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Abstract: In this work, the nonlinear behaviour of a parametrically excited system with
electromagnetic excitation is accurately modelled, predicted and experimentally investigated.
The equations of motion include both the electromechanical coupling factor and the electromechanical
damping. Unlike previous studies where only linear time-varying stiffness due to electromagnetic
forces was presented, in this paper the effect of the induced current is studied. As a consequence,
nonlinear parameters such as electromechanical damping, cubic stiffness and cubic parametric
stiffness have been included in the model. These parameters are also observed experimentally by
controlling the direct current (DC) and alternating current (AC) passed through the electromagnets.
In fact, the proposed apparatus allows to control both linear and nonlinear stiffnesses and the
independent effect of each parameter on the response is presented. In particular the effect of the cubic
parametric stiffness on the parametric resonance amplitudes and the influence of cubic stiffness on
the frequency bandwidth of the parametric resonance are shown. This model improves the prediction
of parametric resonance, frequency bandwidth, and the response amplitude of parametrically
excited systems and it may lead to refined design of electromagnetic actuators, filters, amplifiers,
vibration energy harvesters, and magnetic bearings.
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1. Introduction

Parametrically Excited (PE) systems, where system parameters vary periodically with
an independent variable (time) can be found in electrical and mechanical systems [1,2].
Parametric resonance is caused by time-varying system parameters. One of the first documents
in observing a PE system was released by Faraday in 1831 [3]. He observed parametric excitation in
a vertically oscillating cylinder on the surface of a fluid which had half the frequency of the excitation.
Lord Rayleigh in 1883 [4] devised an experiment to show the PE system behaviour. The experiment
was based on a taut string attached to a tuning fork. When the tuning fork vibrated vertically
the fundamental vibration frequency in string was observed to be half the tuning fork frequency.
A playground swing-set is a simple example of parametric excitation in a physical system. The swing
is like a pendulum, whose moment of inertia changes with time in a periodic manner. The frequency
of this change is called parametric frequency. The user of the swing will squat to increase the swing
height without being pushed. If the frequency of the periodic oscillation of the user is equal to twice
the frequency of the periodic oscillation from the swing, the amplitude will increase progressively.
This large movement happens at Parametric Resonance (PR). PR occur near the drive frequencies of
2ωn

m , where ωn is the system’s natural frequency and m is an integer greater than 1. Due to the high
amplitude of responses as a result of parametric resonance, parametrically excited systems have been
used to amplify external harmonic signals in electrical engineering applications.
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Nonlinear tuning techniques have been exploited to generate parametric resonance in single
frequency bandpass filters and vibration energy harvesters [5]. Desired frequency response
characteristics are achieved by introducing the linear and cubic nonlinear stiffness. A higher frequency
bandwidth and controllable stop-band rejection can be achieved by controlling the nonlinearity in
a Nonlinear Parametrically Excited (NPE) system. Rhoads et al. [6] introduced electrostatically driven
microelectromechanical systems, which were used to design a bandpass filter. However, in order
to overcome the damping force and achieve parametric resonance the alternating current had to be
considerably increased, so greater input energy was needed.

Various geometries have been chosen to design NPE oscillators, such as spring mass structures [7],
cantilever beams [8], and torsional spring oscillators [9]. The axially driven cantilever beam is
extensively used due to its simple geometry, well known analytical model, and ease of fabrication.
The axial load on the cantilever beam produces parametric excitation, which results in time-dependent
coefficients in the governing differential equation of motion. The stiffness of the beam is influenced by
an axial force, and the time-varying axial load generates a parametric excitation [10]. By setting the
parametric excitation at different frequencies, amplification [11] or suppression [2] can be observed.
The effective nonlinearity in the axially driven cantilever beam due to curvature and inertia is
studied in [12]. For a beam, geometric and inertia nonlinearities are a function of the geometry
of the beam, material properties, boundary conditions, curvature, and mode shapes. By altering
one or a combination of these parameters, the effective nonlinearity of the beam can be changed,
achieving the desired bend in the frequency response. These nonlinearities are exploited in the design
of PE harvesters [13]. As well as geometry variation, parametric resonance can be obtained using
different methods of actuation, such as piezoelectric [14], electrostatic [6], and electromagnetic [15].
Electromagnetic micro-transducers have been used in distinct applications in recent years [16]. A PE
cantilever beam with an electromagnetic device was introduced by Chen and Yeh [17,18]. A further
study on a Linear Parametrically Excited (LPE) cantilever beam with an electromagnetic system
was carried out by Han et al. [19]. In this system, the amplitude and frequency of the time-varying
stiffness were accurately controlled by the current flowing through the coil of the electromagnetic
device. They showed that, by exciting the cantilever beam with a time-varying force, the nonlinearity
induced by the geometric imperfection of the beam and the coupling effects between the excitation
mechanism and the beam were effectively avoided [18]. Therefore, they introduced a LPE system
where the strong stiffness nonlinearities present in the electromagnetic system were not considered.
Several techniques have been introduced in the literature [20] to identify the relationship between
the applied electromagnetic force and the resulting displacement in an electromagnetically actuated
cantilever beam. Since the elastic force acting on the magnets attached to the cantilever beam is created
through magnetic repulsion, the relation between the beam displacement and the resulting elastic
restoring force is nonlinear. The nonlinear parameters can be estimated by curve-fitting through data
recorded by a force gauge attached to the magnets [20]. A polynomial interpolation through the
experimental points provides a mathematical expression; however, this method is limited due to the
physical connection of the force gauge.

In this paper, a cantilever beam is investigated. Time-varying stiffness and nonlinear stiffness
are applied by an electromagnetic system. The effects of nonlinear damping, time-varying stiffness
and nonlinear stiffness are demonstrated independently, which are the main contributions of
this paper. A novel approach is presented to calculate the nonlinear electromagnetic forces.
The analytical expression obtained for cubic parametric stiffness and cubic stiffness allow us to
identify system parameters to increase the amplitude of the response or the frequency bandwidth.
The electromechanical coupling factor between the pair of coils and magnets, and the induced current
generated by the moving magnets and coils, are included in the model of the NPE system. The induced
current generates nonlinear damping, which affects the amplitude of the response. This has been
neglected in previous studies, and its importance is highlighted in this paper.
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This paper is arranged as follows: the next section introduces the equation of motion describing
the NPE system with electromagnets as well as the experimental set-up. The mathematical explanation
of the electromechanical system is presented in Section 2.2. The effect of direct and alternating current
on changing the damping, resonance frequency, and stiffness is described in Section 2.3, which informs
the mathematical model of the NPE system as explained in Section 2. A parametric study is carried out
and the behavior of the system response is illustrated in Section 3. The effect of damping, time-varying
stiffness, and nonlinearities on the response of the NPE system are carried out experimentally and
analytically in Sections 3.2 and 3.3.

2. Theory

In this study, SDOF equation of motion of a NPE system is considered:

z̈ + 2ωnζmż + 2ωnζes,appz2ż + ω2
nδes,appz2ż + ω2

nγes,appz4ż+

ω2
n (1 + δ cos(Ωt)) z + ω2

n (α + γ cos(Ωt)) z3 = 0,
(1)

where the nonlinear damping, linear time-varying forces, and nonlinear forces applied from the
electromagnets. The system parameters are derived analytically in Section 2.3. In Equation (2), z is the
displacement of the mass, ζm is the linear damping factor, ζes,app, δes,app and γes,app are the nonlinear
damping coefficients, Ω is the parametric frequency, ωn is the natural frequency, δ is the normalized
time-varying stiffness, α is the cubic stiffness, and γ is the cubic parametric stiffness.

Equation (1) is normalized by time scaling τ = Ωt and expressed with derivatives with respect to
τ instead of t. Normalization in this way results in following equation of motion:

z′′ + 2εζmωn
Ω z′ + 2εζes,appωn

Ω z2z′ + ω2
n

Ω
(
εδes,app

)
z2z′ + ω2

n
Ω
(
εγes,app

)
z4z′+

ω2
n

Ω2 (1 + εδ cos (τ)) z + ω2
n

Ω2 (εα + εγ cos (τ)) z3 = 0.
(2)

The prime (.)′ is used to present a quantity differentiated with respect to τ. ε times the system
parameter denotes terms that have a low order of magnitude.

The method of averaging [21] is an approximation method, used here to find the solutions of
Equation (1). The parametric frequency Ω is varied around a reference frequency Ω0 thus

Ω = Ω0 (1− ε∆) , (3)

where ∆ is the detuning parameter. The solution of Equation (2) for ε = 0 is a linear combination of
cos(τ) and sin(τ):

z (τ) = a cos (κτ + ϕ) , (4)

where a and ϕ are the constant amplitude and phase respectively, which can be determined from initial
conditions. The frequency ratio

κ =
ωn

Ω0
(5)

is used here for simplification. When ε 6= 0, based on the method of Lagrange [21], we assume that the
solution can still be written in the format of Equation (4), with time-varying amplitude a and phase ϕ.
Consequently, the solution of Equation (2) is

z (τ) = a (τ) cos (Φ (τ)) , (6)

where Φ (τ) = κτ + ϕ (τ), and

z′ (τ) = a′ (τ) cos (Φ (τ))− a (τ) (κ + ϕ′ (τ)) sin (Φ (τ)) . (7)



Vibration 2018, 1 160

Substituting Equations (6) and (7) into Equation (2) results in an equation which can be solved for
a′ (τ) and ϕ′ (τ). a′ (τ) and ϕ′ (τ) are then averaged over one period T = 2π

Ω under the assumption
that a (τ) and ϕ (τ) change slowly. The resulting averaged equation can be integrated with respect to
τ to find a (τ) and ϕ (τ) for a given κ and reference frequency Ω0. The steady-state behavior of the
system can be recovered from the set of a′ (τ) and ϕ′ (τ) by setting (a′, ϕ′) = (0, 0) and solving for
steady-state values of a and ϕ. Thus, the resulting solution is an approximation of the original solution.
For non-zero ε, the solutions can be found from:

a′(τ) =
εγa3

16
sin (2ϕ)− εζmωna

Ω
+

εδa
8

sin (2ϕ)− εζes,appωna3

4Ω
− εγes,appa4Ω

256
+O(ε2), (8)

ϕ′(τ) = ε∆
2 + εγa2

8 cos (2ϕ) + 3εαa2

16 + εδ
8 cos (2ϕ)− εδes,appa2Ω

32 sin(2ϕ)−
5εγes,appa4Ω

256 sin(2ϕ) +O(ε2).
(9)

2.1. Apparatus

The electromagnetic system in Figure 1a is used to produce the time-varying stiffness desired in
the experimental model. The electromagnetic set-up was adopted and modified based on the work
of F. Dohnal [2,22]. In this set-up controlling direct and alternating input current carried by the coils
gives the possibility of changing system’s parameters such as the damping coefficient, linear and
nonlinear stiffness. The cantilever beam is at equilibrium when the two coils carry the same direct
current, and the magnets are positioned at the same distance h from the center of coils. The mutual
electromagnetic forces acting between the coils and magnets cause the electromagnetic device to act as
a nonlinear spring. If the magnets and coils are repulsive, the attached beam returns to its equilibrium
position when the beam is perturbed. In this case, the stiffness produced by the electromagnetic device
is positive. In this paper, only repulsive forces and consequently positive stiffness are considered.
In Figure 1a position of the electromagnets is chosen to approximate the system as a SDOF model.
In this position, the first and second modes are apart to maintain the SDOF model approximation.
The first and the second natural frequencies are mentioned in Table 1. The ratio between the second
mode and the first mode is considered to be greater than 4 in order to reduce the effect of higher modes
on the response [23]. The influence of higher modes on the response amplitude when the current is
generated in the coils have not been considered in this paper.
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Figure 1. (a) Cantilever beam with a pair of identical magnets and a pair of identical coils on a wooden
support. (b) Schematic model of the experimental set-up. A programmable power supply is used to
generate controllable current from controlling input voltage. The vertical movement of the beam (in the
direction perpendicular to both the x and z axes is minimized by precisely locating the beam between
the axis of the two coils. This position is adjusted by entering the attractive mode, and then returning
to the repulsion mode once the centered state is reached.



Vibration 2018, 1 161

Table 1. Mechanical properties and dimensions.

Property Value Units

Radius of the Neodymium (N42) disc magnets 0.015 m
Residual magnetic flux density of the permanent magnet (Br) 1.1 T
Permeability (µ0) 4π10−7 N A−2

Inner radius of the coil type L71-3,30 from Mundorf (r1) 0.0085 m
Outer radius of the coil (r2) 0.0225 m
Mean radius of the coil (rc) 0.0135 m
Number of turns of in coil (N) 485 -
Length of wire in one rotation (lw) 0.078 m
Diameter of the coil (Dw) 0.00071 m
Height of the coil with shield (hcoil) 0.02 m
Coordinate for coil (z1) 0.007 m
Coordinate for coil (z2) −0.007 m
Measured electrical resistance of the coil and extra wiring (Rcoil) 1.91 Ohm
Resistor (R) 0.1 Ohm
Width of the beam (bb) 0.01 m
Thickness of the beam (tb) 0.002 m
Total physical mass (the effective mass of the beam and magnets) (mt) 0.104 kg
Static stiffness of the beam with magnets and coils when Ic = 0 (kb) 32.84 Nm−1

Measured first natural frequency of the beam with magnets and coils when Ic = 0 (ωn,exp) 17.76 rad s−1

Measured second natural frequency of the beam with magnets and coils when Ic = 0 202 rad s−1

Mechanical damping coefficient of the beam with magnets and coils when Ic = 0 (cm) 0.011 Nsm−1

To generate the electromagnetic force, two electromagnetic configurations are considered,
coils connected in series and in parallel with opposing connection. Connecting the coils in
series increases the internal resistance, which reduces the electrical damping. Reducing the total
damping lowers the transition curves and changes the stability threshold of the PE system [24].
However, the parallel opposing connection has an increased electrical damping due to circulating
current. To reduce electrical damping, the series configuration is used in this study. The schematics of
the experimental set-up and the parameters for the electromagnetic system and the beam are provided
in Figure 1b and Table 1, respectively.

2.2. Mathematical Model

The experimental set-up is modelled mathematically as a mechanical system coupled to an electric
circuit. Figure 2 shows the coupled mechanical and electromagnetic systems, where the coils in the
electromagnetic system are in the series opposing connection. The coils are identical, and each coil is
modelled with a resistance and an inductance.

(a) (b)
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mkb

Femf

Fe
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Vemf
V

coil 1           coil 2 power
supply

Figure 2. (a) Schematic of the NPE oscillator. (b) Circuit diagram. Controllable power supply to
generate current Ic is connected to a resistor R and the coils.

The equations governing the motion of the mechanical is:

mtz̈ + cmż + kbz + Fe(z) + Femf(z) = 0, (10)
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where the overdot represents a derivative with respect to time, t. The variable z represents the
displacement of the system mass mt (the effective mass of the beam with the attached magnets),
the linear viscous damping coefficient cm is equivalent to the linear viscous damping coefficient of the
beam, kb is chosen equal to the static stiffness of the cantilever beam, and Fe(z) is the electromagnetic
force generated as a result of coils carrying current (explained in detail in the next section). Femf(z) is
the electromagnetic force induced by the interaction of oscillating magnet and coils. The voltage
equation of the electric circuit is:

V = 2Lcoil İc + (R + 2Rcoil) Ic + Vemf, (11)

Lcoil and Rcoil are the inductance and the internal resistance of the coil, respectively. The inductance
of the coil Lcoil is estimated based on [25] as 0.64 mH. The maximum reactance due to
inductance for the maximum frequency used in this study is 15 Hz and hence reactance
Zcoil = 2π f (2× 0.64× 10−3) = 0.12 Ohm, where f is the frequency. This reactance is less than
4 percent of the total resistance of the coil and hence Lcoil is considered negligible. In Equation (11)
Ic is the current generated by the power supply

Ic = IDC + IAC cos(Ωt), (12)

where IDC is the direct current and Ω is the frequency of the alternating current, IAC. In Equation (11)
Vemf is the induced voltage from the moving magnets along the axis of the coils, which cause induced
current ies to flow in coils. Hence, the total current flow in coils is

I = Ic + ies. (13)

2.3. Parameter Identification

The parameters of Equation (10) are identified in this section. Fe(z) and Femf(z) are presented
analytically based on system parameters. Magnetic field Bz generated by the two pairs of coils can be
obtained from the Biot-Savart law,

Bz(z) = −
µ0r2

c IN

2((h + z)2 + r2
c)

3
2
− µ0r2

c IN

2((z− h)2 + r2
c)

3
2

, (14)

h is the distance between the center of coil and the equilibrium position, and other parameters are
defined in Table 1. Equation (14) is differentiated to find the electromagnetic force Fe. Using the Taylor
expansion about z = 0, the force applied to the cantilever beam can be expressed as

Fe(z) = H1 Iz + H2 Iz3 +O(z5), (15)

where H1 and H2 are

H1 =
3
2

µµ0r2
c N

(
−2

(h2 + rc2)
5
2
+

10h2

(h2 + rc2)
7
2

)
, (16)

H2 =
3
2

µµ0r2
c N

(
5

(r2
c + h2)

7
2
− 70h2

(r2
c + h2)

9
2
+

105h4

(r2
c + h2)

11
2

)
. (17)

The difference between the exact Fe and the third-order polynomial approximation increases with
absolute z. For the configuration h = 0.035 m, |z| ≤ 0.015 m, which corresponds to a relative error
of 8.3%. A higher-order approximation using a fifth-order polynomial expansion reduces the error
to 0.42%. These percentage errors decrease greatly with decreasing absolute z. The former error is
acceptable for this study. When h is increased to h = 0.035 m, then |z| ≤ 0.025, and the relative error
for the third-order approximation increases to 22%, and for the fifth-order approximation increases
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to 10%. While this error is greater than the error for the case with lower z, the approximation still
demonstrates agreement with the experimental results which is shown in Section 3.1, particularly
when z is far from maximum.

Based on Lenz’s law, the force Femf(z) in Equation (10) is proportional to the induced current in coils ies,

Femf = kt(z)ies, (18)

where kt(z) is electromechanical coupling factor. Analytical expression of kt(z) is found from
calculating the magnetic field based on [26]. The magnetic field generated by the moving magnet can
be approximated as [26]

B =
VmBr

4π

(
3r(h− z)êr −

(
r2 − 2(h− z)

)
êz

(r2 + (h− z)2)
5
2

)
, (19)

where Vm is the volume of the magnet, Br is the residual magnetic flux density, êr is a unit vector
pointing in the positive r direction and êz is a unit vector pointing in the positive z direction
(see Figure 3). When the magnet is moved along the axis of the coil, an electric potential across
the coils is generated

Vemf =
d
dt

∫

A

BdA = kt(z)ż, (20)

where A indicates the area enclosed by the wire loop. The quantity kt is the nonlinear electromechanical
coupling, which for two coils in series and a magnet is

kt(z) =
3ςVmBr

2(r2 − r1)(z2 − z1)

(
2

∑
n,m=1

(−1)n+mznm

)
, (21a)

znm = ln(rn + z′nm)− rn

z′nm
− ln(rn + z′′nm) +

rn

z′′nm
, (21b)

z′nm =

√
r2

n + (zm − (z + h))2, (21c)

z′′nm =

√
r2

n + (zm − (−z + h))2, (21d)

where Dw is the coil diameter, lw is the length of the wire in one rotation, N is the number of turns
in each coil, hcoil is the height of the coil, and r1 and r2 are the inner and outer radius of the coil
respectively. Please note that assumptions for the nonlinear coupling coefficient may not be valid for
all coil configurations, and careful consideration is needed when the electromagnetic system geometry
is varied.

The change of electromechanical coupling with respect to z is considered linear
kt(z) = kt,appz +O(z2), where kt,app = ∂kt(z)

∂z

∣∣∣
z=0

. The first term of the kt expansion (kt,appz) has
a unity order of magnitude. This order of magnitude is found by first using Equation (21) to
determine ∂kt(z)

∂z

∣∣∣
z=0

, then the product ∂kt(z)
∂z

∣∣∣
z=0

z is maximized to determine the order of magnitude

for z values mentioned in this paper. The second term of the kt expansion, (∂2kt/∂z2)z2/2, has an order
of magnitude of 10−10. We conclude that the higher order terms do not significantly affect the
kt approximation for the z values considered in this study.
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Figure 3. Diagram showing a pair of coils along with moving magnet in the center.

By considering the approximated electromechanical coupling factor the approximated induced
current obtained from Equation (20) is

ies,app =
kt,app

2Rcoil + R
ż. (22)

Equation (1) is found by normalizing Equation (10) by mt. In Equation (1) the mechanical
damping ratio ζm = cm

2mtωn
, and ζes,app is the electrical damping applied from the electromagnetic

system. The dissipative feedback force due to the electromagnetic system can be calculated from
substituting Equation (20) into Equation (18). The electrical damping ratio is

ζes,app =
k2

t,app

2mtωn (2Rcoil + R)
, (23)

where first natural frequency of the cantilever beam with the electromagnetic system ωn is estimated
using the Rayleigh Energy Method. The nonlinear parameters δes,app and γes,app are equal to

δes,app =
H1ies,app

k1
, (24)

γes,app =
H2ies,app

k1
. (25)

In Equation (1), normalized parametric stiffness δ, normalized cubic stiffness α, and normalized
cubic parametric stiffness γ are included from electromagnetic forces. The nonlinear terms δes,app and
γes,app are determined from the effect of induced current. The normalized time-varying stiffness δ is
equal to

δ =
H1 IAC

k1
, (26)

where k1 = kb + IDCH1 is the total linear stiffness. The normalised cubic stiffness α is

α =
H2 IDC

k1
. (27)

The cubic stiffness is strongly affected by the direct current and the parameters of the
electromagnetic system, such the distance between the coils, the number of turns in each coil, and the
mean radius of the coil. The normalized cubic parametric stiffness is

γ =
H2 IAC

k1
. (28)

For simplicity, expressions involving the quantities δ, α and γ will not explicitly state their
dependency on current.
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3. Free Response of the NPE System

The free response of the NPE system is examined to study the stability and amplitude of the
periodic solutions, which depend on the time-varying stiffness and the nonlinear damping and
stiffness. If the time-varying stiffness exceeds the stability threshold, the amplitude of the response
increases. By reducing the damping, the stability threshold can be reduced. The stability threshold at
the parametric resonance can be found from Equations (8) and (9) when nonlinear terms are zero, or by
solving Equation (2) using the harmonic balance method [27]. The stability threshold is found to be
δth = 4ζm. The transition curve for a LPE system is plotted from the analytical calculation in Figure 4a.

Figure 4b shows the amplitude-frequency plot for the cantilever beam excited with linear
time-varying and nonlinear forces from the electromagnetic system. The curve describes the cantilever
beam displacement a as a function of parametric frequency Ω normalized by the linear natural
frequency ωn. There are several distinct characteristics for the amplitude-frequency curves of the
NPE system (Figure 4b) when compared to the equivalent linear system. Firstly, the response peak
bends over to the right, which is the characteristic of nonlinear behavior with restoring forces of the
hardening type. Also, for certain values of parametric frequency Ω, there are multiple solutions.

(a) (b)

A

Figure 4. (a) The analytical transition curve for a LPE system. (b) Analytical and experimental
amplitude-frequency plot for a NPE system. Stable branches are indicated by solid lines, and unstable
branches by dashed lines. The unstable trivial branch is shown by dotted line. The distance between the
coils h = 0.03 m limits the maximum displacement of the beam to z = 0.021 m, shown by the grey line.

3.1. Experimental Results

The experimental apparatus and system parameters are presented in Figure 1b and Table 1,
with initial displacement z(0) = z0 = 0.01 m and velocity ż(0) = 0. A relay switch, switch 2 in
Figure 1b, is used to hold the cantilever beam tip 0.01 m away from the equilibrium position. The relay
switch releases the cantilever beam when triggered, and starts the current flow in the coils at the same time.

The system parameters are chosen to express the effect of parametric excitation and stiffness
nonlinearity. The direct current for the test in Figure 4b is IDC = 0.48 A, and the input alternating
current IAC = 0.06 A. This direct current is selected to generate a strong cubic stiffness. The alternating
current is chosen large enough to generate time-varying stiffness δ, higher than the stability
threshold. The induced current is measured while the beam is moving. The linear natural frequency
ωn = 37.11 rad s−1, and the damping ratio ζm = 0.001, are measured when Ic = 0.48 A. The system
parameters are calculated using Equations (23) to (28) as δ = 0.093, α = 1055.86 m−2, γ = 131.98 m−2,
δes,app = 28.82, and γes,app = 40897.67.

Point A in Figure 4b is a periodic response. Displacement of the beam (Figure 5a) is found by
measuring the velocity with a vibrometer. The velocity signal is filtered with a high-pass filter with
a cutoff frequency of 0.1 Hz. The beam displacement is found by integrating the velocity numerically.
Total current in the coils, I = Ic + ies, is plotted in Figure 5b. Frequencies Ω, Ω

2 , and 3Ω
2 can be seen
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in the power spectrum density (PSD) plot of the displacement signal (Figure 5c. The PSD plot of
the displacement and current signals show that parametric resonance has influenced displacement,
so the peak at Ω

2 has appeared (Figure 5c,d). Direct excitation at Ω arises from the misalignment of the
magnets; although the set-up was designed to reduce the effect of direct excitation on the response.
The PSD plot of the current shows a peak at parametric frequency Ω (Figure 5d). The phase portrait
plot in Figure 5e shows that point A corresponds to a periodic solution. The Poincaré map in Figure 5f
shows two points, indicating two frequencies in the solution that have a ratio of one half. These two
points show the displacement and velocity signals contain frequencies of Ω

2 and Ω.
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Figure 5. Experimental results for point A in Figure 4b. (a) Measured displacement at the cantilever
beam tip. (b) Current measured across the coils in series connection. (c) Power spectrum density
(PSD) of the displacement signal. Ω is at 78.5 rad s−1. (d) Power spectrum density of the current.
(e) Phase portrait plot. (f) Poincaré map.

After point A in Figure 4b, the amplitude of the response increases smoothly until it jumps to the
lower stable branch (trivial solution a = 0), and stays at rest. During sweep down the amplitude of
the response is approximately zero until this solution becomes unstable, at which point it jumps to
the higher branch. The frequency at which the jump of free responses of a nonlinear parametrically
system occurs depends on the time-varying stiffness and damping as well as the nonlinearities.
This experimental approach holds for a single set of initial conditions. As such, it is not appropriate
for mapping all possible responses, and so it cannot be used to determine the basins of attraction for
each branch.

3.2. Effects of Cubic Parametric Stiffness and Nonlinear Damping

Previous theoretical studies show that, when the time-varying stiffness δ is greater than instability
threshold, the amplitude of the response increases [24]. However, the effect of cubic parametric
stiffness on the amplitude of the response has not been studied analytically and experimentally.
The analytical amplitude-frequency plot for a NPE system with and without cubic parametric stiffness
is presented in Figure 6a. The amplitude of the response is higher for the NPE system with positive
cubic parametric stiffness.



Vibration 2018, 1 167

Experimental results are shown in Figure 6a. Equations (26) and (28) show that time-varying
stiffness δ and cubic parametric stiffness γ are controlled by current IAC simultaneously, and that when
IAC 6= 0, γ 6= 0 and δ 6= 0. Due to these relations, experimental results for δ 6= 0 and γ = 0 cannot
be achieved. For the experimental test, δ and γ are calculated when IDC = 0.5 A, and IAC = 0.2 A.
In Figure 6a a better match between the experimental and analytical results is achieved when non-zero
cubic parametric stiffness γ is included in the model. Results obtained from several experiments
determine that the cubic parametric stiffness is negligible when the altering current is very small or
the coils are very close to each other.

(a) (b)

Stable, =0
Unstable, =0

Stable, =0
Unstable, =0

Stable, with nonlinear damping
Unstable, with nonlinear damping

Stable
Unstable

Figure 6. Analytical and experimental amplitude-frequency plots. (a) Comparing solutions when
γ = 313.05 m−2 and γ = 0. (b) Comparing solutions of Equation (1) when ζes,app = 430.26, δes,app = 56.32,
and γes,app = 83508.48 and when they are zero (indicated in grey). System parameters are presented
in Table 2.

Table 2. System parameters for Figure 6a,b.

Tests Measured Parameters Calculated Parameters from Equations (23)–(28)

h (m) ζm ωn (rad s−1) ζes,app δes,app γes,app δ α (m−2) γ (m−2)

Figure 6a 0.035 0.001 30.77 78.46 14.18 17762.4 0.25 782.63 Refer to Figure 6a
Figure 6b 0.025 0.001 50.3 Refer to Figure 6b 0.093 1262.17 138.83

Figure 6b shows amplitude-frequency relations for NPE systems with and without nonlinear
damping coefficients. The analytical results in this figure show that the response amplitude is reduced
for a NPE system with nonlinear damping, and more accurately describes experimental observations.
Since the nonlinear damping coefficients are function of induced current, it is not possible to remove
this effect experimentally and show the results without the nonlinear damping coefficients.

3.3. The Effects of Cubic Stiffness

The cubic stiffness α present in the NPE system reduces the amplitude of the response relative
to the amplitude of the response of the equivalent LPE system at parametric resonance. At different
positions between the coils and magnets, a strong cubic stiffness can reduce the jump-down frequencies
and the amplitudes of displacement at these frequencies. The cubic stiffness generated by the
electromagnetic system increases when the direct current in the coils increases. Also, from the physical
derivation, Equation (27), the cubic stiffness α is a function of coil distance h, the radius of the coil,
and the number of turns in the coil. To investigate the changes in the cubic stiffness, h is altered
between experiments. The maximum ratio between α and δ can be seen in Figure 7 for a given current.
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Figure 7. The ratio between the cubic stiffness α, and time-varying stiffness δ for different positions and
input currents. (a) with high DC current, and high AC current. (b) with low DC current and low AC
current. (c) with high DC current but low AC current. The

⊗
labels show positions, which are chosen

to compare two cases in each individual graph with the current specified. The comparison is based on
the amplitude-frequency plots shown in Figure 8. The “8a–f” annotations in the plots correspond to
Figure 8a to f.

Figure 7 shows the theoretical α
δ ratio for two direct and alternating currents in the coils. In each

graph, two experimental cases are shown by the label
⊗

for two coil spacings h, when the α
δ ratio

is varied. To examine the robustness of the analysis the effect of cubic stiffness nonlinearity and
parametric stiffness on response amplitude is tested at several positions. Table 3 presents the system
parameters for cases marked in Figure 7. From the result shown in Figure 7a, the α

δ ratio at position
h = 0.03 m is larger than that at position h = 0.035 m. The amplitude-frequency plot for the two points
marked in Figure 7a shows that, where the α

δ is lower, the amplitude of the upper stable branch is
higher. The jump frequency is lower when the cubic stiffness is greater. The amplitude-frequency plot
is shown in Figure 8a for position h = 0.03 m, and in Figure 8b for position h = 0.035 m.

Table 3. System parameters for experimental tests.

Tests Measured Parameters Calculated Parameters from Equations (23)–(28)

h (m) IDC (A) IAC (A) ζm ωn (rad s−1) ζes,app δes,app γes,app δ α (m−2) γ (m−2)

Figure 8a 0.03 0.92 0.14 0.001 48.60 146 17.44 24,761.7 0.129 1203.19 183.1
Figure 8b 0.035 0.97 0.155 0.001 40.12 60.16 8.93 11,188.82 0.122 956.40 152.82

Figure 8c 0.025 0.50 0.055 0.001 50.3 430.26 56.33 83,508.47 0.093 1262.17 138.83
Figure 8d 0.03 0.48 0.06 0.001 37.11 191.26 28.82 40,897.67 0.092 1055.86 131.98

Figure 8e 0.03 0.98 0.08 0.001 49.23 144.17 16.55 23,497.5 0.069 1214.5 99.14
Figure 8f 0.035 0.96 0.06 0.001 39.81 60.64 9 11,277.63 0.047 954.05 59.62
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Experimental and analytical amplitude-frequency plot. The system parameters are shown
in Table 3. Stable branches are indicated by solid lines, and unstable branches by dashed lines.
The unstable trivial solutions are shown by dotted lines.

The cubic stiffness is maximized at coil spacing h = 0.025 m (Figure 7b). The amplitude-frequency
curve at this coil spacing (Figure 8c) is compared with the amplitude-frequency at h = 0.03 m
(Figure 8d). For all frequencies, the response amplitude for the case with higher cubic stiffness
(Figure 8c) is smaller than the case with weaker cubic stiffness (Figure 8d).

Comparing the amplitude-frequency (Figure 8e,f) for the two coil spacings marked in Figure 7c
shows that the amplitude of the response is greater at coil spacing h = 0.035 m for all frequencies,
despite the slightly greater α

δ ratio. The difference between the α
δ ratio at a greater coil spacing has to

be larger than at a closer coil spacing to significantly affect the amplitude of the response.

4. Conclusions

A nonlinear parametrically excited system has been analyzed, where the time-varying stiffness
and nonlinear parameters were controlled by an electromagnetic subsystem. The experimental model,
introduced in Section 2.1, was chosen because the parameters that define the system mathematically
can be controlled independently. A mathematical model of this system was presented in Section 2,
and was solved using the method of averaging. This model augments the models used in the literature
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by accounting for the cubic stiffness, cubic parametric stiffness, and nonlinear damping due to the
induced current. This mathematical model was validated through experimental tests in Section 3.1.

Experiments determined that the system response is amplified at greater time-varying stiffness
and cubic parametric stiffness due to parametric resonance. The nonlinear damping was included to
model the effect of induced current in the electromagnets. Increasing the cubic stiffness attenuated the
response and reduced the frequency bandwidth of the NPE system. The mathematical model accurately
modelled the dynamics of the system for different coil spacings. Some small discrepancies between
the analytical and experimental results remained, possibly due to the inclination angle between the
magnets and the coils. This paper demonstrates that the effects of the nonlinear parameters are crucial
for designing devices that can be modelled as nonlinear parametrically excited single degree of freedom
systems, such as electromagnetic actuators, high pass filters, and amplifiers. The experimental results
demonstrate that the augmentations made to the mathematical model are essential for describing the
nonlinear behavior in these systems.
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