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Abstract: Rhizobia have two major life styles, one as free-living bacteria in the soil, and the other as
bacteroids within the root/stem nodules of host legumes where they convert atmospheric nitrogen into
ammonia. In the soil, rhizobia have to cope with changing and sometimes stressful environmental
conditions, such as nitrogen limitation. In the beta-rhizobial strain Paraburkholderia phymatum STM815,
the alternative sigma factor σ54 (or RpoN) has recently been shown to control nitrogenase activity
during symbiosis with Phaseolus vulgaris. In this study, we determined P. phymatum’sσ54 regulon under
nitrogen-limited free-living conditions. Among the genes significantly downregulated in the absence
of σ54, we found a C4-dicarboxylate carrier protein (Bphy_0225), a flagellar biosynthesis cluster
(Bphy_2926-64), and one of the two type VI secretion systems (T6SS-b) present in the P. phymatum
STM815 genome (Bphy_5978-97). A defined σ54 mutant was unable to grow on C4 dicarboxylates
as sole carbon source and was less motile compared to the wild-type strain. Both defects could be
complemented by introducing rpoN in trans. Using promoter reporter gene fusions, we also confirmed
that the expression of the T6SS-b cluster is regulated by σ54. Accordingly, we show that σ54 affects
in vitro competitiveness of P. phymatum STM815 against Paraburkholderia diazotrophica.

Keywords: rhizobia; σ factor; RpoN; RNA-Sequencing; nitrogen; motility; type VI secretion
system (T6SS)

1. Introduction

Symbioses between legumes and rhizobia increase soil fertility and crop yield by means of biological
nitrogen fixation [1]. Rhizobia are soil bacteria, which adapt to different environmental stresses and
eventually nodulate the roots or the stems of compatible legume plants. In the symbiotic organ—the
nodule—bacteria live inside the host plant cells and eventually differentiate into nitrogen-fixing
bacteroids. Bacteroids convert atmospheric nitrogen (N2) into ammonia that is assimilated and used as
a nitrogen source by the plant [2,3]. To support this energetically expensive reaction (16 molecules of
ATP and 8 low potential electrons per N2 reduced), the legume provides the bacteroids with energy
in form of reduced carbon compounds. C4-dicarboxylates such as succinate, fumarate, and malate
have been shown to be the primary carbon source used by bacteroids and are oxidized to CO2 in the
tricarboxylic acid cycle [4].

Rhizobia are phylogenetically diverse and belong to the alpha-proteobacterial (alpha-rhizobia)
and the beta-proteobacterial group (beta-rhizobia). Beta-rhizobial strains such as Burkholderia and
Cupriavidus were first isolated from nodules in 2001 [5,6], and most of the legume nodulating Burkholderia
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strains were recently re-classified into the new Paraburkholderia genus [7,8]. Symbiotic Paraburkholderia
species have been mainly isolated from nodules of Mimosa plants in South America and South East
Asia [9–12], but also from South African Fynbos [13–16]. Geographical position, environment, host
plant, and coevolution with the symbiont have been shown to affect the presence and dominance
of certain rhizobial species in soil and in nodules [17,18]. Paraburkholderia phymatum STM815 is an
interesting strain since it is able to nodulate mimosoid as well as papilionoid legumes. Furthermore,
it has been shown by several groups to be highly competitive in infecting the roots of mimosoid and
papilionoid legumes [17,19–21]. A comparison of the phenotypic traits of several Paraburkholderia
strains showed that P. phymatum STM815 produces large amounts of exopolysaccharides (EPS), is very
motile, and able to outcompete other Paraburkholderia strains in vitro [20]. Our group has also shown
that P. phymatum STM815 harbors two type VI secretion systems (T6SS) in its genome, which contribute
to the competitive ability of this strain in vitro and in infecting plants [22]. These characteristics partly
explain the success of this strain in competing with other rhizobia in the soil. However, the regulatory
networks underlying the high competitiveness of P. phymatum STM815 in infecting several legumes are
still unknown.

The σ factor σ54 is structurally distinct from the σ70-type sigma factors, recognizes different
promoter elements located at position −24 and −12 upstream of the transcription start site [23],
and requires an enhancer-binding protein (EBP) to activate transcription of target genes. Usually
bacteria encode multiple different EBPs in their genome, with each of them controlling different traits
required to adapt to specific ecological niches [24]. We recently showed that the alternative σ factor σ54

is a key regulator of P. phymatum STM815 symbiotic nitrogen fixation inside root nodules of Phaseolus
vulgaris (common bean) [25]. In fact, a σ54 mutant did not form an efficient symbiosis with P. vulgaris
and was impaired in reducing N2 to ammonium. By using RNA-Seq and metabolomics on bean root
nodules formed by P. phymatum STM815 wild type and a σ54 mutant [26], we found that in addition to
the symbiotic genes, σ54 also controls several genes potentially important for P. phymatum STM815 to
persist in soil.

In this study, we analyzed the regulon of σ54 (Bphy_0326) by growing the cells under free-living
conditions in a nitrogen-limited medium. Among the top genes activated by σ54, we found dctA, which
codes for a C4 dicarboxylate transporter, a flagellar gene cluster, and one of the two T6SS present in
the genome of P. phymatum STM815 (T6SS-b). Indeed, we confirmed that the σ54 mutant was not able
to grow on C4 dicarboxylates, was impaired in swimming motility, and that both these defects were
complemented by providing rpoN in trans. Moreover, the mutation in rpoN affected the expression of the
T6SS-b gene cluster and rendered P. phymatum STM815 slightly less competitive against Paraburkholderia
diazotrophica [27], suggesting that σ54 is involved in the control of interbacterial competition.

2. Materials and Methods

2.1. Bacterial Strains, Media, and Cultivation

The strains, plasmids, and primers employed in this study are listed in Table S1. Escherichia coli
cells were routinely grown in Luria-Bertani liquid medium (LB), whereas P. phymatum STM815 strains
were cultivated in LB salt-free liquid medium [20].

The bacterial cultures used for RNA-Seq were prepared by growing P. phymatum cells in a
modified AB minimal medium [28], with 10 mM sodium citrate (Sigma-Aldrich) as carbon source.
The nitrogen source in AB minimal medium (NH4)2SO4 was replaced with either 30 mM NH4Cl
(Sigma-Aldrich, to obtain nitrogen-replete conditions) or 0.5 mM NH4Cl (nitrogen-limited condition).
Na2SO4 (Sigma-Aldrich) was added to AB minimal medium to obtain a final concentration of 15 mM
of sulfate. Bacterial cultures were grown in 250 mL Erlenmeyer flasks containing 100 mL medium and
incubated on a shaker (220 rpm) at 30 ◦C. P. phymatum STM815 wild-type and σ54 mutant cells were
grown to exponential phase (OD600 = 0.4–0.5) in minimal medium under nitrogen-replete conditions,
then washed twice in AB minimal medium without a nitrogen source and incubated further aerobically
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for one hour under nitrogen-limited conditions. For each strain, three independent biological replicates
were prepared and processed for RNA-Seq analysis.

To test the induction of the promoter fusions, the bacteria were grown at 30 ◦C in AB
medium containing 10 mM glucose as C-source (ABG) in a 96-well plate (Falcon, Corning, USA) to
exponential phase. The optical density and GFP fluorescence (excitation/emission wavelength equal
to 488 nm/520 nm) were measured using a TECAN plate reader (TECAN Infinite M200 PRO, Tecan
Trading AG, Switzerland).

The growth of the following P. phymatum STM815 strains—wild type (wt), σ54 mutant, and σ54

complemented—was tested in AB minimal medium with 15 mM of three different C4-carbon sources:
Fumaric acid (Sigma-Aldrich, ABF), malic acid (Sigma-Aldrich, ABM), and succinic acid (Sigma-Aldrich,
ABS). For each strain and C-source tested, the growth of three independent biological replicates
was measured.

2.2. Promoter Fusion Construction

To construct promoter fusions, the two promoters of interest were introduced into the vector
pPROBE-NT (Table S1) [29]. To construct pPROBE-T6SS-b (p5978), the promotor of T6SS-b was amplified
from P. phymatum STM815 genomic DNA (gDNA) with the primers Bphy_5978_Promotor_F_HindIII
and Bphy_5978_Promotor_R_BamH1 (Table S1). The 657 bp long PCR product was restricted with the
enzymes HindIII and BamHI and cloned into pPROBE-NT. The correct sequence was confirmed by
sequencing at Microsynth (Balgach, Switzerland) using pCO13-R3 primer [30]. The plasmid was then
conjugated into P. phymatum STM815 wild type and σ54 mutant, and the transconjugants were selected
on ABS plates. To obtain the second promoter fusion, the promotor region of the T6SS-3 cluster (p6115)
was amplified using primers p6115_SalI_For and p6115_EcoRI_rev (Table S1). The obtained PCR
fragment (480 bp) was digested and cloned into pPROBE-NT between the SalI and EcoRI sites. Once
the sequence of the construct had been confirmed through sequencing at Microsynth using pCO13-R3
primer [30], the plasmid was mobilized into P. phymatum STM815 wild type and σ54 mutant.

2.3. RNA-Sequencing and Data Processing

Total RNA was isolated from flash-frozen, pelleted cells of the wild type and the σ54 mutant using
a modified hot acid phenol protocol [31]. Afterwards, gDNA was digested by DNase treatment and
the quality of the total RNA as well as the complete removal of gDNA were checked by PCR [25,26].
The cDNA synthesis was initiated with 150 ng of total RNA and the library was prepared and purified
with the Ovation® Complete Prokaryotic RNA-Seq DR Multiplex Systems (NuGEN, San Carlos, CA,
USA) [25,26]. Next, the quality and quantity of the cDNA libraries were analyzed with a TapeStation
System (Agilent Technologies, Santa Clara, CA, USA). The prepared cDNA libraries were single-end
sequenced with a HiSeq2500 instrument (Illumina, San Diego, CA, USA) at the Functional Genomic
Center Zurich (FGCZ). Using the CLC Genomics Workbench v7.0 (QIAGEN CLC bio, Aarhus, Denmark)
program, the obtained reads were trimmed to 70 bp and mapped to the P. phymatum STM815 genome,
allowing up to two mismatches per read [32]. Afterwards the unique reads were analyzed statistically
with the DESeq R-package (version 1.30.0) [33]. The top 200 significantly RpoN-regulated genes with
a log2(FC) ≥ 1 and ≤ −1 were considered and then ranked by ascending p-value. To get additional
information, the top 200 differentially regulated genes were assigned to functional categories (EggNOG
v3.0) [34]. Table S2 lists all P. phymatum STM815 genes and their expression profile in the wild type and
the σ54 mutant. The RNA-Seq raw and processed data files of the P. phymatum STM815 wild-type and
σ54 mutant strains are available with the GSE156048 accession number.

2.4. Phenotypic Analysis

Plates for the swimming motility test were prepared by using LB salt-free medium containing
1% tryptone (Difco), 0.5% yeast extract (Difco), and 0.2% agar. The bacterial cells were washed twice
with 10 mM MgSO4 and normalized to an OD600 of 0.5. The plates were inoculated with the bacterial
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suspension using a 20 µL pipette tip. Subsequently, the plates were incubated at 30 ◦C inside a box
containing wet paper towels. The diameter of the swimming zone was measured after 40 h incubation.

To perform competition experiments on plates, a target strain and an attacker strain were chosen,
plated on salt-free LB without antibiotics and incubated overnight at 30 ◦C. The strains were washed
twice with 10 mM MgSO4 and the OD600 was adjusted (target strain OD600 = 0.2, attacker strain OD600

= 2.0). The strains were mixed in a 1:1 volume ratio. Twenty µl aliquots of the mixture were put on
cellulose nitrate membrane filters (GE Healthcare Life Sciences, Marlborough, MA, USA) on ABG
plates, and incubated at 30 ◦C. After 24 h, the cells on the filters were resuspended in one ml 10 mM
MgSO4. The colony forming units (CFU) were determined on salt-free LB plates, both with and without
antibiotics, to recover the attacker and target strains, respectively.

2.5. Statistical Analysis

For category distribution, the percentages of upregulated and downregulated genes in each
category were calculated as described previously [25]. One-way ANOVA (performed with Prism
7.0), in which the mean of each strain was compared to the mean of the wild type, was used to
analyze the motility data. The one unpaired t-test corrected for multiple comparisons using the
Holm–Sidak method (Prism 7.0) was employed to statistically analyze the results of the competition on
plate. The induction of the promoter fusions was tested with two-way ANOVA corrected for multiple
comparisons using the Sidak test (Prism 7.0).

3. Results

3.1. The P. phymatum STM815 σ54 Regulon in Free-Living Nitrogen-Limiting Conditions

RNA-Seq was employed to determine the P. phymatum STM815 σ54 regulon under nitrogen-limited
free-living conditions. For each strain, three independent biological replicates were prepared, processed,
and analyzed as described previously [25]. The unique read counts obtained per sample ranged from
6.9 to 13.2 million reads.

After a DESeq analysis comparing gene expression in the P. phymatum STM815 σ54 mutant versus
wild type, the top 200 differentially regulated genes (DESeq analysis p-value < 2.2 × 10−8, with log2

[FC] ≥ 1 and ≤ −1) were identified and classified in eggNOG functional categories [34] (Figure 1).
Among these 200 top-regulated genes, 81 showed increased expression, while 119 were downregulated
in the σ54 mutant (and were therefore positively regulated by σ54). While the two categories “signal
transduction mechanisms” and “cell motility” were over-represented among the downregulated genes
(Table 1), one category (“cell wall, membrane, envelope biogenesis”) was found to be over-represented
in the upregulated genes.

In the category “cell motility”, we found several genes involved in flagella biosynthesis (in the
Bphy_2926-64 cluster) and a gene involved in chemotaxis (Bphy_5592). In the category “signal
transduction mechanisms”, several transcriptional regulatory genes (e.g., Bphy_3958, Bphy_5314,
and Bphy_5669) and genes coding for histidine kinases (e.g., Bphy_0226, Bphy_3957, Bphy_3963,
Bphy_4749, Bphy_5668, and Bphy_5975) were identified. Among these top differentially regulated
genes, six might be part of a two-component regulatory system (TCRS): Bphy_3957-58, Bphy_3962-63,
and Bphy_5668-69. Upstream of Bphy_5668-69, we found Bphy_5667, which codes for a citrate carrier
and has an RpoN-binding sequence in the promoter region (Figure 2A). Moreover, downstream of
Bphy_5668-69 we found a gene coding for a diguanylate phosphodiesterase potentially involved
in c-di-GMP metabolism (Bphy_5670, Figure 2A). The histidine kinase Bphy_0226 (dctB) is located
downstream of a gene coding for a C4-dicarboxylate transporter (dctA, Bphy_0225), which was also
on the list of top-regulated genes and contained an RpoN box in the promoter region (Figure 2B).
In several bacteria, the DctA transporter has been shown to be involved in the assimilation of C4

dicarboxylates, i.e., fumarate, malate, and succinate [4,35,36], which are important energy sources for
symbiotic rhizobia [37]. Interestingly, most of the genes (13 of 20) belonging to one of the two T6SS
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clusters present in P. phymatum STM815 (Bphy_5978-97, T6SS-b, Figure 2C) grouped in the category
“function unknown” were downregulated in the σ54 mutant grown under nitrogen starvation. By
contrast, the expression of the second T6SS cluster (Bphy_6107-6129, T6SS-3) was not dependent on
σ54. T6SSs are contact-dependent secretion systems that have been shown to be important for the
transport of effectors to other prokaryotic or eukaryotic cells [38]. Interestingly, several genes located
in a cluster coding for components of a type IV secretion system (T4SS, Bphy_7524-37) also showed
significant downregulation in the σ54 mutant. Similar T4SSs are usually involved in conjugation [39].
Nitrogen 2020, 1 85 
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Figure 1. Functional categories of the top 200 differentially expressed genes of the P. phymatum STM815
wild type versus σ54 mutant (gray, downregulated genes, black upregulated genes) under nitrogen
starvation according to eggNOG classification [34]. The asterisks (*) indicate statistical significance for
over-represented genes in a particular category (p-value < 0.02).

In the category “carbohydrate transport and metabolism”, we found several genes whose
expression was downregulated in the σ54 mutant: Bphy_2145, coding for a trehalose-6-phosphate
synthase (otsA), as well as two genes involved in glycogen metabolism (Bphy_5335 and Bphy_5336,
glgX and glgA, Figure 2D). All three genes display an RpoN-binding sequence in their promoter
region (Table 1). In the operon Bphy_3959-61, which encodes a potential nitrate/sulfonate/bicarbonate
transporter, we found the most highly downregulated genes (log2(FC) = −7.1, −7.4, −6.0, for Bphy_3959
to Bphy_3961, respectively). Additionally, the expression of three genes in a cluster potentially coding
for a polysaccharide (Bphy_3730-1 and Bphy_3733) was downregulated in the σ54 mutant compared to
the wild type.

As previously mentioned, among the 81 genes upregulated in the mutant, the category “cell
wall/membrane/envelope biogenesis” was over-represented, with several genes coding for porins
(Bphy_0154, Bphy_1082 and Bphy_2684), as well as a cluster coding for the polysaccharide cepacian
(Bphy_1056-77) [40]. Out of the 200 genes significantly regulated by RpoN, ten were located on the
symbiotic plasmid including the T4SS and an aminotransferase class-III (Bphy_7651), which were all
positively regulated by σ54.

By applying a less stringent p-value cut-off than that selected for the top 200 differentially regulated
genes (DESeq analysis p-value ≤ 2 × 10−5), additional genes associated with nitrogen metabolism were
found to be positively regulated by σ54, such as the TCRS ntrBC (Bphy_1479-80), urtB (Bphy_2252)
coding for a urea ABC transporter permease and the glnB1-amtB operon, coding for the nitrogen
regulatory protein P-II and the ammonium transporter (Bphy_0256-57).
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Table 1. List of 119 genes positively controlled by σ54. Over-represented categories are marked with
and asterisk (Fischer test, p-value < 0.02). Genes harboring a putative RpoN-box in their promoter
region are shown in bold.

Locus ID 1 Description 1 Gene Name Log2FC (σ54 mt vs. wt) 2

Amino Acid Transport and Metabolism

Bphy_0112 extracellular ligand-binding receptor −1.1
Bphy_0588 extracellular ligand-binding receptor −1.2
Bphy_0589 inner-membrane translocator −1.8
Bphy_0590 inner-membrane translocator −1.5
Bphy_0591 ABC transporter-like protein −1.4
Bphy_2572 polar amino acid ABC transporter inner membrane subunit −1.2
Bphy_2573 extracellular solute-binding protein −1.3
Bphy_3017 extracellular ligand-binding receptor −1.2
Bphy_3043 extracellular ligand-binding receptor −1.4
Bphy_3046 inner-membrane translocator −1.6
Bphy_3047 extracellular ligand-binding receptor −1.2
Bphy_3780 cationic amino acid ABC transporter −1.4

Bphy_5470 5-methyltetrahydropteroyltriglutamate-homocysteine
methyltransferase −1.9

Bphy_5613 methionine gamma-lyase −2.1

Carbohydrate Transport and Metabolism

Bphy_1237 periplasmic binding protein/LacI transcriptional regulator −1.2
Bphy_2145 trehalose-6-phosphate synthase otsA −2.4
Bphy_2615 monosaccharide-transporting ATPase −1.1
Bphy_5335 glycogen debranching enzyme glgX −2.3
Bphy_5336 glycogen synthase glgA −2.6
Bphy_5372 extracellular solute-binding protein −1.3

Cell Motility

Bphy_2938 flagellar motor switch protein FliM fliM −3.2
Bphy_2939 flagellar motor switch protein FliN fliN −3.6
Bphy_2956 flagellar rod assembly protein/muramidase FlgJ flgJ −2.9
Bphy_2962 flagellar biosynthesis regulator FlhF flhF −4.1
Bphy_5592 methyl-accepting chemotaxis sensory transducer −2.0

Cell Wall/Membrane/Envelope Biogenesis

Bphy_0254 Porin −1.1
Bphy_1082 Porin −1.6
Bphy_2167 OmpC family outer membrane porin −1.2
Bphy_2684 Porin −2.2
Bphy_3730 glycosyl transferase family protein −1.7
Bphy_3733 exopolysaccharide tyrosine-protein kinase −2.0
Bphy_5991 aspartate racemase −1.5

Coenzyme Transport and Metabolism

Bphy_3573 putative aminotransferase −1.4
Bphy_7651 aminotransferase class-III −1.3

Energy Production and Conversion

Bphy_0010 aldehyde dehydrogenase −2.3
Bphy_0225 C4-dicarboxylate transporter dctA −4.7
Bphy_1368 isocitrate lyase −1.4
Bphy_3971 cytochrome o ubiquinol oxidase subunit IV −1.4
Bphy_4774 oxidoreductase alpha (molybdopterin) subunit −1.1
Bphy_5667 citrate carrier protein −7.1
Bphy_5990 sodium:dicarboxylate symporter −1.7
Bphy_5992 sodium:dicarboxylate symporter −1.2
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Table 1. Cont.

Locus ID 1 Description 1 Gene Name Log2FC (σ54 mt vs. wt) 2

Function Unknown

Bphy_0467 hypothetical protein −1.1
Bphy_0675 hypothetical protein −1.4
Bphy_0848 CsbD family protein −1.3
Bphy_0980 Ku protein −1.4
Bphy_1016 hypothetical protein −1.3
Bphy_1217 hypothetical protein −1.0
Bphy_2791 hypothetical protein −1.2
Bphy_2880 hypothetical protein −1.8
Bphy_3671 hypothetical protein −1.7
Bphy_3731 hypothetical protein −1.7
Bphy_3807 hypothetical protein −2.5
Bphy_3844 hypothetical protein −3.6
Bphy_3917 hypothetical protein −1.4
Bphy_4035 hypothetical protein −1.5
Bphy_4046 MbtH domain-containing protein −2.3
Bphy_4787 hypothetical protein −3.1
Bphy_5272 hypothetical protein −1.6
Bphy_5337 putative lipoprotein −3.7
Bphy_5431 hypothetical protein −4.9
Bphy_5573 hypothetical protein −1.5
Bphy_5699 hypothetical protein −2.9
Bphy_5724 hypothetical protein −2.5
Bphy_5976 hypothetical protein −1.3
Bphy_5977 hypothetical protein −2.3
Bphy_5978 type VI secretion protein −2.1
Bphy_5979 EvpB family type VI secretion protein −2.1
Bphy_5980 hypothetical protein −2.2
Bphy_5981 type VI secretion system lysozyme-related protein −2.0
Bphy_5982 type VI secretion protein −1.9
Bphy_5983 type VI secretion protein −1.5
Bphy_5985 type VI secretion system Vgr family protein −1.4
Bphy_5996 IcmF-like protein −1.0
Bphy_5998 hypothetical protein −1.1
Bphy_7681 hypothetical protein −1.3
Bphy_7682 hypothetical protein −1.5

General Function Prediction Only

Bphy_5298 PfpI family intracellular peptidase −2.7
Bphy_5303 transport-associated −5.2
Bphy_5721 amidohydrolase 3 −2.1

Inorganic Ion Transport and Metabolism

Bphy_3175 NMT1/THI5-like domain-containing protein −1.8

Bphy_3959 nitrate/sulfonate/bicarbonate ABC transporter periplasmic
ligand-binding protein −7.2

Bphy_3960 ABC transporter related −7.4

Bphy_3961 binding-protein-dependent transport systems inner
membrane component −6.0

Bphy_4041 periplasmic binding protein −1.8

Intracellular Trafficking, Secretion and Vesicular Transport

Bphy_7526 P-type DNA transfer ATPase VirB11 −1.3
Bphy_7530 VirB8 family protein −1.5

Lipid transport and metabolism

Bphy_0466 GDSL family lipase −1.9

Post-translational Modification, Protein Turnover and Chaperones

Bphy_2992 TPR repeat-containing protein −1.3
Bphy_5984 type VI secretion ATPase −1.4
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Table 1. Cont.

Locus ID 1 Description 1 Gene Name Log2FC (σ54 mt vs. wt) 2

Secondary Metabolites Biosynthesis, Transport and Catabolism

Bphy_0174 hypothetical protein −1.1
Bphy_4036 lysine/ornithine N-monooxygenase −1.9
Bphy_4038 amino acid adenylation domain-containing protein −2.2
Bphy_5720 isochorismatase hydrolase −2.4

Signal Transduction Mechanisms

Bphy_0226 integral membrane sensor signal transduction
histidine kinase −2.4

Bphy_3957 histidine kinase −1.8
Bphy_3958 two component transcriptional regulator −2.3
Bphy_3963 heavy metal sensor signal transduction histidine kinase −1.2
Bphy_4749 PAS/PAC sensor hybrid histidine kinase −1.2
Bphy_5314 sigma-54 dependent transcriptional regulator −1.6
Bphy_5338 response regulator receiver protein −3.5

Bphy_5668 integral membrane sensor signal transduction
histidine kinase −5.8

Bphy_5669 two component, sigma54 specific, Fis family
transcriptional regulator

−4.9

Bphy_5670 diguanylate phosphodiesterase −3.5
Bphy_5974 non-specific serine/threonine protein kinase −2.6
Bphy_5975 histidine kinase −1.7
Bphy_5989 extracellular solute-binding protein −1.4
Bphy_6398 CheB methylestease −2.6

Transcription

Bphy_2946 anti-sigma28 factor FlgM flgM −3.4

Bphy_3962 two component heavy metal response
transcriptional regulator −1.5

Bphy_4638 transcriptional activator FlhC flhC −2.3
Bphy_5304 RNA polymerase factor sigma-54 −2.9
Bphy_5333 response regulator receiver protein −3.7
Bphy_5662 MarR family transcriptional regulator −1.3

Bphy_7189 Fis family GAF modulated sigma54 specific
transcriptional regulator

−1.1

Translation, Ribosomal Structure and Biogenesis

Bphy_0314 50S ribosomal protein L25/general stress protein Ctc −1.0

Not Assigned to a Functional Category

Bphy_1514 putative lipoprotein −3.3
Bphy_1768 PRC-barrel domain-containing protein −1.6
Bphy_5614 phosphoesterase PA-phosphatase related −3.3
1 Locus identifier and description were extracted from the GenBank files (NC_010622.1, NC_010623.1, NC_010625.1,
NC_010627.1); 2 Log2 of the fold change (FC) in expression of σ54 mutant (σ54 mt) versus the wild type (wt) in
free-living conditions under nitrogen limitation; ABC, ATP-binding cassette; ATP, Adenosine tri-phosphate.

3.2. Phenotypic Characterization of the σ54 Mutant

3.2.1. Role of σ54 for Assimilation of C4 Dicarboxylates

As mentioned above, one of the genes significantly downregulated under nitrogen-limited
conditions in our transcriptomic analysis was dctA (Bphy_0225), which codes for a C4 dicarboxylate
transporter. DctA is located upstream of a gene cluster encoding the sensor kinase DctB and the
response regulator DctD, which belongs to the σ54-interacting protein family. While dctB expression
was downregulated in absence of σ54, dctD expression did not change, suggesting that dctD is in
a separate transcriptional unit (Figure 2B). In the promoter region of dctA, an RpoN-binding box
was identified.
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validity of our transcriptomic analysis and suggested that σ54 is involved in the assimilation of C4 
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Figure 2. Four P. phymatum STM815 gene clusters showing significant downregulation in a σ54 mutant
compared to the wild type: (A) Citrate carrier protein and associated two-component regulatory system
(TCRS), (B) C4 dicarboxylate transporter T6SS-b, (C) T6SS-b, and (D) glycogen metabolism. Genes
containing an RpoN box in their promoter region are indicated in bold. The top 200 regulated genes are
colored gray. The log2 of the fold change has been indicated below the genes in the cluster of interest.

A similar genomic constellation to dctA-dctB-dctD is found for dicarboxylate transport systems
in several bacteria, however, dctB and dctD are usually transcribed divergently compared to dctA [4].
To verify that expression of the DctA transporter gene was regulated by σ54, we examined the ability
of the wild-type, the σ54 mutant, and the complemented σ54 strains to grow in minimal medium in
the presence of C4-carbon sources. The growth of these P. phymatum STM815 strains was tested in
defined buffered AB minimal medium supplemented with fumaric acid, malic acid, and succinic acid.
We found that the σ54 mutant strain was impaired in the utilization of all tested C4 organic acids and
that this defect could be restored in the σ54 complemented strain (Table 2). The results confirmed the
validity of our transcriptomic analysis and suggested that σ54 is involved in the assimilation of C4

compounds in P. phymatum STM815.

Table 2. Utilization of different C4 sources by P. phymatum STM815 wild-type (wt), σ54 mutant (σ54 mt),
and σ54 complemented (σ54 comp) strains 1.

Carbon Source
Utilization of Carbon

wt σ54 mt σ54 comp

Fumaric acid + – +
Malic acid + – +

Succinic acid + – +

1 Growth was assessed in three independent replicates by measuring the optical density at 600 nm after incubation
in AB minimal medium supplemented with 15 mM of different carbon sources for 30 h at 30 ◦C and 220 rpm. The “–”
sign corresponds to OD600 ≤ 0.08.
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3.2.2. σ54 Positively Controls Swimming Motility

In the list of top genes positively regulated by σ54 at the transcript level (Table 1), the category
“cell motility” was over-represented. The expression of Bphy_2938-39 (fliMN), Bphy_2956 (flgJ),
and Bphy_2962 (flhF), all of which encode flagellar biosynthesis proteins, was significantly
downregulated in a σ54 mutant (Table 1). Since flagella are used for motility, the swimming ability of
P. phymatum STM815 wild type, the σ54 mutant, and the complemented strain was tested on salt-free
LB plates, and the diameter of the swimming cells was measured after 40 h of incubation at 30 ◦C.
In agreement with our RNA-Seq data, the σ54 mutant was 40% less motile, and the complemented
strain showed increased motility relative to the wild-type strain (Figure 3).
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Our RNA-Seq data showed that the expression of one P. phymatum STM815 cluster coding for a 
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conditions (Figure 2C). Both P. phymatum STM815 T6SS systems were previously shown to be 
important for competition with other related Paraburkholderia strains such as P. diazotrophica [22]. In 
order to validate the RNA-Seq data, the promoters of Bphy_5978 (T6SS-b cluster) or Bphy_6115 
(T6SS-3 cluster) were fused with gfp, and expression was measured in the P. phymatum STM815 wild-
type and the σ54 mutant background. In accordance with the transcriptome data, only the expression 
of the T6SS-b cluster (p5978), and not of the T6SS-3 cluster (p6115), was decreased in a P. phymatum 
STM815 σ54 mutant compared to the wild-type strain (Figure 4). 

Figure 3. Swimming motility of P. phymatum STM815 wild-type (wt), σ54 mutant strain (σ54 mt) and
σ54 mutant complemented strain (σ54 comp) on salt-free Luria-Bertani LB plates. The plates were
incubated at 30 ◦C and the diameter measured after 40 h. The experiment was performed in triplicates,
and the obtained results were analyzed using one-way ANOVA (**, p-value ≤ 0.01). The standard
deviation is shown.

3.2.3. The Presence of σ54 Influences Interbacterial Competition

Our RNA-Seq data showed that the expression of one P. phymatum STM815 cluster coding for a
T6SS (Bphy_5978-97, T6SS-b cluster) was dependent on σ54 under nitrogen-limiting growth conditions
(Figure 2C). Both P. phymatum STM815 T6SS systems were previously shown to be important for
competition with other related Paraburkholderia strains such as P. diazotrophica [22]. In order to validate
the RNA-Seq data, the promoters of Bphy_5978 (T6SS-b cluster) or Bphy_6115 (T6SS-3 cluster) were
fused with gfp, and expression was measured in the P. phymatum STM815 wild-type and the σ54 mutant
background. In accordance with the transcriptome data, only the expression of the T6SS-b cluster
(p5978), and not of the T6SS-3 cluster (p6115), was decreased in a P. phymatum STM815 σ54 mutant
compared to the wild-type strain (Figure 4).
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Figure 4. Expression of the T6SS-b cluster (p5978) and the T6SS-3 cluster (p6115) in P. phymatum 
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promoter (measured at a wavelength of 488 nm) normalized by the OD600. Three independent 
biological replicates were performed. The statistical analysis was performed using two-way ANOVA 
corrected with Sidak’s multiple comparisons test. ****, p < 0.0001. 

We next tested the ability of the P. phymatum STM815 wild-type, the σ54 mutant, and the 
complemented strain to compete against P. diazotrophica for 24 h on ABG minimal medium (Figure 
5). The σ54 mutant turned out to be slightly, but significantly, less competitive as compared to the P. 
phymatum STM815 wild type, indicating a role for this alternative sigma factor in controlling 
interbacterial competition. In line with this observation, a σ54 complemented strain, which expressed 
rpoN from the the lac promoter on the pBBR1MCS plasmid, out-competed P. diazotrophica more 
effectively than the wild-type strain. 
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complemented (σ54 comp) strains using P. diazotrophica as target. The assay was performed on ABG 
plates for 24 h at 30 °C. The histogram shows the mean colony forming units (CFU) per ml of the 
recovered P. diazotrophica strain (target). Three independent biological replicates were carried out, 
and error bars indicate the standard deviation. The results were analyzed using an unpaired t-test 
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4. Discussion 

The alternative sigma factor σ54 was originally discovered in Salmonella as the sigma factor 
required for the synthesis of glutamine synthetase [41]. Subsequently, σ54 was identified in a wide 
range of Gram-negative and Gram-positive bacteria, and found to play a general role in the control 
of nitrogen metabolism and to affect various other cellular functions such as motility, dicarboxylate 
transport, degradation of xenobiotics, and virulence in plant and human pathogens [42–48]. 

Figure 4. Expression of the T6SS-b cluster (p5978) and the T6SS-3 cluster (p6115) in P. phymatum
STM815 wild-type (wt) and σ54 mutant (σ54 mt) strains. The histograms show gfp activity from the
promoter (measured at a wavelength of 488 nm) normalized by the OD600. Three independent biological
replicates were performed. The statistical analysis was performed using two-way ANOVA corrected
with Sidak’s multiple comparisons test. ****, p < 0.0001.

We next tested the ability of the P. phymatum STM815 wild-type, the σ54 mutant, and the
complemented strain to compete against P. diazotrophica for 24 h on ABG minimal medium (Figure 5).
The σ54 mutant turned out to be slightly, but significantly, less competitive as compared to the
P. phymatum STM815 wild type, indicating a role for this alternative sigma factor in controlling
interbacterial competition. In line with this observation, a σ54 complemented strain, which expressed
rpoN from the the lac promoter on the pBBR1MCS plasmid, out-competed P. diazotrophica more
effectively than the wild-type strain.
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plates for 24 h at 30 ◦C. The histogram shows the mean colony forming units (CFU) per ml of the
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4. Discussion

The alternative sigma factor σ54 was originally discovered in Salmonella as the sigma factor
required for the synthesis of glutamine synthetase [41]. Subsequently, σ54 was identified in a wide
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range of Gram-negative and Gram-positive bacteria, and found to play a general role in the control
of nitrogen metabolism and to affect various other cellular functions such as motility, dicarboxylate
transport, degradation of xenobiotics, and virulence in plant and human pathogens [42–48].

In the rhizobia, including P. phymatum STM815, σ54 is a master regulator during symbiosis since it
controls the expression of the genes encoding nitrogenase, i.e., the enzyme that converts N2 into a form
that can be readily assimilated by the plant [49,50].

P. phymatum STM815 is a beta-rhizobium that previously belonged to the genus Burkholderia, which
comprises versatile bacteria able to adapt and colonize different environmental niches. Our group
has shown that in the closely related opportunistic pathogen Burkholderia cenocepacia H111, σ54 is an
important regulator of several phenotypic traits, such as the utilization of nitrogen sources, motility,
EPS and biofilm formation, biosynthesis of poly-hydroxybutyrate (PHB), and virulence towards
Caenorhabditis elegans [48]. To control biofilm formation in H111, σ54 interacts with the EBP BerB, which
binds c-di-GMP and thereby regulates expression of the exopolysaccharide Bep [51].

We report here that σ54 also plays an important role in P. phymatum STM815 grown under
free-living conditions, where it regulates motility and the expression of T6SS-b, and controls the
uptake of tricarbocylic acid cycle TCA cycle intermediates such as succinate, fumarate, and malate
(Figure 6). Depending on the presence or absence of oxygen in the environment, dicarboxylates are
taken up by bacteria using transporters of different protein families. The dicarboxylate transporter
DctA, which belongs to the dicarboxylate amino acid-cation symporter (DAACS) family, has been
shown to facilitate dicarboxylate uptake under aerobic conditions in several bacteria, including E. coli
and Rhizobium leguminosarum [4,52,53]. We demonstrate here that the P. phymatum STM815 σ54 mutant
is unable to take up succinate, fumarate, and malate under aerobic, free-living conditions, and that
the expression of dctA (Bphy_0225), which is located upstream of the two component regulatory
system genes dctBD, is activated by σ54. DctB is a sensor kinase located in the membrane, which
is autophosphorylated in the presence of C4 dicarboxylates and transfers a phosphate group to its
cognate response regulator DctD. DctD is a σ54-dependent EBP that activates transcription of target
genes including dctA [35]. DctA has been shown to be essential for symbiotic nitrogen fixation in
Sinorhizobium meliloti and R. leguminosarum [54–56]. We are currently evaluating whether dctA is the
main dicarboxylate transporter in P. phymatum STM815 and its role during symbiosis. Interestingly,
the expression of the B. cenocepacia H111 dctA ortholog (I35_RS14715) is not regulated by σ54, suggesting
that C4 uptake may not be dependent on this alternative sigma factor in opportunistic pathogens of
the genus Burkholderia.

Among the most highly downregulated P. phymatum STM815 genes (Table 1), we found
Bphy_3959-61, which encodes a potential nitrate/sulfonate/bicarbonate ABC transporter. Out of
the five genes annotated as citrate transporter in the P. phymatum STM815 genome (Bphy_0810,
Bphy_3035, Bphy_4278, Bphy_5667, and Bphy_5880), only Bphy_5667 was significantly regulated
by σ54 (Figure 2A), suggesting that this transporter plays a key role in importing citrate under
free-living conditions.

Several genes potentially involved in glycogen and trehalose metabolism were found among those
that were statistically most significantly regulated by σ54. In fact, the expression of genes encoding a
glycogen synthase (Bphy_5336, glgA) (Figure 2D), a glycogen debranching enzyme (Bphy_5335, glgX)
which degrades glycogen, and a trehalose-6-phosphate synthase (Bphy_2145, otsA) was activated by
σ54 and RpoN-binding motifs were found in the promoter regions of these genes (Table 2).

Glycogen is a soluble polysaccharide composed of glucose in an α-1,4-linked linear arrangement
with α-1,6-branches that serves as a storage molecule in many organisms, including eukaryotes and
prokaryotes. During starvation periods, glycogen provides a source of stored energy and carbon.
The non-reducing disaccharide trehalose (composed of two molecules of α –D-glucose) also acts as an
energy reserve compound as well as an osmoprotectant. In Bradyrhizobium diazoefficiens, trehalose is
produced to allow survival during desiccation, oxidative stress, and during nodule senescence [57–62].
The precursor of trehalose, trehalose 6-phosphate, has been proposed to be a signal for plant growth
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and stress tolerance in Rhizobium etli [63]. In plants, trehalose- 6-phosphate is an important signal
metabolite that coordinates carbon and nitrogen metabolism [64–66]. The three genes (glgA, glgX and
otsA) are regulated by σ54 not only in free-living conditions, but also during symbiotic growth in root
nodules [26]. Additionally, the gene encoding a trehalose synthase (Bphy_7407) was regulated by σ54

during symbiosis, but not under free-living conditions. To the best of our knowledge, the regulation of
glycogen and trehalose synthesis via σ54 has not been reported previously. Trehalose biosynthesis was
previously shown to be regulated by sigma factor σ38 (RpoS) in E. coli [67] and by the extra-cytoplasmic
function (ECF) sigma factor RpoE2 of S. meliloti [68]. Interestingly and in contrast to H111, the synthesis
of the storage compound PHB is not controlled by σ54 in P. phymatum STM815.

To date, not much is known about the regulation of T6SS expression in rhizobia. In this study, we
show that σ54 is involved in the regulation of one of the two P. phymatum STM815 T6SS gene clusters
(Figures 2 and 4), and that a σ54 mutant strain is slightly less competitive with P. diazotrophica than
wild type P. phymatum STM815 (Figure 5). RpoN regulation of T6SS-b is probably indirect, since we
did not find a RpoN-binding sequence in the promoter region of the first gene in the operon. However,
the presence of two dicarboxylate transporter genes in T6SS-b (Bphy_5990 and Bphy_5992) could
be the reason for the indirect control of this cluster by σ54. Our results also suggest that the two
P. phymatum STM815 T6SSs are used under different conditions and are therefore subject to different
regulatory mechanisms, with T6SS-3 expression being σ54-independent. Bernard and colleagues [69]
showed that σ54 controls expression of T6SSs in several environmental strains, including Vibrio
cholerae, Aeromonas hydrophila, Marinomonas MWYL1 and the plant pathogenic bacteria Pectobacterium
atrosepticum, and Pseudomonas syringae pv. tomato [69]. Interestingly, several T6SS clusters investigated
to date contain an EBP encoding gene (vasH), which has been demonstrated to be required for maximal
activation of T6SS expression [69,70]. No vasH homolog was apparent in the two T6SS clusters present
in P. phymatum STM815. Additionally, chromatin immunoprecipitation coupled with next-generation
sequencing (ChIP-Seq) and RNA-Seq experiments performed in V. cholerae identified two genes coding
for two T6SS hallmark proteins, Hcp and VgrG3, as direct σ54 targets [71,72].

In summary, in the beta-rhizobial strain P. phymatum STM815 σ54 controls important phenotypic
traits, such as motility, competition, and transport of C4-dicarboxylates, which all contribute to the high
competitiveness of this strain in infecting the roots of various legumes. The identity of the different
EBPs that work together with σ54 to control expression of these different traits will be an interesting
area for future investigations.
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Figure 6. Schematic representation of the phenotypic traits regulated by σ54 in P. phymatum STM815. 
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