bacterial community was studied by high-throughput amplicon sequencing us-
ing the 454 Titanium FLX technology (Roche) and was previously reported [106]. The
data were re-analyzed here and combined with the fungal and archaeal data. The ar-
chaeal and fungal communities were analyzed with high-throughput sequencing of the
archaeal v4 region of the 16S rRNA gene and fungal internal transcribed spacer 1 (ITS1)
region using the Ion Torrent PGM platform previously described [107]. The archaeal
primers were the S-D-Arch-0349-a-S-17 (5′- GYGCASCAGKCGMGAAW-3′) and S-D-Arch-
0787-a-A-20 (5′- GGACTACVSGGGTATCTAAT -3′) [108] and the fungal primers the ITS1
(5′- CTTGGTCATTTAGAGGAAGTA-3′) and ITS2 (5′- GCTGCGTTCTTCATCGATGC-
3′) [109,110]. Primers 8F (5′- AGAGTTTGATCCTGGCTCAG-3′) and P2 (5′- CAG GCC
TAA CAC ATG CAA GTC-3′) were used for amplifying the v1–v3 region of the bacterial
16S rRNA gene [111,112].

2.4. Sequence Processing and Analysis

The sequence reads were analyzed using the Mothur software (v.1.43.0) [113] as earlier
described [107]. The archaeal and bacterial 16S rRNA sequences were aligned to the Silva
version 138 reference alignment [114,115] using Mothur. The fungal ITS1 sequences were
identified using the dynamic version of the UNITE ITS data base version 6 [116–118], as
previously described [107]. Sequence reads were clustered into operational taxonomic
units (I) sharing 97% identity. For comparing alphadiversity metrices the fungal ITS and for
bacterial 16S rRNA gene sequence data sets were normalized to a subset of 2000 random
sequences for sequences per sample and 1000 sequences per sample for the archaea. The
alphadiversity analyses included the Shannon diversity indices and the estimated ChaoI
OTU richness.

The bacterial sequences have previously been deposited to the European Nucleotide
Archive (ENA, http://www.ebi.ac.uk/ena) under Study accession number PRJEB6875.
The archaeal and fungal sequences have been submitted to the ENA under Study accession
number PRJEB41440.

2.5. Sorption Batch Experiments Data and Metal Concentrations

Ni, Ag, Se, I, and Cs sorption data were obtained as previously described [119]. Briefly,
batch sorption experiments were used to determine the distribution coefficients (Kd) of
subsurface peat, gyttja, and clay. The experiments were set up aseptically by mixing 0.5 g
of fresh sample and 25 mL of sterilized artificial bog water (see in [119]) and incubating for
one week in order for the cation and anion concentrations to stabilize. The stabilization was
confirmed by inductively coupled plasma mass spectrometry (ICP-MS) (Agilent 7500ce,
Agilent Technologies, Inc., Santa Clara, CA, USA) measurement of the cations in the model

http://www.ebi.ac.uk/ena
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bog water solution. After this, the tracers of 63Ni,110mAg, 134Cs, 125I, and 75Se were added
with activities of 200 Bq per sample for 63Ni, 110mAg, 125I, and 75Se. For 134Cs 1000 Bq
per sample was used. Incubation of the samples was continued at 20 ◦C for 7 days under
constant mixing. Thereafter, the samples were submitted to a 20 min centrifugation at
20,000 rpm (Beckman Coulter J-26 XPI, rotor JA-25.50), filtered through a 0.2 µm syringe
filter, the filtrate pH was measured whereafter the filtered solution was used for gamma
spectrometric determination of 63Ni, 110mAg, 75Se, 125I and 134Cs activity as previously
described [119]. The batch Kd values of the experiment were calculated as previously
described [119]. Three parallel samples were used for all measurements. Batch sorption
data for Se, I, and anoxic Se and I were obtained from our previous studies [80,119] (Table 2).
For the anoxic determinations, only the innermost parts of the peat corer nest samples
were used and transferred tightly sealed in plastic from the sampling site into a nitrogen
cabinet [119]. The samples were further handled as described above, except under anoxic
conditions. The redox potential (Eh (V)) was recorded for the redox sensitive species at the
end of the incubation period.

Table 2. Geometrical mean of sorption data (Kd values L/kg DW, three replicate samples) for Ni, Ag, and Cs (this paper),
and Se, I, anoxic Se, and anoxic I (data from in [80,119]) after 7 days of incubation at 20 ◦C.

Sample Ni Ag Cs Se I Se Anoxic * I Anoxic *

Surface moss nd nd 93 4388 1797 nd nd
Peat 0.5 m 11,727 21,743 115 2602 478 15 226
Peat 2.5 m 7817 21,783 113 2716 80 18 194

Gyttja 5.5 m 19,880 17,778 221 696 316 6 1629
Clay 6.5 m 190 10,699 1601 735 24 0 333

* geometrical mean of two replicate samples; nd—no data.

Microwave-assisted HNO3 extraction was used to determine the overall sodium (Na),
magnesium (Mg), aluminium (Al), potassium (K), calsium (Ca), iron (Fe), cobolt (Co), Ni,
copper (Cu), zinc (Zn), Se, molybdenum (Mo), silver (Ag), cesium (Cs), thorium (Th), and
uranium (U) concentrations in the surface moss, peat, gyttja, and bottom clay samples.
A 0.5 g subsample of fresh soil was weighed into a Teflon tube to which 10 mL HNO3
(concentrated) was added, and the sample was wet digested in a microwave oven using
the EPA3051 method (Milestone Inc., Shelton, CT, USA). The extract solutions were filtered
through a 0.2 mm Supor membrane filter (Pall Corp., Port Washington, NY, USA), the
samples were diluted to 1:33, and the metal concentrations were determined using ICP-MS
(Agilent 7500ce, Agilent Technologies, Inc., Santa Clara, CA, USA). No-sample negative
control samples, containing only extraction solutions, were used in the extractions to detect
possible reagent contamination. All ICP-MS determinations were performed using two
parallel samples, and control samples with known concentrations were included in all
ICP-MS runs. The microwave-assisted conc. HNO3 extraction was able to totally dissolve
the organic peat layer fractions, but for the lowest mineral clay layer a small proportion of
siliceous residue remained after digestion. This was removed in the following filtration step.
Unlike sequential extractions, HNO3 extraction does not distinguish between exchangeable
fraction, metals bound on oxide minerals (Fe(III)), organics, or primary sulfides.

2.6. Statistical Analyses

The relationships between the measured metal concentrations and Ni, Ag, Cs, Se,
and I sorption data and microbial communities were examined with univariate analysis
(Pearson’s r). The relationships between pH, water content, and humification degree versus
bacterial, archaeal, and fungal communities; community richness (Chao 1); and diversity
(Shannon index H′) of the bacterial, archaeal, and fungal communities were also examined
using univariate analysis (Pearson’s r) with all samples and separately with only peat
samples. In addition, the correlation between number of bacteria (as number of bacterial
16S rRNA gene copies g−1 dry weight sample) reported by Tsitko et al. [106] and sorption



Soil Syst. 2021, 5, 19 8 of 31

of radionuclides and metal concentrations was tested. All comparisons were Bonferroni
corrected in order to minimize false positive correlations. The normal distribution of the
data was evaluated by the Shapiro–Wilk test (p < 0.05) before the analysis. The normality
hypothesis was rejected for all used data. All statistical analyses were performed using
PAST v. 4 [120]. The statistical analyses were performed on the genus rank. Only groups
with relative abundances of > 0.1% in at least one of the studied bog layers were included
in the analyses. The differences in the microbial communities of the different bog layers
were analyzed with Principal Coordinates Analysis (PCoA) using Phyloseq in R [121,122].
The PCoA were performed on the relative abundance of OTUs, including only samples
with at least 1000 sequence reads, using the Bray–Curtis distance model. The statistical
significance of environmental parameters on the distribution of samples on the PCoA chart
was tested with 999 permutations and parameters with p < 0.05 were plotted as vectors on
the plots.

3. Results
3.1. Sorption Experiments

The sorption (reported as Kd values liters (L) per dry weight kg (DW)) of Ni in all
studied bog samples was found somewhat lower than the corresponding Kd values for
Ag after one week stabilization period (Table 2, Figure 2A). Ni Kd values varied from
190 L/kg DW detected in the clay layer to 19,900 L/kg DW in the gyttja layer after one
week equilibrium time. Ag Kd values ranged from 10,000 L/kg DW to 33,400 L/kg DW,
with the highest values recorded for the peat layer from 2.5 m depth. Cs Kd values were
found several orders of magnitude lower than those observed for Ag and Ni. Highest
values (1600 L/kg DW) were observed for the clay layer (Figure 2B).
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In comparison, the sorption values for Se and I (reported in [80,119]) were 696–4388 L/kg
and 24–1797 L/kg, respectively, in the aerobic incubations and 0–18 L/kg and 194–1629 L/kg,
respectively, in the anaerobic incubations (Table 2). The recorded average Eh values for
0.5 m peat, 2.5 m peat, 5.5 m gyttja, and 6.5 m clay layers were 0.40 ± 0.05 V, 0.41 ± 0.06 V,
0.29 ± 0.08 V, and 0.12 ± 0.06 V, respectively, indicating more reducing conditions at the
lower layers, compared to the upper layers.

3.2. Metal Concentrations

The metal concentrations varied between different bog layers and for all samples, and
the highest concentration of metals was found in the lowest clay layer (Table 3). In addition,
high concentrations of Na, Mg, Al, K, and Ca were found in the surface moss, 433 mg/kg
DW, 634 mg/kg DW, 273 mg/kg DW, 4673 mg/kg DW, and 1619 mg/kd DW, respectively.
Naturally occurring Ni, Ag, Cs, Se, and Th were generally detected at low concentrations,
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or not at all. With the exception of Ag, the highest concentrations were found in the clay
layer (Table 3). Ni was also detected in the peat layers at 0.5 m and 1.5 m. Th was also
detected in the gyttja layer.

Table 3. Metal concentrations from the microwave assistant extraction of Lastensuo bog surface moss,
peat, gyttja, and clay layers (mg/kg DW).

Surface 0.5 m 1.5 m 2.5 m 3.5 m 5.5 m 6.5 m

Na 433 0 0 0 202 0 430
Mg 634 687 581 831 2410 1520 6562
Al 273 350 221 197 650 >1486 >1486
K 4673 344 186 319 241 271 6156
Ca 1619 1193 955 938 2566 4030 4124
Fe 423 522 401 271 558 1509 25,543
Co 0.04 0.03 0.04 0.02 0.02 1.01 11
Ni 0 20 15 0 0 0 34
Cu 13 5.01 3.02 0 1.04 25 35
Zn 48 37 23 19 21 23 90
Se 0 0 0 0 0 0 6.05
Mo 0.03 4.00 4.00 0 0 0.09 6.02
Ag 0.02 0.02 0.01 0.02 0.01 0.01 0.02
Cs 0.05 0.01 0.01 0 0.01 0.01 3.03
Th 0.01 0.01 0.01 0 0.01 1.03 7.06
U 0 0 0 0 0 1.01 4.04

3.3. Archaeal, Fungal, and Bacterial Diversity

A total of 1617 archaeal 16S rRNA genes and 1670 fungal ITS1 Operational Taxonomic
Units (OTUs) were identified from the amplicon sequence data, when clustered at 97% se-
quence homology. The bacterial 16S rRNA gene sequence data from [106] were reanalyzed
and contained a total of 5029 bacterial OTUs. The highest number of 293 identified and
513 Chao1 estimated average number archaeal OTUs in the rarefied data was obtained from
the surface moss sample (Table 4). The highest archaeal diversity index (H′ (average) = 4.8)
was also seen in the surface moss. The lowest average number of identified (129) and
estimated archaeal OTUs (294) was observed in the peat sample from 3.7 m. The lowest
Shannon diversity index (H′ (average) = 1.6) was detected in the peat from 0.5–1.0 m
depth. For all peat layer samples from 0.5 m to 3.7 m the number of observed and Chao1
estimated OTUs was below 150 and 180, respectively (Table 2). In the lowest clay layer
(6.5 m), the number of archaeal OTUs was higher compared to the peat layers, with on
average 198 observed and up to 314 Chao1 estimated archaeal OTUs.

The highest average number of fungal ITS OTUs in the rarefied data was observed in
the peat from 0.5 m (Table 5), with an average of 297 identified and 323 Chao1 estimated
fungal OTUs. The highest fungal diversity index (H′(average) = 3.8) was found in the
surface moss and the lowest (H′(average = 2.8) in the bog middle layers from 2.5 m to 3.5 m,
where also the lowest average number of identified (160) and estimated fungal OTUs (256)
were detected. The mean number of fungal OTUs and Chao1 estimated OTUs in the clay
layer was 276 and 303, respectively, with a mean H′ of 3.2.

The highest number of rarefied bacterial OTUs and Chao1 estimated OTUs was
observed in the peat layer from 1.5 m (Table 6). The surface moss has the highest Shannon’s
H′ of 5.5. The lowest number of identified (191) and Chao1 estimated OTUs (385) were
observed in the peat sample from 2.5 m depth.
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Table 4. The total number of archaeal 16S rRNA gene sequence reads (Sequences), and the number
of observed (OTUs) and Chao1 estimated archaeal OTUs (Chao1), Good’s coverage (%) of detected
OTUs estimated from the Chao1 (Coverage), and Shannon’s diversity indices (Shannon H′) calculated
from the rarefied (1000 sequence reads) data. Samples A and B are the duplicate samples from the
same layer and the DNA was extracted using Extraction Buffer SL1 and SL2 for sample A and
B, respectively.

Sample Sequences OTUs Chao 1 Coverage
(%) Shannon H′

Surface A 1228 283 505 88 4.7
Surface B 1215 302 520 87 4.8

Peat 0.5 m A 12,587 145 311 99 1.7
Peat 0.5 m B 13,314 148 285 99 1.6
Peat 1.5 m A 11,034 128 204 99 2.2
Peat 1.5 m B 11,470 141 252 99 2.1
Peat 2.5 m A 2212 100 159 98 2.8
Peat 2.5 m B 5971 160 273 99 2.8
Peat 3.5 m A 9871 170 411 99 2.3
Peat 3.5 m B 11,672 129 263 99 2.1
Peat 3.7 m A 13,120 177 445 99 2.0
Peat 3.7 m B 4354 80 143 99 2.0

Gyttja 5.5 m A 23,698 280 493 99 2.4
Gyttja 5.5 m B 19,757 200 325 100 2.3
Clay 6.5 m A 18,925 200 314 100 1.9
Clay 6.5 m B 14,913 195 293 99 2.1

Table 5. Obtained number of fungal ITS1 region sequence reads (Sequences), observed (OTUs) and
estimated (Chao1) number of fungal OTUs, Good’s OTU coverage (%) estimated from the Chao1
(Coverage), and diversity index (Shannon H′) calculated from the sequence data. The data were
rarefied to 2000 sequences for calculating the number of OTUs, Shannon index, Chao1 estimate, and
Good’s coverage. The coverage describes the percentage of OTUs detected from the rarefied data set
compared to the Chao1 estimated number of OTUs determined from the rarefied data. Samples A
and B are the duplicate samples from the same layer and the DNA was extracted using Extraction
Buffer SL1 and SL2 for sample A and B, respectively.

Sample Sequences OTUs Chao 1 Coverage
(%) Shannon H′

Surface A 7067 323 418 99 3.8
Surface B 4495 237 343 98 3.7

Peat 0.5 m A 20,265 308 463 99 3.8
Peat 0.5 m B 17,543 286 379 99 3.1
Peat 1.5 m A 18,224 291 406 99 3.7
Peat 1.5 m B 17,433 209 307 100 3.1
Peat 2.5 m A 5689 120 171 99 2.7
Peat 2.5 m B 10,079 206 307 99 2.9
Peat 3.5 m A 7023 156 307 99 2.9
Peat 3.5 m B 8419 159 240 99 2.6
Peat 3.7 m A 14,233 327 465 99 3.4
Peat 3.7 m B 17,236 218 287 100 2.2

Gyttja 5.5 m A 13,782 259 445 99 2.9
Gyttja 5.5 m B 18,917 246 350 100 3.3
Clay 6.5 m A 13,924 241 388 99 3.2
Clay 6.5 m B 17,840 310 433 99 3.1
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Table 6. Obtained number of bacterial 16S rRNA gene sequence reads (Sequences), observed (OTUs)
and estimated (Chao1) number of bacterial OTUs, Good’s OTU coverage (%) estimated from the
Chao1 (Coverage), and diversity index (Shannon) of the communities. The data were rarefied to
2000 sequences for calculating the number of OTUs, Shannon index, Chao1 estimate, and Good’s
coverage. The coverage describes the percentage of OTUs detected from the rarefied data set
compared to the Chao1 estimated number of OTUs determined from the rarefied data. Samples A
and B are the duplicate samples from the same layer and the DNA was extracted using Extraction
Buffer SL1 and SL2 for sample A and B, respectively.

Sample Sequences OTUs Chao 1 Coverage
(%) Shannon H′

Surface A 3089 654 1348 88 5.5
Surface B 7988 1063 2015 93 5.5

Peat 0.5 m A 2961 546 1365 88 4.6
Peat 0.5 m B 9295 697 1422 96 4.1
Peat 1.5 m A 36,102 1122 2420 98 3.3
Peat 1.5 m B 8723 321 603 98 2.9
Peat 2.5 m A 7937 382 812 97 3.6
Peat 2.5 m B 15,327 634 1376 98 3.7
Peat 3.5 m * 3841 191 385 97 3.4
Peat 3.7 m * 5256 261 410 98 2.9

Gyttja 5.5 m A 5992 556 1196 95 4.4
Gyttja 5.5 m B 9743 731 1393 96 4.3
Clay 6.5 m A 2811 575 1502 87 5.1
Clay 6.5 m B 5002 633 1142 93 4.7

* No sequences were obtained from the B samples from peat 3.5 m and peat 3.7 m.

3.4. Archaeal, Fungal, and Bacterial Community Compositions

The archaeal community in the Lastensuo bog depth profile, contained a total of
37 different genera belonging to 10 archaeal phyla. The major part of the community affili-
ated with the Crenarchaeota, Halobacterota, and Thermoplasmatota (Figure 3). Crenarchaeota
dominated the archaeal community especially in the lower peat, gyttja, and clay layers
from 2.5 m to 6.5 m (45–83% of sequence reads). Archaea remaining without classification
(unclassified archeota) were clearly most common in the surface moss layer (on average
85% of sequence reads). The relative abundance of Halobacterota and Thermoplasmatota
decreased with depth, the highest relative abundance observed in the 0.5 m peat layer (43%
and 41% of sequence reads, respectively).
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Candidatus Altiarchaeum, Nitrososphaeria (Marine Benthic Group A), Methanomicro-
biaceae (uncultured), and unclassified Methanomicrobiales were only found in the lowest
clay sample (6.5 m) (Figure A1), whereas Bathyarchaeia contributed with on average 68%
of sequence reads. The clay layer contained the highest number (19) of archaeal gen-
era (Figure A1), whereas the lowest number of eight archaeal genera was found in the
surface layer (unclassified archaea, Bathyarchaeia, Nitrososphaeria Group 1.1c, unclassified
Methanobacteriaceae, Methanobacterium, Methanomicrobiales Rice Cluster II, Methanomassiliic-
occus, unclassified Thermoplasmata). In the surface moss layer, 85% of archaeal sequence
reads consisted of unclassified archeota. Unclassified Nitrososphaeria was the most common
archaeal lineage in the 5.5 m gyttja layer with 35% of sequences belonging to this genus.

Five fungal phyla (Figure 4), representing 145 different genera (Figure A2), were
found throughout the Lastensuo Bog profile. Ascomycota generally dominated the fungal
communities, with the exception of the surface moss, where unclassified fungi dominated
with relative abundaces >50%. Basidiomycota were most commonly found in the surface
moss sample, representing on average 13% of the fungal community, and were less common
in the deeper layers. In the peat, gyttja, and clay layers, Ascomycota formed 77–78% of the
fungal population.
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Of the detected genera (Figure A2), Phaeoacremonium formed 37% of the fungal com-
munity in the Lastensuo Bog, whereas 26% of the sequence reads on genus level belonged
to unclassified fungi. The highest mean relative abundance of Phaeoacremonium (53%) was
observed in the clay layer.

Acidobacteriota, Proteobacteria, and Chloroflexi were the most common bacterial taxa in
the bog samples (Figure 5, Figure A3). Spirochaetota were found especially in the lowest
gyttja (5.5 m) and clay (6.5 m) layers. Acidobacteriota covered 21–87% of the sequence reads
of each sample, with the lowest numbers in the clay. Proteobacteria were common in the
surface moss samples, contributing with 41% of the bacterial 16S rRNA gene sequence
reads. Chloroflexi covered 35% of bacterial community in the 3.7 m peat layer. Spirochaetota
contributed with 17% of the bacterial community in the clay layer (6.5 m). Other bacterial
phyla detected in the bog samples included, e.g., Planctomycetota (11% in the 6.5 m clay
layer) and Actinobacteria (6.3%, 2.7% an d2.2% in the 3.5 m and 3.7 m peat and surface moss
layer, respectively). In the clay layer, 11% of the bacterial sequence reads remained without
further classification.

A total of 333 bacterial genera were identified from the whole bog profile. Acidobacteriota
were represented by 33 genera. The most prominent genus belonged to Acidobacteriae
Subgroup 13 (Figure A4), which was most common in the 1.5 m peat sample covering a
mean 64% of the bacterial community. Granulicella (14%) and Candidatus Solibacter (12%)
were observed especially in the 2.5 m peat sample. The clay layer bacterial community
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contined 6.3% Aminicenantales, whereas the surface layer was colonized by Occallatibacter
(9.0%) and uncultured Acidobacteriales (8.4%).
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Proteobacteria were represented mainly by Alphaproteobacteria (75% of the Proteobac-
teria) (Figure A5) and Gammaproteobacteria (25% of the proteobacteria, Figure A6). In
the surface moss, alphaproteobacteial contributed with 19% of the bacterial community, of
which Roseiarcus and a genus belonging to uncultured Acetobacteraceae contributed with
4.9% and 3.5% of the bacterial sequence reads, respectively. In all peat layers from 0.5 m
to 3.5 m, uncultured Acetobacteraceae dominated the alphaproteobacterial community. In
the gyttja and clay layers alphaproteobacterial represented less than 0.1% of the bacterial
communities.

Gammaproteobacteria were most commonly found in the surface moss (~6.5% of all
sequence reads). The gammaproteobacterial sequence reads were mostly assigned to the
WD260 group (6.6% in total in all samples), unclassified Burkholderiales (in total 2.1%), and
Acidibacter (in total 1.6%). The relative abundance of all other observed gammaproteobacte-
rial genera was <1%.

Chloroflexi were most common in the peat layer from 3.7 m, where they contributed
with 35% of the sequence reads. The most prominent genus, covering 99% of the Chloroflexi,
was the Dehalococcoidia GIF9 (Figure A7). In all other peat layers, Chloroflexi contributed
with <8% of the bacterial sequence reads and were not found in the surface layer. In contrast,
the gyttja and clay layers contained several Chloroflexi genera, with Dehalococcoidia GIF9
contributing with 31% of the bacterial community of the gyttja and Dehalococcoidia SCGC-
AB-539-J10 and unclassified Dehalococcoidia, together contributing with 43% the bacterial
community in the clay layer.

Spirochaetota were represented by four groups, i.e., the Brevinema, Spirochaeta, unclas-
sified Spirochaetaceae, and uncultured Spirochaetaceae, the most prominent group being
Spirochaeta which covered 99.9% of all Spirochaetota reads. Spirochaetota were mainly found
in the lowest gyttja and clay layers, with low abundances, covering on average 3.9 % of all
bacterial sequence reads.

3.5. Correlation between Microbial Communities, Alphadiversity, and Physicochemical Parameters

No correlations between archaeal genera or archaeal out numbers, Chao1 richness, or
Shannon’s H′ and sorption data or between fungal OTU numbers, Chao1 richness, or H′

index and metal concentrations or bog characteristics data (pH, etc.) were found. How-
ever, several archaeal genera showed positive correlation (based on Bonferroni-corrected
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p-values) with pH, Eh, and different metal concentrations (Table A1). Lokiarchaeia, Hadar-
chaeales, uncultured Methanomicrobiaceae, Methanosaeta, and uncultured Methanomassiliic-
occaceae showed strong positive correlation to pH (p < 0.05–0.00001), whereas Lokiarchaeia
correlated negatively (p < 0.05) to Eh). An unclassified crenarchaeotal genus correlated
positively to the humification degree (p < 0.05). Interestingly, Hadarchaeales, uncultured
Methanomicrobiaceae, Methanosaeta, and uncultured Methanomassiliicoccaceae correlated nega-
tively with the amount of organic matter in the samples (p < 0.05–0.00001). Candidatus
Altiarchaeum, Lokiarchaeia, Hadarchaeales, uncultured Methanomicrobiaceae, Methanosaeta, and
uncultured Methanomassiliicoccaceae correlated positively with concentrations of Fe, Co, Se,
Cs, Th, and U. Lokiarchaeia, Hadarchaeales, uncultured Methanomicrobiaceae, Methanosaeta,
and uncultured Methanomassiliicoccaceae correlated positively with Mg. In addition, Lokiar-
chaeia and Methanosaeta correlated positively with Cu and Hadarchaeales and uncultured
Methanomicrobiaceae with Zn. The presence of Lokiarchaeia and Methanosaeta correlated neg-
atively with Ag sorption (Kd values) in the Lastensuo bog samples, whereas Hadarchaeales
correlated positively with Cs sorption (Table 7).

Table 7. Pearson correlation coefficients of the Bonferroni corrected correlations between relative abundance of bacterial
genera or bacterial numbers and sorption data. Correlation coefficients for pairs with p < 0.05 are shown.

Ag Sorption Cs Sorption Se Sorption Se Anoxic Sorption I Anoxic Sorption

Lokiarchaeia genus −0.98
Methanosaeta −0.98

Hadarchaeales genus 0.98
Acetothermiia_ge 1.0

GOUTB8_ge 1.0
Thermoanaerobaculum 1.0

Pelolinea 1.0
Anaerolineaceae;uncultured 0.99

Latescibacteraceae_unclassified 1.0
MidBa8_ge 1.0
DG-20_ge 1.0

Bacterial number 0.99 *** 0.96
*** p < 0.00001.

No statistically significant correlations were observed between fungal genera and pH,
water content, humification degree, depth, organic matter content, nor metal concentrations.
Neither were correlations between fungal genera or fungal OTU numbers, Chao1 richness,
or Shannon’s H′ and sorption data found.

The metal concentrations found in the bog samples did not correlate significantly with
the number of bacterial 16S rRNA genes, OTUs, Shannon’s diversity index (H′), or Chao1
richness. However, several strong positive correlations between bacterial genera (Table A2)
and metal concentrations were observed. The strongest positive correlations were observed
between Pelolinea and Phyciphaerae DG-20 and Fe, Se, and Cs (r > 0.999, p < 0.05). Strong
positive correlations (r ≥ 0.997) were in addition observed between several other bacterial
genera (e.g., Acetothermiia, Latereibacteraceae, Polyangia, and Phycisphaerae) and Fe, Co, Se,
and Cs (Table A2).

Strong positive correlations (r ≥ 0.995, p < 0.01) between bacterial genera and Cs
sorption (Kd values) were observed (Table 7). The bacteria with strong positive correlations
with Cs sorption data included Aceothermiia, Acidobacteriae GOUTB8, Thermoanaerobaculum,
Pelolinea, Latescibacteraceae, Polyangia MidBa8, and Phycisphaerae. In addition, anoxic sorp-
tion data for Se correlated positively (r = 0.993, p = 0.04) with uncultured Anaerolineaceae.
No correlations between any of the other sorption data (I, Se, Ni, and Ag) and bacterial
genera were found.

Several bacterial genera correlated with organic matter content (%) (Table A2). All
of the statistically significant correlations were negative and included, e.g., Aceothermiia,
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Acidobacteriae GOUTB8, Thermoanaerobaculum, Pelolinea, Latescibacteraceae, Polyangia MidBa8,
and Phycisphaerae (Table A2).

The similarity between the archaeal, fungal, and bacterial communities of the different
bog layers was tested using Principal Coordinates analysis (PCoA) and the Bray–Curtis
dissimilarity model (Figure 6). For all microbial groups, the surface samples separated
from the rest of the samples. The archaeal community in the surface samples (the highest
relative abundance of unclassified archaea) appeared to be affected by the concentration of
Ag, whereas the fungal and bacterial communities of the same sample were not (Figure 6A).
The archaeal communities of the peat samples also clearly clustered according to depth,
with samples from similar depths falling closer together. The gyttja and clay communities
were clearly different from the surface and peat communities, and although not clustering
together, both sample types fell in the upper left quadrant of the plot where the metal
concentrations had the highest influence. In the fungal PCoA analysis, the surfaces samples
separated to the opposite side of the plot from the rest of the samples (Figure 6B). All peat,
gyttja, and clay samples fell to the right side of the plot and did not clearly separate from
each other. No environmental parameters appeared to affect the fungal communities with
any statistical significance. The bacterial communities separated into three distinct groups:
the surface communities, the peat and gyttja communities, and the clay communities. The
clay community was most strongly affected by the measured metals.

No statistically significant correlation between bacterial numbers or microbial taxa
and the concentration of Ni or Ag, or sorption of Ni and Ag in the tested samples, was
seen. In the regression analysis, the sorption of Ni did not appear to be affected by bacterial
numbers or by sample type. However, the higher sorption of Ag was seen in the samples
with the highest number of bacteria, and lowest in the clay sample, with the lowest number
of bacteria and generally different conditions compared to peat (Figure 7A,B).
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Figure 6. Principal Coordinates Analysis (PCoA) of the (A) archaeal, (B) fungal, and (C) bacterial
communities in relation to environmental parameters. Vectors for metal concentrations having
statistically significant (p < 0.05) effect on the microbial communities are shown. For fungi, no
significant metal concentrations were identified. In A and C, the peat samples are indicated with a
red oval.
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The concentration and sorption of Cs correlated strongly with several microbial groups
(Tables 7, A1 and A2), but not with the number of bacterial 16S rRNA gene copies. The
regression analysis is in agreement with these results, showing highest sorption of Cs in the
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clay layer (Figure 7D). In contrast, the sorption of Se correlated strongly and significantly
with the number of bacterial 16S rRNA genes (Table 7) under oxic (p < 0.00001) and anoxic
(p < 0.05) conditions, which is also shown by the regression analysis, where the highest
Kd values for Se coincides with the highest bacterial numbers (Figure 7). The sorption of
I did not show statistically significant correlation with any microbial groups or bacterial
numbers under aerobic conditions, but the regression analysis indicated slightly higher
Kd values in samples with high bacterial counts, and lower Kd values in the clay layer.
The sorption of I in anoxic conditions was low and now correlation with the bacterial
numbers was seen (Table 7). However, uncultured Anaerolineaceae correlated positively
with anaerobic iodine sorption (Table 7).

4. Discussion

Microbiological processes may affect the solubility and bioavailability of heavy metals
and radionuclides, and consequently affect the overall behavior of these elements in
the biosphere. Simultaneously, heavy metals and radionuclides and low pH, typical for
ombrotrophic boreal bog environments, can select for microbial communities of more
resilient types able to survive in these acidic and nutrient-poor environments [38,58,80].
In the present study, several factors, including variable metal concentrations, pH, organic
matter content, humification degree, and bacterial numbers, were shown to influence the
microbial community composition and/or vice versa in the acidic bog environment with
high diversity of bacteria, archaea, and fungi (Tables 1 and 4, Table 5, Table 6). In addition,
specific parts of the microbial communities were observed to correlate with radioactive Se,
Cs, and Ag sorption behavior, as well as retention of I under anoxic conditions, which has
also been reported earlier [40,46,65].

The alkali and heavy metal concentrations varied depending on the bog layer. How-
ever, the concentrations of, e.g., Cu, Pb, and Ni were not different from concentrations
measured from four other Finnish oligotrophic bogs to a depth of 80 cm, but the concen-
tration of Zn was elevated [2]. For all alkali and heavy metals, the highest concentrations
were found in the bottom clay layer (Table 3), which was formed during the post-glacial
land uplift in this area and once was part of the upper seabed [9]. High concentrations of
alkali metals were also found especially in the surface moss sample and at the depth of
3.5 m in the peat. This ombrotrophic region is assumed to obtain all its nutrients through
rainfall [9], which may explain the high alkali metal concentrations in the upper layers,
from where they gradually diffuse through the peat layers eventually ending up to the
lowest gyttja and clay layers. Interestingly, the highest H′ values of the archaeal, fungal,
and bacterial communities were observed in the surface moss layer with high alkali metal
concentrations, which all are important nutrients. Heavy metals from the acid digestion
including Fe, Co, and Se were concentrated in the bottom clay layer and several statistically
significant positive correlations between archaeal and bacterial genera and these metals
were found. Especially high positive correlations were also found between radionuclides U
and Th, which are part of the natural decay series of uranium and were clearly concentrated
to the bottom clay layer.

Ni was found at 0.5–1.5 m depth in the peat samples and in the clay layer at con-
centrations of 15–34 mg kg−1 DW (Table Metals), and below the detection limit of the
assay in the other samples. Ni is a key component in a functioning methyl-coenzyme M
reductase (MCR) of methanogens [123], but no methanogenic archaea correlated with the
Ni concentrations in Lastensuo. Many plant growth-promoting bacteria have the capacity
to reduce the toxicity of Ni and other heavy metals by accumulating the metals in the cell
mass, thus allowing for better plant growth at mM concentrations of heavy metals [124].
The amount of Ni in Lastensuo did not appear to have any effect on bacterial numbers,
indicating that the concentrations found were not high enough to be toxic to the microor-
ganisms (Figure 7). Commercially available peat has successfully been used as sorbent for
the removal of Ni from aqueous solutions [125], indicating that the peat itself may sorb the
Ni and perhaps that is why there is a specific layer where the Ni appears to be enriched
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in the peat profile. Nevertheless, bacterial strains originating from Lastensuo have been
shown to accumulate Ni intracellularly as well as by sorption to cell surfaces [23].

Silver appeared to be much more influenced by the number of bacteria in the samples,
compared to Ni (Figure 7). Although the number of bacteria did not correlate positively or
negatively with the concentration of Ag, nor did any microbial taxa, the highest Ag sorption
values coincided with the highest bacterial numbers. Only Lokiarchaeia and Methanosaeta
correlated negatively with Ag+ sorption data, and they were present only in the lowest
gyttja and clay layers, where Ag+ sorption was on average only 65% of the sorption
observed in the upper peat layers. Ag was present in all bog layers evenly distributed in
low concentration (0.01–0.02 mg/kg DW), which was possibly too low to have toxic effects
on the microbial communities [126]. The Ag+ ion is a known bactericide but reports about
its efficiency against archaea is scarce. Silver nanoparticles have however shown potent
antimicrobial activity against, e.g., Haloarchaea [80] at the concentrations exceeding the
extracted Ag concentrations observed in our study (300–400 µg/mL vs. ~0.01–0.02 µg/mL).
Nevertheless, bacterial strains isolated from the Lastensuo Bog have been shown to remove
Ag from solution by yet unknown mechanisms [127]. The same study estimated that less
than 0.2% of the Ag sorption in the peat, gyttja, and clay layers is due to bacteria, whereas
in the surface moss, this proportion was 2.3%

In addition to positive correlations between Cs concentration and archaeal and bacte-
rial taxa, specific parts of the archaeal and bacterial communities also correlated positively
and significantly with Cs (Cs+) batch sorption data. However, the microorganisms cor-
relating with Cs sorption were almost exclusively detected in the gyttja and clay layers
(Figures A3 and A4), where also the highest Cs+ retention (Kd value) and Cs concentra-
tions were recorded. However, the bacterial numbers in the different bog layers did not
correlate with the concentration or retention of Cs. The accumulation of Cs on the lowest
clay layer is expected, as clays have high cation exchange capacity and the pH of the layer
is higher. This is because the surface charge is dependent on the pH and cation sorption
typically decreases as the pH decreases. Previously, we observed the deepest clay layer
behaving somewhat differently from the upper layers as the effect of pH change on Cs
sorption was less prominent than in the upper organic layers [38]. However, in the upper
organic layers, the sorption Kd values reached those of the lowest clay layer, but not until
alkaline pH was recorded [38]. In the clay layer, Cs retention maximum was found at
pH 8.9 as in the upper layers the corresponding maximum was between pH 6.7 and 9.6
depending on the layer [38]. Peat typically has a broad spectrum of pKa values, due to
various protonating groups like carboxylic groups, alcoholic, and phenolic OH groups
as well as amino groups (see, e.g., in [128–131]). For clay minerals, like illite present in
the lowest layer, pKa values from 4.2 to 9.0 have been reported (see, e.g., in [132]). On
mineral surfaces sorption takes place via two separate mechanisms namely outer-sphere
and inner-sphere complexation on which sorption occurs on hydroxyl groups or through
sorption on interlayers and frayed edge sites (FES sites) of clay minerals [133]. Sorption
takes place between charged surfaces and partially or fully hydrated ions. Clay minerals
are characterized by permanent negative charge [35], which is stabilized by exchangeable
cations adsorbed on the basal planes or interlayer spaces of these minerals. In the case
of partly or fully dehydrated Cs+ ions, inner-sphere complexes are formed directly to
the siloxane groups of clay minerals (especially illite) within the interlayer or at the FES
site [35,133]. Microorganisms are not expected to affect the formation of these inner-sphere
complexes, and typically the higher clay content increases the straight sorption of various
metals on clay mineral ion-exchange sites. Therefore, it seems most probable, that the
change in the pH and mineral content controls the sorption of Cs in this layer and at the
same time the change in the microbial community is seen because of the changes in the
layer chemical, physical and mineralogical properties, resulting in positive correlation
between bacterial and archaeal taxa and Cs concentrations.

Previously, microbiota have been shown to affect the retention of SeO3
2− in this acidic

nutrient-poor bog environment under oxic conditions and the retention mechanisms most



Soil Syst. 2021, 5, 19 19 of 31

likely include the formation of reduced Se0 [58,64]. In present study, strong correlation
between bacterial numbers and selenium retention both under oxic and anoxic condi-
tions was seen. The mechanism here is not known, but under aerobic or microaerophilic
conditions, SeO3

2− can be reduced by several bacterial strains using detoxification or
redox homoeostasis, possible reactions including, e.g., Painter-type reactions, thioredoxin
reductase system, and sulfide-mediated reduction [62] facilitating Se retention. In the
present study, the speciation of selenium was not determined, but, e.g., Pseudomonas spp.
And Burkholderia spp. Strains isolated from Lastensuo peat grown with SeO3

2− under
oxic conditions effectively remove SeO3

2− from the nutrient solutions, presumably by a
detoxification reaction and Pseudomonas sp. Has been shown to accumulate reduced Se0

inside the cell [58,64,134]. However, these bacteria were present at only very low relative
abundances of <3%, and no correlation with SeO3

2− retention under aerobic conditions
and these bacterial groups was observed. In addition, under anoxic conditions the number
of bacteria correlated with the retention of Se (Table 7, Figure 7). Under anoxic (reducing)
conditions, slow abiotic reduction (>1month) in the presence of Fe(II) is possible [66], and
in addition several bacteria may use SeO3

2− or SeO4
2− as terminal electron acceptors also

under anoxic conditions and reduce soluble SeO3
2−/SeO4

2− to Se0 (see, e.g., in [134,135]).
This occurs predominantly via microbial dissimilatory reduction with organic substrates,
such as acetate, lactate and ethanol, or hydrogen as electron donors [61]. Dissimilatory
Se reduction to Se0 one of the most important sinks for Se oxyanions under anoxic en-
vironments [136] and SeO4

2− reductases have been identified in the genomes of, e.g.,
Anaerolineaceae [137], which in present study were present mainly in the lowest gyttja layer,
with 2% abundance. However, correlation between these bacteria and selenium retention
was not seen in present study. Microbial reduction of oxyanionic selenium species (SeO3

2−

and SeO4
2−) into insoluble elemental Se0 is important especially in the organic wetland

environments affecting selenium mobility [138]. However, in addition to the microbial-
mediated processes, in suboxic and anoxic Fe(II,III) oxide- and sulfide (S2−)-containing
environments, gradual abiotic reduction of SeO3

2− to Se0 is also important [66,139].
No statistically significant correlation between microbial groups or bacterial numbers

and sorption of I in aerobic conditions was identified. However, the regression analy-
sis showed slightly higher I sorption with higher bacterial numbers and low sorption
in the clay layer (Figure 7C,D), indicating that bacterial biomass may somewhat affect
the I retention in aerobic conditions. In soil organic matter, iodine sorption has been
suggested to occur through catalytic oxidation of I− into reactive iodine species, such
as I2 and HIO, by environmental (microbial) peroxides, which after reactive iodine is
bound into organic matter (forming org-I), see, e.g., in [77]. Peatlands are considered the
most important sinks of terrestrial iodine and peatland micro- and macroalgae, fungi,
and bacteria facilitate the iodine redox cycle by I− oxidation and formation of org-I, but
also by dehalogenation of org-I, and reduction of oxidizes iodine species to I− [140], e.g.,
Anaerolineae (a genus of Anaerolinaceae) has been previously shown to reductively deiodi-
nize benzene derivates [140]. However, in present study, we observed a strong positive
correlation (Table 7) between Anaerolinaceae and anaerobic iodine retention. These bacteria
were present mainly in the gyttja layer, where interactions between organic matter and
increasing proportion of clay may occur, resulting in complex iodine geochemistry as well
as changes in the microbial populations. The lack of correlation between bacterial numbers
and iodine sorption data may result from the more important role of fungi in the iodine
cycle, which has also been suggested in previous studies, see, e.g., in [140].

Cu is known to be toxic for bacteria and fungi and the toxicity increases with decreas-
ing pH [141]. In our study, only Lokiarchaeia and the MSBL5 of the Chloroflexi showed any
effects to Cu and both correlated positively with the highest concentration of Cu in the
clay layer. However, the concentration of Cu in Lastensuo was low or similar compared
to boreal peatlands and podzols and agricultural soils [2,142]. However, Cu concentra-
tions may increase in the vicinity of SNF repositories if Cu is leached from exposed waste
canisters. Zn is another putatively toxic metal for microorganisms. Zn may reduce the
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microbial diversity in agricultural soils at levels of 400 mg kg−1 [143]. One study showed
that culturable soil bacteria may be susceptible to zinc at concentrations of 2.5 mM (approx-
imately 180 mg L−1) in their growth medium [144]. However, this is still a significantly
higher concentrations than what we found in the bog samples, which are in line with
Zn concentrations found in other boreal peatlands [2]. In Lastensuo, only Hadarchaeales
and uncultured Methanomicrobiaceae correlated with the concentration of Zn, but these
archaea were mostly found in the clay layer, where the Zn concentration also was the
highest, indicating that the clay layer itself may be a stronger driver for these archaea than
the concentration of Zn.

Our present study supports our previous assumptions [38,64] that microbial popula-
tions can contribute partly to Se and I retention in this ombrotrophic boreal environment.
The role of microbial populations in the retention behavior of Cs, Ag, and Ni appears to be
less pronounced although certain archaea may affect to Ag environmental behavior.

Finally, fungi did not correlate strongly with any physicochemical parameter or with
sorption data, although fungi were detected throughout the bog profile. Our work is one of
the few that has investigated the relative abundances of fungi present throughout the depth
profile of an oligotrophic boreal bog. Nevertheless, the importance of fungi as decomposers
increases in nutrient-poor conditions [145]. Phaeoacremonium was the most prominent fun-
gal genus in all other samples but the surface moss with an increasing relative abundance in
the deeper peat layers (Figure A2). This fungus has been shown to produce high amounts
of manganese peroxidases in anoxic lake sediment, thus promoting anoxic degradation of
lignin [146]. Although anaerobic degradation of recalcitrant carbon compounds in deep
peat environments has been shown to be low [147], anaerobic degradation of recalcitrant
organic matter to more easily utilized sugars by fungi could support a diverse prokaryotic
community in oligotrophic and anaerobic bogs [148].

5. Conclusions

The Lastensuo Bog area has high bacterial, archaeal, and fungal diversity, and espe-
cially several bacterial and archaeal groups seemed adapted to the variable concentrations
of heavy metals, alkali metals, as well as radionuclides from natural decay chains of ura-
nium (U and Th). The present data indicate that the archaeal and bacterial communities in
the deep bog layers (namely gyttja and clay) tolerate high concentrations of metals and
may concurrently contribute to the total retention of metals and radionuclides in these
layers. At the same time, it is probable that a change in chemical, mineralogical, and
physical factors (pH, redox potential, and mineral content) present in this ombrotrophic
boreal environment is affecting both the microbial population and the retention of metals.
However, more research on the toxicity of the metals on various parts of the microbial
community present in this area is still needed.
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Table A1. Pearson correlation coefficients of the Bonferroni corrected correlations between relative abundance of archaeal
genera and physicochemical parameters and metal concentrations. Correlation coefficients for pairs with p < 0.05 are shown.
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pH 0.98 *** 0.92 ** 0.85 0.98 *** 0.86
Eh −0.98

Humification
degree 0.88

Organic
matter −0.98 *** −0.96 *** −0.92 ** −0.90

Mg 0.88 0.91 * 0.89* 0.85 0.93 **
Fe 0.88 0.94 ** 0.98 *** 0.96 *** 0.92 * 0.90 *
Co 0.88 0.96 ** 0.99 *** 0.96 *** 0.93 ** 0.90 *
Cu 0.90 * 0.91 *
Zn 0.88 0.88
Se 0.88 0.93 ** 0.98 *** 0.96 *** 0.90 * 0.89 *
Cs 0.88 0.93 ** 0.98 *** 0.96 *** 0.90 * 0.89 *
Th 0.87 0.97 *** 0.99 *** 0.95 *** 0.95 *** 0.90 *
U 0.86 0.98 *** 0.98 *** 0.93 ** 0.97 *** 0.90 *

* p < 0.001, ** p < 0.0001, *** p < 0.00001.
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Table A2. Pearson correlation coefficients of the Bonferroni-corrected correlations between relative abundance of bacterial
genera and physicochemical parameters and metal concentrations. Correlation coefficients for pairs with p < 0.05 are shown.
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Acetothermiia 0.95 −1.0 *** 0.92 1.0 *** 0.99 *** 1.0 *** 1.0 *** 0.99 *** 0.97 ***
GOUTB8 −1.0 *** 0.92 1.0 *** 1.0 *** 0.99 *** 0.99 *** 1.0 *** 0.98 ***

Acidobacteriae
Subgroup 12 0.94 0.93 0.94 0.94 0.93

Thermoanaerobaculum −1.0 *** 0.92 1.0 *** 0.99 *** 1.0 *** 1.0 *** 0.99 *** 0.97 ***
Vicinamibacterales

uncultured 0.92 0.92 0.93 0.92 0.92

Bacteroidales
unclassified 0.94 0.93 0.94 0.94 0.93

Bacteroidetes
vadinHA17 −0.98 *** 0.98 *** 0.98 *** 0.98 *** 0.98 *** 0.98 *** 0.97 ***

Prolixibacteraceae
BSV13 −0.98 *** 0.98 *** 0.98 *** 0.98 *** 0.98 *** 0.97 *** 0.95 ***
BSV26 0.92

Anaerolineae
unclassified −0.98 *** 0.98 *** 0.98 *** 0.98 *** 0.98 *** 0.97 *** 0.95 *

Pelolinea −1.0 *** 0.93 1.0 *** 1.0 *** 1.0 *** 1.0 *** 0.99 *** 0.97 ***
SJA-15 −0.96 0.96 * 0.95 * 0.98 * 0.96 * 0.95 0.93

Chloroflexi
unclassified 0.91 0.92 0.91

Dehalococcoidia
unclassified 0.92 0.93 0.94 0.94

GIF3 0.98 *** 0.94 0.94 0.93 0.93 0.95 0.95 *
MSBL5 0.94 0.92 0.96 *

vadinBA26 0.94
Desulfatiglans 0.93 0.92 0.93 0.93 0.92

Smithella 0.93 0.92 0.93 0.93 0.92
Syntrophus −0.99 *** 0.92 1.0 *** 0.99 *** 0.99 *** 0.99 *** 0.98 *** 0.96 *
Firmicutes

unclassified −0.96 0.96 * 0.95 * 0.96 * 0.96 * 0.96 0.93
TSAC18 −0.96 0.96 * 0.95 * 0.96 * 0.96 * 0.95 0.93

Hydrogenedensaceae −0.99 *** 0.91 0.99 *** 0.98 *** 0.99 *** 0.99 *** 0.98 *** 0.96 *
Candidatus

Latescibacter −0.98 ** 0.98 *** 0.98 *** 0.98 *** 0.98 *** 0.97 *** 0.95

Latescibacteraceae
unclassified 0.94 −1.0 *** 0.92 1.0 *** 0.99 *** 1.0 *** 1.0 *** 0.99 *** 0.97 ***

Methylomirabilaceae
Sh765B-TzT-35 −0.97 * 0.92 0.97 *** 0.97 *** 0.96 *** 0.96 * 0.97 *** 0.97 ***

MidBa8 −1.0 *** 0.92 1.0 *** 0.99 *** 1.0 *** 1.0 *** 0.99 *** 0.97 ***
DG-20 −1.0 *** 0.92 1.0 *** 0.99 *** 1.0 *** 1.0 *** 0.99 *** 0.97 ***
MSBL9

unclassified 0.93 0.92 0.93 0.93 0.92
AKAU3564

sediment group −0.96 0.95 * 0.95 * 0.95 * 0.95 * 0.95 0.93
Planctomycetota

unclassified −0.94

Spirochaeta 0.93
Sva0485 0.93

WCHB1-41 −0.96 0.96 * 0.95 * 0.96 * 0.96 * 0.95 0.93

* p < 0.001, ** p < 0.0001, *** p < 0.00001.
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