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Abstract: This paper focuses on vibration suppression and energy harvesting using a non-traditional
vibration absorber referred to as model B. Unlike the traditional vibration absorber, model B has its
damper connected between the absorber mass and ground. The apparatus used in the study consists
of a cantilever beam attached by a mass at its free end and an electromagnetic energy harvester.
The frequency tuning is achieved by varying the beam length while the damping tuning is realized by
varying the harvester load resistance. The question addressed is how to achieve the best performance
under transient responses. The optimum tuning condition for vibration suppression is based on
the Stability Maximization Criterion (SMC). The performance of energy harvesting is measured by
the percentage of the harvested energy to the input energy. A computer simulation is conducted.
The results validate the optimum parameters derived by the SMC. There is a trade-off between
vibration suppression and energy harvesting within the realistic ranges of the frequency tuning ratio
and damping ratio. A multi-objective optimization is conducted. The results provide a guideline for
obtaining a balanced performance. An experimental study is carried out. The results verify the main
findings from the computer simulation. This study shows that the developed apparatus is capable of
achieving simultaneous vibration suppression and energy harvesting under transient responses.

Keywords: damped vibration absorber; model B; optimal tuning; energy harvesting;
transient responses

1. Introduction

Vibration absorber or tuned mass damper (TMD) consists of mass and spring. When a host
system is subjected to a harmonic excitation, its steady state response can be suppressed by using the
vibration absorber with its natural frequency tuned to be the exciting frequency. The main shortcoming
of the vibration absorber is a narrow operating bandwidth as its performance deteriorates significantly
when the exciting frequency varies. Adding a damper in parallel with the absorber spring results in a
damped vibration absorber. By designing the absorber damper properly, the operating bandwidth
can be widened while the performance at the tuning frequency is compromised. Figure 1 shows
two possible ways to add a damper. Model A is a traditional way and model B is a nontraditional
way. The theories and methods to design an optimum damped model A are well developed [1–4].
Model B is considered to offer some advantages over model A. For example, when the damper
requires a certain stroke space in a tight space, implementation of model B is easier than that of model
A. For a pendulum-type TMD, model B may be the only viable option. When a vibration absorber
is used to control resonance of a vibration isolator, placing the damper between the absorber mass
and base reduces the amount of added mass to the isolated system. In [5], the optimum parameters
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of model B were investigated based on the “fixed-point” theory proposed in [1]. The study shows
that given the same mass ratio, model B could offer more effective vibration control than model A.
The results presented in [5] were verified by a slightly different approach in [6]. The use of model B
to suppress vibration of a structure subjected to a harmonic ground excitation was addressed in [7].
The study reported in [8] addressed H2 optimization of model B for vibration control of structures
under random excitation. The optimum parameters of model B in terms of minimizing the maximum
velocity response were derived in [9]. The studies presented in [10,11] extended the optimum design
of model B to a damped primary system. A detailed summary about the results of the optimum model
B can be found in [12].
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Figure 1. Two types of vibration absorber (a) model A; (b) model B.

The interests of harvesting energy from ambient vibration have been driven by various
applications such as power supply for wireless sensor networks [13], low-power actuators [14],
and microsystems [15], etc. A typical vibration-based energy harvester consists of a mechanical
system and a transduction device. The mechanical system couples environmental vibration to the
transduction device that converts mechanical energy into electric one. A mass-spring system is a
typical choice to maximize motion coupling. Three main transduction mechanisms are piezoelectric,
electromagnetic and electrostatic. Many studies have been conducted on energy harvesting using
the piezoelectricity [16–22]. Most of these studies have been focused on the following areas:
the fundamental properties and modelling of piezoelectric material, the performance of piezoelectric
devices under different external excitations, and the optimization of the harvested power. Similarly,
a great amount of research has been conducted for another commonly used energy harvesting
technique of using electromagnetic transduction [23–29].

Because a vibration-based energy harvester is similar to a vibration absorber, it is naturally desired
to use the same device for simultaneous vibration suppression and energy harvesting. The dual mass
system proposed in [30] consisted of a primary system and a vibration absorber. The system was
utilized for energy harvesting from random force and base excitation. In [31], simultaneous vibration
mitigation and energy harvesting were achieved by an electricity-generating tuned mass damper.
A survey of control strategies for simultaneous vibration suppression and energy harvesting via
piezoceramics was presented in [32]. The study presented in [33] integrated the tuned mass damper
and electromagnetic shunted resonant damping to achieve a dual functional energy harvesting and
vibration control. However, it should be noted that the existing attempts for the aforementioned
purpose use model A. In [34], a model B based apparatus was developed for vibration suppression
and energy harvesting. It is comprised of a primary system and a tunable model B. Both the stiffness
and damping of the developed model B can be tuned such that its optimum performance can be
investigated. In [34] steady-state responses of the combined system under harmonic base excitation
were considered in terms of vibration suppression and energy harvesting.
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Although most of energy harvesters are designed to operate at a steady-state condition,
their performances under time-limited or transient responses are also of interest. For example,
various environmental vibrations are time-limited. In [35], energy harvesting in bridge systems was
investigated. A cantilever beam applied with a piezoelectric patch was used as the energy harvester.
The study considered both the forced vibration during the vehicle passing and the free vibration after
the vehicle passing. In [36], harvesting energy from the vibration of a passing train was investigated.
The duration of the induced vibration depends on the speed of train and number of passenger
coaches. The study focused on the maximum available energy that could be potentially harvested.
Base excitation may be a series of impulses. In such a case, energy must be harvested from transient
responses. In [37], an impact energy harvester was developed for the use in impulsive base excitation.
The device consisted of two piezoelectric cantilever beams that are subjected impact of a sliding mass.
The study dealt with both the transient responses and steady-state responses. Human motion is
another example of shock excitation. In [38], two inductive energy harvesters were developed by
exploiting different characteristics of the human gait. The first one is a multi-coil topology harvester
that is aimed at the swing motion of the foot while the second one is a shock-type harvester that
responds to heel strike. Transient responses provide an easy and quick way to test performance
of a system. In [31], the proposed tuned mass damper was tested using free responses in order to
demonstrate its effectiveness for vibration control and energy harvesting. The transient stage of an
energy harvester is also an interesting aspect that has been investigated by some researchers. The study
reported in [39] focused on the transient performance of energy harvesting systems initially at rest
both mechanically and electrically. The standard and nonlinear harvesting circuits were compared in
terms of harvested energy or time of harvesting. Transient behaviors of nonlinear energy harvesters
become more intriguing and interesting. Especially nonlinear energy sink (NES) has been receiving
increasing attention for its unique transient behaviors such as targeted energy transfer. Some attempts
have been made to use the NES or its variant form for simultaneous vibration suppression and energy
harvesting [40–42]. This paper investigates transient performance of the apparatus developed in [34].

The rest of the paper is organized as follows. Section 2 introduces the developed apparatus.
Section 3 discusses the design of optimum model B for suppression of transient responses. Section 4
defines an index to measure the performance of energy harvesting. Section 5 presents a computer
simulation study. Section 6 reports an experimental validation. Section 7 draws the main conclusions
of the study.

2. Apparatus

Figure 2a shows the schematic of the apparatus used in this study. Figure 2b shows a photo of
the experimental set-up. The primary system consists of a 3-D print platform used as the primary
mass and two aluminum plates used as the primary spring. The primary system is clamped to a base
plate that is fastened to the ground in this study. A tunable vibration absorber is constructed by an
aluminum beam that acts as a spring and a pair of magnets that act as a mass. The dimensions of the
beam and magnets can be found in [34]. The upper end of the beam is clamped in a slot built in the
primary mass block. By sliding the beam in the slot, its length can be adjusted so that the absorber’s
natural frequency can be varied. A pair of coils are fastened on aluminum extrusions that are fixed on
the base plate. As shown in Figure 2a, the two magnets are partially situated inside the coils to form
an electromagnetic energy harvester. An electric circuit is formed by connecting the coils in series with
a variable resistor that serves as an energy harvesting load. Table 1 lists the parameter values for the
magnets and coils. Comparing Figure 2a with Figure 1b reveals that the developed apparatus belongs
to model B because the absorber damper is connected between the absorber mass and the ground.
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Table 1. Parameters of the coils.

Inner Radius (mm) Outer Radius (mm) Length (mm) Turns Coil resistance (Ω)

12.175 18.525 31.75 320 2.3

3. Optimum Model B for Suppression of Transient Responses

An optimum criterion is needed in order to design an optimum Model B. In [12], the stability
maximization criterion (SMC) was employed for this purpose. The SMC is briefly outlined below.
The state-space model of a linear system of an order N with a single input can be given by

.
X = AX + Bu (1)

where X and u are the state vector and input, respectively, A is the state matrix and B is the input
influence vector. If all the eigenvalues λi (i = 1, 2, · · · , N) of the state matrix is distinctive, A is
diagonalizable and semi-simple. Then the free response of the system can be written as

X(t) = eA(t−t0)X(t0) =
N

∑
i=1

PiX(t0)eλi(t−t0) (2)

where X(t0) is the initial state vector and Pi is a matrix that can be found by the Lagrange’s interpolation
polynomial as

Pi =
(A− λ1I) · · · (A− λi−1I)(A− λiI) · · · (A− λNI)
(λi − λ1) · · · (λi − λi−1)(λi − λi+1) · · · (λi − λN)

(3)

where I is an unit matrix. The degree of stability of the system is defined as the absolute value of the
maximum real part of the eigenvalues,

Λ = −max
i

Re(λi) (4)

Apparently the variable Λ represents the slowest decaying speed of the modal response.
The following inequality holds:

|X(t)| =
∣∣∣eA(t−t0)X(t0)

∣∣∣ ≤ N

∑
i=1
|PiX(t0)|eΛ(t−t0) (5)
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By maximizing Λ, all the eigenvalues are forced to move far away from the imaginary axis in the
left-hand complex plane so that the fastest decaying response can be achieved.

In what follows, application of the SMC to model B is briefly introduced. The equations of motion
for free responses of the combined system can be defined by

m
..
x + (k + ka)x− kaxa + c

.
x = 0 (6)

ma
..
xa + ca

.
xa + kaxa − kax = 0 (7)

where m and ma are the mass of the primary system and the absorber system, respectively, k and ka

are the stiffness of the primary system and absorber system, respectively, c and ca are the damping
coefficient of the primary system and absorber system, respectively, x and xa are the displacement of
the primary system and absorber system, respectively. To facilitate analysis, Equations (6) and (7) can
be reformulated as

..
x + (ω2

p + µω2
a)x− µω2

a xa + 2ζpωp
.
x = 0 (8)

..
xa + 2ζaωa

.
xa + ω2

a xa −ω2
a x = 0 (9)

by introducing the following variables

ωp =

√
k
m

, ωa =

√
ka

ma
, µ =

ma

mp
, β =

ωa

ωp
, ζp =

c
2maωp

, ζa =
ca

2maωa

where ωp and ωa are the natural frequency of the primary system and absorber system, respectively,
ζp and ζa are the damping ratio of the primary system and absorber system, respectively, µ is referred
to as the mass ratio, and β is referred to as the frequency tuning ratio. A dimensionless time τ = ωpt is
defined so that the following relationships hold

..
x =

d2x
dt2 = ω2

p
d2x
dτ2 = ω2

px′′ ,
.
x =

dx
dt

= ωp
dx
dτ

= ωpx′ (10)

Then Equations (8) and (9) become

x′′ + (1 + µβ2)x− µβ2xa + 2ζp
.
x = 0 (11)

x′′ a + 2βζa
.
xa + β2xa − β2x = 0 (12)

With X = [x′, x′a, x, xa]
T , the state matrix A can be expressed as

A =


−2ζp 0 −(1 + µβ2) µβ2

0 −2βζa β2 −β2

1 0 0 0
0 1 0 0

 (13)

The characteristic equation of the system is given as

λ4 + 2(g + ζp)λ
3 + (β2 + 4ζpg + 1 + µβ2)λ2 + 2(ζpβ2 + g + µgβ2)λ + β2 = 0 (14)

where g = βζa. For the system under consideration, the eigenvalues or the roots of Equation (14)
are two pairs of complex conjugates that can be denoted as λ1,2 = −a1 ± jb1, λ3,4 = −a2 ± jb2.
Then Equation (14) can be recast as

(λ + a1 + jb1)(λ + a1 − jb1)(λ + a2 + jb2)(λ + a2 − jb2) = 0 (15)
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Comparing the coefficients of Equation (15) with their counterparts of Equation (14) yields

2(g + ζp) = 2(a1 + a2) (16)

β2 + 4ζpg + 1 + µβ2 = s2
1 + s2

2 + 4a1a2 (17)

2(ζpβ2 + g + µgβ2) = 2(a1s2
1 + a2s2

2) (18)

β2 = s2
1s2

2 (19)

where s2
1 = a2

1 + b2
1 and s2

2 = a2
2 + b2

2. The derivation presented in [12] shows that the degree of stability
will be maximized if the following conditions are satisfied:

a1 = a2, s1 = s2 (20)

If the primary system is free of damping or ζp = 0, the optimum frequency tuning ratio is found
to be

β∗ =
1−

√
1− 4µ

2µ
(21)

And optimum damping ratio is given by

ζ∗a =

√
1−

√
1− 4µ

√
2

(22)

4. Index to Measure the Performance of Energy Harvesting

An index is needed to measure the performance of energy harvesting. In order to compute
the harvested energy, the electro-mechanical coupling between the energy harvesting circuit and
the absorber motion is briefly introduced. Figure 3 shows the circuit of energy harvesting for one
coil where Lcoil and Rcoil are the inductance and resistance of the coil, respectively, and Rload is the
resistance of a resistive load. When the two coils are connected in series, applying Kirchhoff’s law to
the circuit yields

2Lcoil
di
dt

+ (2Rcoil + Rload)i = Θ
.
xa (23)

where i is the induced current in the coils, Θ is the so-called total transduction factor for the two coils
connected in series, and

.
xa is the velocity of the absorber mass (magnets) relative to the base that is

stationary for the case of free responses. The inductance’s effect can be neglected as its value is very
small and frequency under consideration is low [34]. Thus the current can be approximated by

i =
Θ

2Rcoil + Rload

.
xa (24)

On the other hand, when the magnets are moving inside the coils, an electro-magnetic force is
induced to oppose the motion. The electro-magnetic force Fe is given by [34]

Fe = Θi (25)

Substituting Equation (24) in Equation (25) results in

Fe = ce
.
xa (26)

where

ce =
Θ2

2Rcoil + Rload
(27)
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For free response, the initial energy Ein of the system is defined by

Ein =
1
2

kX2
0 +

1
2

mV2
0 +

1
2

ka(Xa0 − X0)
2 +

1
2

maV2
a0 (28)

where X0 and Xa0 are the initial displacement of the primary system and absorber system, respectively,
V0 and Va0 are the initial velocity of the primary system and absorber system, respectively. The power
harvested by the load resistor can be found by

pload(t) = i2(t)Rload =
Θ2Rload

(2Rcoil + Rload)
2

.
x2

a(t) (29)

Then the total harvested energy over a period T can be computed by

Eload =
∫ T

o
pload(t)dt (30)

An index that measures the performance of energy harvesting is defined as

I =
Eload
Ein

(31)

When the primary system is damped, Equation (31) can also be written as

I =
Eload

Ecm + Ece
(32)

where Ecm is the energy dissipated by the primary damper and Ece is the energy dissipated by
the absorber damper. As the mechanical damping of the absorber system is negligible compared
to the electrical damping induced by the energy harvesting system, the amount of the harvested
energy satisfies,

Eload =
Rload

2Rcoil + Rload
Ece (33)

5. Computer Simulation

A computer simulation is conducted to verify the optimum model B and investigate the energy
harvesting efficiency. The parameter values used in the following simulation are based on the
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developed apparatus shown in Figure 2. For the primary system, m = 0.34 kg and k = 2568.0 N/m.
For the absorber system, ma = 0.048 kg. The simulation considers both the undamped primary system
and damped primary system.

5.1. Undamped Primary System

The optimum frequency tuning ratio and damping ratio for an undamped system are given by
Equations (21) and (22). Using the mass ratio µ = ma/m = 0.048/0.34 = 0.141, it is found that

β∗ = 1.205, ζ∗a = 0.4124 (34)

To verify the optimum parameters, a multi-objective optimization is conducted with two objective
functions defined as

J1(β, ζa) = max(a1, a2)−min(a1, a2) (35)

J2(β, ζa) =

∣∣∣∣√a2
1 + b2

1 −
√

a2
2 + b2

2

∣∣∣∣ (36)

The first objective function measures the closeness of the real parts of the eigenvalues while the
second objective function represents the closeness of the two natural frequencies of the combined
system. A multi-objective optimization function in Matlab Global Optimization toolbox is used
to search for the minimum objective functions within the range of 0 ≤ β ≤ 1.5 and 0 ≤ ζa ≤ 1.
This function uses the genetic algorithm to search for the solutions on the so-called Pareto front.
A Pareto front is a set of nondominated solutions, being chosen as optimal, if no objective function
can be improved without sacrificing at least one other objective function. All solutions in a Pareto set
are equally optimal. The solution corresponding to the smallest damping ratio is chosen

β∗ = 1.2048, ζ∗a = 0.4122 (37)

with the corresponding objective function values as

J1(β∗, ζ∗a ) = 0.0001, J2(β∗, ζ∗a ) = 0.0352 (38)

These optimum values are almost identical to those given by the analytical results, verifying the
correctness of Equations (21) and (22).

The transient responses of the system are generated with the initial conditions of X0 = 0.01 m,
Xa0 = 0, and V0 = Va0 = 0. Figure 4 compares the responses of the primary mass from the
system that is tuned in three different ways where SMC (GA) corresponds to the values given by
Equation (37), SMC (Analytical) corresponds to the values given by Equation (34), and Fixed-points
theory corresponds to the values determined by

β∗ =

√
2

2− µ
(39)

and

ζ∗a =
1
2

√
µ(µ2 − 8µ− 12)

(µ− 2)(µ2 + 2µ + 4)
(40)
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The derivation of Equations (39) and (40) can be found in [34]. It can be seen that the first two
responses are almost identical and decay faster than the third one. This reinforces the assertion that
the fixed-point theory is not suitable for the case of suppressing the transient responses [12].

Simulations are also conducted to find out the relationship between the degree of stability and the
tuning parameters. Figure 5 shows a contour plot of Λ vs. β and ζa. It can be seen that the maximum
degree of stability occurs at the point of β = 1.2 and ζa = 0.41. This is another validation for the
analytical derivation. The plot also indicates that the greater the frequency tuning ratio, the higher the
damping ratio is required to achieve a high degree of stability.Vibration 2018, 2, x FOR PEER REVIEW  9 of 18 
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The mechanical damping in the absorber system is negligible compared with the electrical
damping induced by the electromagnetic energy harvester [34]. To examine the effects of the load
resistance Rload, it is assumed that ca = ce or ζa = ζe in the following discussion. This way,
the absorber damping coefficient is controlled by the load resistance defined by Equation (27).
For the electromagnetic energy harvester used in the apparatus, the transduction factor is found to be
Θ = 2.596 Tm [34]. With the energy harvesting circuit is closed, the maximum damping coefficient is
camax = 1.465 Ns/m, corresponding to the case of Rload = 0. Thus, the maximum damping ratio is
ζamax = 0.176 if β = 1. This means that the optimum damping ratio is not achievable by the present
apparatus. Henceforth, the load resistance Rload is treated as a tuning parameter. Figure 6a shows a
contour plot for the degree of stability vs. β and Rload. It can be seen that the highest degree of stability
is achieved when Rload = 0. It is easy to understand as the damping ratio is inversely proportional to
the load resistance. Figure 6b shows the percentage of the harvested energy over the period of free
responses. As predicted by Equation (32), the percentage of the harvested energy depends on only
the load resistance if the primary system is undamped. The greater the load resistance, the greater
the percentage of the harvested energy. This indicates that there is a trade-off between vibration
suppression and energy harvesting.
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5.2. Damped Primary System

Now the effects of the primary damping are considered. Figure 7 shows the degree of stability
vs. the frequency tuning ratio and damping ratio when ζ = 0.01. The maximum degree of stability
still occurs at the point of β = 1.2 and ζa = 0.41, indicating that a low level of damping in the
primary system does not change the optimum parameters significantly. The degree of stability and
the percentage of the harvested energy vs. the frequency tuning ratio and the load resistance are
shown in Figure 8a,b, respectively. Again, from the viewpoint of vibration suppression, the load
resistance should be set to zero. However, unlike the case of the undamped primary system shown in
Figure 6b, there are the optimum load resistance and frequency tuning ratio that result in the maximum
percentage of the harvested energy. This value is about Imax = 0.63 that occurs roughly at β∗ = 1.175
and R∗load = 21 Ω which corresponds to ζ∗a = 0.027.

Figure 9 shows the case of increasing the primary damping ratio to 5%. With this damping level,
there does not exist a maximum point within the parameter ranges under consideration. However,
the general trend is that the maximum percentage of the harvested energy occurs around Rload = 12 Ω
when β ≥ 1.35. For example, I = 0.3678 at β = 1.35 and Rload = 12 Ω which corresponds to ζa = 0.036.
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As shown in Figure 6, Figure 8, and Figure 9, there is a trade-off between the degree of stability
and the harvested energy. To increase the system’s stability or suppress responses quickly, a zero load
resistance is desired so that the absorber damping is maximized. However, depending on the level
of the primary damping, there exists an optimum load resistance that maximizes the percentage of
energy harvesting. To examine the trade-off situation, a multi-objective optimization is conducted.
Two objective functions are defined as follows

J1(β, ζa) = −Λ (41)

J2(β, ζa) = −I (42)
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Again, a multi-objective optimization is conducted using the function built in Matlab Global
Optimization toolbox to obtain the Pareto front. With the primary damping ratio of ζ = 0.01 and the
search ranges of 0 ≤ β ≤ 1.5 and 0 ≤ Rload ≤ 100 Ω, the obtained Pareto front is shown in Figure 10
and their corresponding values are listed in Table 2. It can be seen that the balanced choices for the β

and Rload should be from the 5th row to 9th row in Table 2.
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Table 2. Solutions on the Pareto front.

β Rload (Ω) I Λ

1.0986 0.0005 0.0001 8.4866
1.0989 0.2652 0.0548 8.0363
1.1043 0.7932 0.1471 7.2165
1.1050 0.5432 0.1061 7.5317
1.1052 3.3349 0.4027 5.1139
1.1147 6.2759 0.5323 3.7120
1.1236 2.2825 0.3261 5.5917
1.1437 3.0811 0.3876 5.1684
1.1461 3.9818 0.4463 4.4665
1.2110 6.0371 0.5357 3.4238
1.4863 7.0964 0.5919 2.4423

6. Experimental Results

An experimental study is conducted to verify the computer simulation results. A photo of the
experimental set-up is shown in Figure 2b and the other details of the system can be found in [34].
By adjusting the length of the absorber beam, the frequency tuning ratio can be varied. A variable
resistor is used to vary the load resistance from 0 to 100 Ω. Transient responses are generated by
using the initial conditions: X0 = Xa0 = 0.004 m, and V0 = Va0 = 0. The displacements of the
primary mass and absorber mass are recorded by two laser reflex sensors (Wenglor CP24MHT80),
respectively. The measured signals are preprocessed by a low-pass filter with a cut-off frequency of
80 Hz to reduce noise effect. The computer used in this study is equipped with a dSPACE dS1104 data
acquisition board that collects the sensor signals and the voltage across the load resistor. A Simulink
model is developed and connected to the dSPACE Control Desktop software to control the experiment.
Using the measured voltage V(t), the percentage of the harvested energy is calculated by

I =

∫ T
0 V2(t)/Rloaddt

kX2
0/2

(43)

Figure 11 shows the responses of the primary mass when the load resistance takes three different
values with the frequency tuning ratio set to be β = 1. As shown in the figure, the smaller the load
resistance, the faster the response decaying. The corresponding percentage of the harvested energy is
also given in the figure. It is noted that these values are much smaller than those from the simulation.
The explanation for such a discrepancy is that in the experiment, the primary mass is not able to
oscillate back to the magnitude close to the initial displacement. This indicates that the real system is
not exactly linear. Each of the responses in Figure 11 is marked by two asterisks. The first asterisk is
placed at the highest peak while the second asterisk is placed at the first peak of those peaks that are
equal or less than 5% of the highest peak. The duration ∆t between the moment of the first asterisk
and that of the second asterisk is referred to as the decaying time. The reciprocal of ∆t or 1/∆t is used
as a measure for the degree of stability that is not readily available from the experimental results.

In what follows, the results obtained by three frequency tuning ratios β = 1.0, 1.1, 1.2 are
reported. For each of the three ratios, the load resistance Rload is varied in the following sequence
0.2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20, 25, 50, 100 Ω. For each combination of β and Rload,
the measured response is used to find ∆t and I. Figure 12a shows the reciprocals of the decaying times
determined using the measured responses while Figure 12b shows the degree of stability determined
using the simulation results. It can be seen that the general trends of 1/∆t agree with those of β.
The experimental results confirm that the degree of stability decreases with an increase of the load
resistance. However, the influence of the frequency tuning ratio from the experimental results does
not agree exactly with that from the simulation results.
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Figure 11. Free responses of the primary mass when β = 1: (a) Rload = 1 Ω, I = 0.09; (b) Rload = 10 Ω,
I = 0.20; (c) Rload = 100 Ω, I = 0.18 (the first asterisk marks the highest response peak and the second
asterisk marks the first peak of those peaks that are equal or less than 5% of the highest peak).

Figure 13a shows the percentages of the harvested energy based on the experimental results while
Figure 13b gives the values based on the simulation results. It can be seen that the experimental results
follow the general trends of the simulation results. For each of the three frequency tuning ratios, there
exists an optimum load resistance that maximizes the harvested energy. Some discrepancies between
the experimental results and the simulation ones are mainly attributed to three reasons. First the
apparatus is not exactly linear. Therefore, the linear model using in the simulation cannot fully capture
the system dynamics if vibration magnitude is large. Comparing Figures 4 and 11 indicates that the
initial displacement used in the experiment exceeds the linear range of the primary system so that the
initial energy term or denominator in Equation (43) is overestimated. Second, the transduction factor
of the electromagnetic energy harvester is approximated as constant. This approximation is valid only
if the relative displacement of the absorber mass is small. The filtering operation may slightly distort
the measured signals. These issues can be further explored in a follow-up investigation. Figure 14
provides the relationships between the percentage of the harvested energy and the decaying time for
the three tuning conditions. The color of the curves corresponds to the load resistance values with
lighter color representing higher load resistance. The figure reinforces the trade-off between vibration
suppression and energy harvesting. A satisfactory balance can be achieved when the values of β and
Rload are chosen from the area enclosed by a square in Figure 14.
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7. Conclusions

A variant vibration absorber referred to as model B has been used to study vibration suppression
and energy harvesting under transient responses. The apparatus allows to vary the absorber stiffness
and load resistance of the energy harvester so that the frequency tuning and damping tuning can
be realized. The optimum tuning conditions in terms of vibration suppression have been developed
based on the Stability Maximization Criterion (SMC). An index referred to as the percentage of the
harvested energy has been defined to measure the energy harvesting efficiency. A computer simulation
has been conducted. The simulation results verify the validity of the optimum parameters based on
the SMC. But the optimum damping ratio is too high to achieve using the developed energy harvester.
The simulation is carried out in the ranges of the realistic frequency tuning ratios and load resistances.
For an undamped primary system, it is found that the degree of stability is maximized if the load
resistance is zero while the percentage of the harvested energy increases with an increase of the load
resistance. Therefore, there is a trade-off between the vibration suppression and energy harvesting
in terms of the load resistance. Two objective functions are defined to conduct a multi-objective
optimization. The results provide a guidance for selection of the frequency tuning ratio and load
resistance in order to achieve a balanced performance. An experimental study has been conducted.
A term named as decaying time is defined. The reciprocal of the decaying time is used as a measure for
the performance of vibration suppression or the degree of stability. The following has been found from
the experimental results. The reciprocals of the decaying time follow the general trends of the degree
of stability obtained from the computer simulation. The percentages of the harvested energy from
the experiment also agree well the general trend of those from the simulation while the magnitude of
the former is smaller than that of the latter. A comparison of the percentages of the harvested energy
and the decaying times reinforces the simulation findings that a balanced performance of vibration
suppression and energy harvesting can be achieved by properly choosing the frequency tuning ratio
and load resistance.
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