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Abstract: Tuned Mass Dampers (TMDs) are widely used for the control and mitigation of vibrations
in engineering structures, including buildings, towers, bridges and wind turbines. The traditional
representation of a TMD is a point mass connected to the structure by a spring and a dashpot.
However, many TMDs differ from this model by having multiple mass components with motions
of different magnitudes and directions. We say that such TMDs have added mass. Added mass
is rarely introduced intentionally, but often arises as a by-product of the TMD suspension system
or the damping mechanism. Examples include tuned pendulum dampers, tuned liquid dampers
and other composite mechanical systems. In this paper, we show how a TMD with added mass can
be analyzed using traditional methods for simple TMDs by introducing equivalent simple TMD
parameters, including the effective TMD mass, the mass of the equivalent simple TMD. The presence
of added mass always reduces the effective TMD mass. This effect is explained as a consequence of
smaller internal motions of the TMD due to the increased inertia associated with the added mass.
The effective TMD mass must be correctly calculated in order to predict the TMD efficiency and in
order to properly tune the TMD. The developed framework is easy to apply to any given general
linear TMD system with a known motion. Here, we demonstrate the approach for a number of
well-known examples, including tuned liquid dampers, which are shown to use only a small fraction
of the total liquid mass effectively.

Keywords: tuned mass damper; dynamic vibration absorber; effective mass; vibration control;
tuned liquid damper; TMD; TLD; TLCD; sloshing damper; inerter

1. Introduction

Vibrations give rise to a great deal of problems to man-made structures and devices. Vibrations
can be annoying to people in a building or vehicle, or they may even lead to metal fatigue or structural
collapse. In many cases, the most efficient and least expensive way to mitigate vibration problems is to
introduce damping, a mechanism for removing the energy from the vibrations.

A classic strategy for reducing the vibration response of a structure is the introduction of a Tuned
Mass Damper (TMD). In its simplest form, a TMD consists of a small mass on a spring moving in the
direction of the vibrations of the main structure, as sketched in Figure 1. We will refer to this type
of TMD as a Simple TMD. The TMD is tuned relative to the natural frequency of the main structure,
such that energy is rapidly transferred from the main structure vibrations to the TMD mass, which then
in turn dissipates the energy by internal damping. The effect of a TMD depends on the mass ratio µ,
the TMD mass divided by the main structure mass, giving an added damping with a damping ratio of
order ζ ∼

√
µ/8; therefore, a relatively light TMD can introduce significant damping, and the added

damping increases with the mass of the TMD.
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Figure 1. Simple Tuned Mass Damper (simple TMD). The TMD works by imposing a reaction force Fr

through the rigid bar labeled B.

The idea of a tuned mass damper originates from Frahm [1] and has been greatly influenced
by Den Hartog [2], who introduced a dashpot and presented the classical optimum frequency and
damping for a harmonic load. For a recent review of the TMD literature, see Elias and Matsagar [3].
TMD efficiency is highly influenced by optimality criteria and the specific TMD application,
e.g., optimal TMDs for wind loads on high-rise buildings, [4,5], optimal TMDs for tall buildings with
uncertain parameters, [6], seismic loads on high-rise buildings [7–9] and random white-noise loads; see,
e.g., [10]. A good overview of various optimization rules can be found in [11]. Other implementations
of the TMD principle such as the pendulum tuned mass damper are discussed for high-rise
building applications in [12,13] and for offshore wind turbines in [14]. The Tuned Liquid Column
Damper (TLCD) was influenced by [15] and studied recently in relation to the seismic response of
base-isolated structures, [16]. The Tuned Liquid Damper (TLD) is discussed, e.g., in [17–19]. A recent
experimental comparison of TMD, TLD and TLCD performance is found in [20].

Many TMDs differ from the simple TMD by consisting of multiple mass components with
motions of different magnitudes and directions. Below, a general TMD will refer to a general linear
one degree-of-freedom system attached to a structure in order to provide damping. A general TMD,
which is not a simple TMD, will be said to contain added mass. An example is shown in Figure 2b.
Examples also include wave dampers (also called liquid sloshing dampers), tuned liquid column
dampers and pendulum dampers. Come to think of it, any TMD in fact contains some added mass,
because springs and wires have non-zero mass.

Added mass changes the TMD dynamics in a way that is often not well understood. In particular,
the mass of a general TMD can be described in several ways, including the inertial mass MI associated
with the momentum of the damper in the direction of the structure motion, the kinetic energy mass MK
(sometimes referred to as the modal mass) associated with the kinetic energy internal to the damper
and the total mass MT equal to the sum of the masses of each damper component (see also Section 3.3).
The masses MI and MK are not uniquely defined, because they depend on the arbitrary choice of
scaling of the internal TMD motions. Which, if any, of these three masses should be taken as the
effective TMD mass?

This question is addressed in this paper, where we develop a framework for determining
parameters for the equivalent simple TMD for a given general TMD. The ambiguity of the TMD
mass and amplitude of motion are removed, and the effective TMD mass, denoted m∗, is defined in
terms of the above-mentioned masses MI and MK. It is shown that added mass in fact reduces the
effective TMD mass. When designing a TMD with significant added mass, it is therefore imperative to
understand its effect in order to assess the TMD effectiveness correctly and in order to properly tune
the TMD.

The concept of an effective mass is known in several contexts, but to the knowledge of the authors,
it has not been formulated as a general concept for TMDs. The same concept is used in earthquake
engineering; see Section 13.2.2 in [21], where the effective mass is termed the “base shear effective
modal mass”. Discussions of the equivalent system also arise in the literature on spacecraft dynamics,
e.g., [22], where it is termed the “equivalent spring-mass system”; in the literature on liquid sloshing
dynamics, see [23] and the references herein, e.g., [24], and in the literature on TLCDs, see [25]. In [21]
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and [22], the effective mass was treated in terms of modal analysis, and it was noted in [21] that the
full modal spectrum may be regarded as a set of effective masses, which sum up to the total mass.
In [23], equivalent parameters were deduced from a full computation of the pressure-induced forces
on the walls of a liquid container. In [25,26], the “active mass” of a TLCD was computed by solving
the dynamical equations particular to a TLCD. The results from [25,26] were used in the SYNPEX
guidelines [27], which unfortunately include the dangerously misleading statement that “The TLCD
can be designed with lower mass ratios and still perform as well as a TMD with higher mass”, where in
fact, the TLCD is equivalent to a simple TMD with lower mass. The concept of effective mass is difficult
and surrounded by misunderstandings in the engineering community.

The current paper takes a different approach. The equivalent system parameters are deduced
for a system with a single prescribed mode shape. The theory is developed from first principles in a
self-contained derivation. The resulting framework is simple and easy to use in the context of TMDs.
A number of examples are given in Section 5, where complicated calculations found in the literature
are reproduced by a simple application of the framework developed here.

Guide to the Reader

The theory presented in this paper is simple and only relies on elementary mathematics. However,
there is still ample possibility for confusion. In particular, it is important to separate the different
systems being discussed:

• A simple TMD denotes a Tuned Mass Damper (TMD), where all mass moves in the same direction
of the main structure. The simple TMD is characterized by the following parameters: m, ms, ω , ζ

and the coordinate of internal motion x1. See Section 2 and Figure 1.
• A general TMD denotes a general linear one degree-of-freedom system attached to a moving

structure and consisting of N mass elements, whose motion relative to the structure is governed
by a single coordinate x1. The general TMD is governed by the parameters ω and ζ and by three
measures of the mass MT , MI and MK. If MK 6= MI , the TMD is considered to contain added
mass. See Section 3.3.

• An equivalent simple TMD denotes a simple TMD (see above), which is dynamically equivalent to
a given general TMD (see below). The equivalent simple TMD is characterized by the parameters
m∗ (the effective TMD mass), m∗s , ω and ζ, where the asterisk (*) emphasizes derived equivalent
parameters. See Section 3.

The reader is encouraged to refer back to these definitions while reading below. If an example is
desired, the reader may begin by reading the example in Section 5.1 before tackling Sections 3 and 4.

The paper is organized as follows. Section 2 describes the operation of a simple TMD and emphasizes
the role of the reaction force exerted by the TMD on the main structure. Section 3 investigates the reaction
force for both a simple TMD and a general TMD and derives expressions for equivalent simple TMD
parameters for a given general TMD. The parameters are investigated in the context of the full system
in Section 4. Section 5 applies the developed framework to a number of systems, including numerical
examples. Finally, Section 6 gives a short summary.

2. Tuned Mass Damper Principle of Operation

A TMD is a local device put on a structure with the aim of affecting the vibrations of the structure.
An example of a TMD in its simplest form (below, referred to as a simple TMD) is shown in Figure 1.
All components are considered restricted to move in the horizontal direction. We shall denote time by
t and differentiation with respect to time by a dot, ẋ ≡ ∂x

∂t .
A structure of mass m0 is attached to an inertial frame by a spring of rate k0. On the structure,

the TMD is attached by a rigid bar B. The TMD consists of a mass ms fixed to m0 by the rigid bar and a
mass m, which is connected to ms by a spring of rate k1 ≡ mω2, as well as a linear damper of rate
c1 ≡ 2mωζ. Here, we have introduced the TMD internal frequency ω and the TMD internal damping
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ratio ζ, which can be measured by holding the structure fixed x0(t) = 0 and performing a decay test on
the TMD. The coordinates of the system are the absolute position x0 of the structure and the position
x1 of m relative to the structure. The TMD affects the motion of m0 by imposing a reaction force Fr on
m0. Referring to Figure 1, Fr is defined as the tensile force acting through B.

Note that the structure-fixed mass ms, e.g., the bolts holding the TMD in place on the structure,
is traditionally either disregarded entirely or simply counted as part of the structure mass. For the
present discussion, it is however useful to identify ms explicitly.

Below, we shall investigate the reaction force for the simple TMD sketched in Figure 1 and for
more complex TMD systems.

3. Reaction Force for General Linear One Degree-of-Freedom Oscillators

Figure 2 shows two different TMD configurations. Comparing to Figure 1, everything to the right
of B is shown. Figure 2a shows a simple TMD, and Figure 2b shows an example of a general TMD,
including added mass. It will be shown below that a general linear one degree-of-freedom oscillator
can be described as an equivalent simple system as shown in Figure 2a by choosing appropriate
equivalent parameters m∗s , m∗, c∗ and k∗.

x
0
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m∗

k∗

c∗

m∗

s

Fr Fr

x
0

x
1

M
2

M
3

M
1

(a) (b)

Figure 2. Two single degree-of-freedom systems, each attached to a moving base at the position x0(t).
Each system exerts a reaction force Fr on the base, defined positive to the right. (a) Shows a simple TMD.
This is identical to the TMD shown in Figure 1. Here, the parameters m∗ and m∗s have been marked
with an asterisk (*) to emphasize their being simple TMD parameters. (b) Example of a complex one
degree-of-freedom TMD. The TMD has several mass components, which are connected, so all motion is
described by the coordinate x1. The mass M1 is fixed to the structure; M2 moves parallel to x0; and M3

moves perpendicular to x0. The spring and dashpot provide stiffness and damping to the motion x1.
We show below that a general system of this type is equivalent to a simple TMD as shown in (a).

3.1. Simple TMD

For the simple TMD shown in Figure 2a, the reaction force Fr = Fr(t) and the equation of motion
governing x∗ = x∗(t) are determined directly from momentum conservation:

Fr = −m∗s ẍ0 −m∗(ẍ0 + ẍ∗), (1)

ẍ∗ + ẍ0 + 2ζωẋ∗ + ω2x∗ = 0, (2)

where we have written Equation (2) in terms of ω2 ≡ k∗
m∗ and ζ ≡ c∗

2m∗ω∗ .

3.2. Example of a Complex General TMD

Consider the example of a complex general TMD sketched in Figure 2b. The TMD consists of
several mass components. The mass M1 is fixed to the structure. The masses M2 and M3 are connected
through a massless wheel, such that they both move according to the coordinate x1, but M2 moves
parallel to x0 and M3 moves perpendicular to x0.

We look for an equivalent simple TMD of the type shown in Figure 2a. The equivalent simple
TMD parameters are determined from the parameters of the general TMD. We are especially interested
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in the effective TMD mass m∗. The mass M3 is an example of added mass. It makes it harder to turn
the wheel, effectively restricting the motion of M2. We now use a heuristic argument to illustrate how
the magnitude of M3 affects m∗.

1. Consider first the case M3 = 0. Then, the equivalence is trivial with m∗ = M2 and m∗s = M1.
2. We now hold M2 fixed and increase M3, until M3 � M2. Then, the wheel is effectively prevented

from moving, and the entire TMD acts as a rigid mass, so m∗ ≈ 0 and m∗s ≈ M1 + M2 + M3.
3. For intermediate values of M3, the movement of M2 will be somewhat reduced compared to

Case 1, giving an effective TMD mass 0 < m∗ < M2.

The above argument shows that the presence of M3 may reduce the effective TMD mass m∗. Below,
we replace the heuristic argument with a quantitative analysis. This will be done for a completely
general linear one degree-of-freedom TMD (denoted a general TMD).

3.3. Analysis of a General TMD

We now consider a general TMD. The TMD shown in Figure 2 is one example, but in general,
the TMD may consist of any number of mass components, each constrained to move in a coordinated
manner according to a single coordinate x1. The system is attached to a moving base, with a position
described as x = x0(t) in an orthogonal (x, y, z)-coordinate system. As in Section 3.1, we wish to know
the reaction force in the x-direction onto the base and the equation of motion governing x1(t).

Consider N mass elements named Mi with i = 1, . . . , N. The motion of all elements is given by a
single coordinate x1, and a spring and dashpot act on the system to introduce stiffness and damping.
The potential energy of the system is V = 1

2 k1x2
1, and the Rayleigh damping functional is F = 1

2 c1 ẋ2
1.

We parameterize the motion of Mi by the vector (ρi, σi, τi), such that the absolute position of Mi is
(x, y, z) = (x0, 0, 0) + x1(ρi, σi, τi), where (ρi, σi, τi) are constants. We first introduce the following
shorthand notation:

the total mass: MT ≡∑
i

Mi, (3)

the inertial mass: MI ≡∑
i

Miρi, (4)

the kinetic energy mass: MK ≡∑
i

Mi(ρ
2
i + σ2

i + τ2
i ). (5)

The masses defined in Equations (3)–(5) characterize the TMD. A simple TMD corresponds to a
mode shape with motion only in the x-direction, σi = τi = 0 and ρi taking only the values zero and
one, leading to MI = MK. For any other mode shape, we will have MI 6= MK. A general TMD with
MI 6= MK will be referred to as having added mass.

The mass MK, Equation (5), is identical to the traditional modal mass associated with the mode
shape defined by the set of vectors (ρi, σi, τi). The masses defined in Equations (4) and (5) are not
unique and depend on the choice of scaling of the coordinate x1. A different choice x1 → χ−1x1 leads
to (ρi, σi, τi)→ χ(ρi, σi, τi) and to MI → χMI and MK → χ2MK.

The kinetic energy of the TMD components is now:

T =
1
2 ∑

i
Mi

[
(ẋ0 + ρi ẋ1)

2 + (σi ẋ1)
2 + (τi ẋ1)

2
]

=
1
2 ∑

i
Mi

[
ẋ2

0 + 2ρi ẋ0 ẋ1 + (ρ2
i + σ2

i + τ2
i )ẋ2

1

]
(6)

=
1
2

MT ẋ2
0 + MI ẋ0 ẋ1 +

1
2

MK ẋ2
1.
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The Lagrangian of the system is L ≡ T − V. The reaction force Fr against the motion x0 is
obtained as Fr = − ∂L

∂x0
. The equation of motion governing x1 is found by the Euler–Lagrange equation

d
dt (

∂L
∂ẋ1

)− ∂L
∂x1

= − ∂F
∂ẋ1

. We get:

Fr = −MT ẍ0 −MI ẍ1, (7)

0 = ẍ1 +
MI
MK

ẍ0 + 2ζωẋ1 + ω2x1, (8)

where we have introduced the TMD internal angular frequency ω and damping ratio ζ,

ω ≡
√

k1
MK

, (9)

ζ ≡
c1

2MKω
. (10)

The equivalent frequency and damping ratio given by Equations (9)–(10) are those that would
be observed by keeping the base stationary x0(t) = 0 and performing a decay test on the TMD.
We exclude from our attention the case MI = 0, which would leave the TMD dynamically uncoupled
from the main structure; see Equation (8).

Now, Equations (7)–(8) are rather similar to Equations (1)–(2), except that in Equation (8),
the coefficients ẍ1 and ẍ0 are of different magnitude. We can however find a set of equivalent simple
TMD parameters, m∗s , m∗ and x∗, that bring Equations (1)–(2) into the form of Equations (7)–(8). This can
be done in an elementary way. We start from Equation (2) and derive the substitutions given below
in Equations (11)–(13) as follows: In order to match the first two terms in Equation (8), we substitute
MK
MI

x1 for x∗ and multiply on both sides by MI
MK

. Returning to Equation (1), we substitute MK
MI

x1 for x∗

and determine m∗ and m∗s , such that the coefficients ẍ0 and ẍ1 match Equation (7). The equivalent
simple TMD parameters are:

x∗ ≡
MK
MI

x1, (11)

m∗ ≡
M2

I
MK

, (12)

m∗s ≡ MT −m∗. (13)

The simple TMD, Equations (1)–(2), with parameters chosen according to Equations (11)–(13) is
thus equivalent to the general TMD, Equations (7)–(8). It will in other words generate exactly the same
reaction force Fr for a given motion x0(t). Note that Equations (11)–(13) uniquely defines both the
amplitude of the motion, Equation (11), and the mass m∗, Equation (12), which will be denoted as the
effective TMD mass. The ambiguity of the masses defined in Equations (3)–(5) is thus removed.

The parameters in Equations (11)–(13) show us the following: The motion of the equivalent
simple TMD is scaled relative to the motion of the general TMD. The general TMD of total mass
MT acts like an equivalent simple TMD of a smaller mass m∗ ≤ MT , Note that m∗ ≤ MT is assured
for any mass distribution Mi and motion (ρi, σi, τi). This is shown by noting that Mi > 0, that the
function f (a, b) = ∑i Miaibi forms an inner product and using the Cauchy–Schwarz inequality to
obtain (∑i Mi)(∑i Miρ

2
i ) ≥ (∑i Miρi)

2, from which the result follows. The remainder of the mass
of the complex system m∗s is effectively added to the structure. Since m∗ = MT for a simple TMD,
i.e., a TMD with ρi = 1, σi = τi = 0, we conclude that out of all general TMDs with a given total mass
MT , the simple TMD gives the highest possible effective TMD mass m∗.
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4. Application to a Structure with a General TMD

We have seen above in Section 3 that a general TMD may be described as an equivalent
simple TMD. In order to describe the combined action of the main structure m0 and the TMD
(see Figure 1), we introduce the effective mass ratio µ∗ and the effective structure angular frequency
ω∗0 . Their expressions follow directly from considering the effective TMD mass as m∗ and the effective
structure mass as m0 + m∗s :

µ∗ =
m∗

m0 + m∗s
, (14)

ω∗0 =

√
k0

m0 + m∗s
=

ω0√
1 + m∗s

m0

, (15)

where ω0 =
√

k0
m0

is the frequency of the isolated structure.
Using the results of Section 3, in particular Equations (11)–(13), the tuning of a general TMD

can be done based on the classical tuning rules found in the literature. Classical optimum tuning for
harmonic forcing [2] involves choosing optimal parameters ωopt. =

1
1+µ ω0 and ζ2

1,opt. =
3
8

µ
1+µ . For a

general TMD, this becomes:

ωopt. =
1

1 + µ∗
ω∗0 , (16)

ζopt. =

√
3
8

µ∗

1 + µ∗
, (17)

As we saw in Section 3, the effective mass ratio, Equations (14)–(15), is generally smaller than the
naive mass ratio µnaive = MT

m0
, so an optimal general TMD with added mass MK 6= MI has a tuning

closer to the structure natural frequency than a simple TMD with m = MT . Furthermore, the internal
damping ζopt. is lower than that for a simple TMD with m = MT . For random white-noise forcing,
a more appropriate optimum frequency is, [10],

ωopt. white-n. =

√
1 + 1

2 µ∗

1 + µ∗
ω∗0 . (18)

5. Examples of TMDs with Added Mass

The following sections show nine different examples of general TMD systems where added mass
influences the TMD efficiency. The framework developed above is used to determine the parameters of
an equivalent simple TMD, including the effective TMD mass. In some of the examples, optimal tuning
parameters are also discussed based on the equivalent simple TMD parameters. Where relevant,
the results in the examples have been compared to the literature; see Sections 5.2 and 5.4–5.7.
This comparison serves to illustrate how complicated calculations on a particular TMD example
can be replaced by simple computation based on the framework developed above. The comparison
also serves as a confirmation of the developed framework. The examples include simple mechanical
systems, as well as fluid dynamic systems. The examples illustrate that the effective TMD mass may
be much lower than one might expect from a naive estimate; see in particular Sections 5.2 and 5.5.

5.1. Misaligned TMD

Consider a TMD consisting of a simple mass-on-a-spring with a mass MT , whose direction of
motion differs by an angle θ from the direction of motion of the main structure, as sketched in Figure 3.
Such a misalignment may easily arise by inaccurate construction or placement of a TMD or by a
misinterpretation of the main structure mode shape.
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How can we assess the effective TMD mass m∗? Clearly, m∗ < MT . A naive estimate of the
effective TMD mass would be MT cos θ, because the action of the inertial force from the TMD along
x0 is reduced by a factor cos θ due to the misalignment. This estimate is wrong, however, because it
disregards the fact that the inertial forces due to the structure motions, which set the TMD in motion
in the first place, are also reduced by a factor of cos θ. Due to this double effect of the misalignment,
we therefore speculate that the effective TMD mass is m∗ = MT cos2 θ.

The question can be resolved by consulting the framework developed in Section 3. The momentum
in the direction of x0 is MI ẋ1, where the inertial mass is defined as MI = MT cos θ. The kinetic energy
internal to the TMD is 1

2 MK ẋ2
1, where the kinetic energy mass is defined as MK = MT . We see from

Section 3 and Equations (11)–(13) that the misaligned TMD behaves as an equivalent simple TMD

with the effective TMD mass m∗ = M2
I

MK
= MT cos2 θ and motion amplitude x∗ = x1

cos θ and that the
remaining mass m∗s = MT −m∗ is effectively fixed to the structure.

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

x
0 x
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M
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θ

m
∗

s m
∗
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Figure 3. Example: misaligned TMD. The structure moves along x0, while the TMD moves along x1,
and the two are misaligned by an angle θ. The example is analyzed in Section 5.1 and illustrates the use
of the theory developed in Section 3. The equivalent simple TMD is shown as the dashed components.

5.2. TMD with Simple Added Mass (the Example from Section 3)

Consider the example shown in Figure 2b. There are N = 3 TMD components with (ρ1, σ1, τ1) =

(0, 0, 0), (ρ2, σ2, τ2) = (1, 0, 0), (ρ3, σ3, τ3) = (0, 1, 0). From Equations (3)–(5), we then get MT =

M1 + M2 + M3, MI = M2, MK = M2 + M3, and from Equations (11)–(13), we get m∗ = M2
2

M2+M3
and

m∗s = M1 +
M2 M3

M2+M3
+ M3. If the TMD is attached to a structure of mass m0, we use Equations (14)–(15)

to get the effective mass ratio µ∗ =
M2

2
M2+M3

/(m0 + M1 +
M2 M3

M2+M3
+ M3).

Consider now as an example M1 = 0.5 kg, M2 = M3 = 8 kg, m0 = 80 kg. The above results show
that the equivalent simple TMD mass is m∗ = 4 kg, and m∗s = 12.5 kg. The effective mass ratio is
now µ∗ = 4 kg

92.5 kg = 4.3%. Note how in this example, the “passive” mass m∗s is considerably larger
than the combined masses M1 and M3. Using the classical optimal tuning rule, Equation (16), we get

ωopt. =
1

1+4.3%

√
80

92.5 ω0 = 0.891 ω0.

We remark that if one had used the naive assumption m∗′ = 8 kg, the mass ratio would
erroneously be interpreted as µ′ = 8

88.5 = 9.0% and the optimal tuning frequency as ωopt.
′ =

1
1+9.0%

√
80

88.5 ω0 = 0.872 ω0. This example shows how the naive interpretation of the effect of added
mass can lead to significant errors in the interpretation of the effective TMD mass, the effective
mass ratio and the optimal tuning frequency. In the present case, a TMD design based on the naive
interpretation would have an effective mass less than half the expected value. It would perform
dramatically worse than expected and furthermore be tuned significantly away from its optimum.

5.3. Uniform Beam Pendulum

Consider a rigid uniform beam pendulum of total mass MT , as shown in Figure 4. We consider
small displacements and linearize the motions. Parameterizing the pendulum length by 0 ≤ q ≤ 1,
the displacements are ρ(q) = q and σ(q) = τ(q) = 0. Now that the TMD mass components are
continuously indexed, the sums in Equations (3)–(5) are replaced with integrals, and we get MI =
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MT
∫ 1

0 q dq = 1
2 MT and the kinetic energy mass MK = MT

∫ 1
0 q2 dq = 1

3 MT . The effective TMD mass,
Equations (11)–(13), is therefore:

m∗ =
3
4

MT , m∗s =
1
4

MT . (19)

From Equations (11)–(13), we get x∗ = 2
3 x1. The pendulum is therefore equivalent to a simple

TMD of mass 3
4 MT with a deflection equal to that of the two-thirds point on the pendulum; see Figure 4.
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Figure 4. Example: pendulum TMD. The pendulum is equivalent to a simple TMD (dashed curves)
of equal frequency and damping ratio, with mass 3

4 MT , with a deflection equal to the pendulum
deflection at the two-thirds point; see Section 5.3.

5.4. Uniform Cantilever Beam TMD

Consider a uniform cantilever beam of total mass MT acting as a TMD, as shown in Figure 5.
The beam is considered slender and clamped to the main structure, and we consider the fundamental
vibration mode. This system was investigated in [28], and the optimal tuning ratio was determined.
The deflection as a function of the normalized distance from the fixed end u ∈ [0, 1] is, cf. [29],
Table 8-1(3),

ρ(u) = cosh ν− cos ν− 0.734(sinh ν− sin ν), (20)

with ν ≡ 1.875u and σ = τ = 0. From Equations (3)–(5), MI = MT
∫ 1

0 ρ du and MK = MT
∫ 1

0 ρ2du,
and Equations (11)–(13) gives:

m∗ = 0.613MT , (21)

as well as m∗s = 0.387MT and x∗ = 1.28x1. Using Equations (14)–(15) and (16), we get the optimum
frequency of the cantilever beam TMD,

ωopt. =
1

1 + µ∗
ω∗0 =

√
1 + 0.387 MT

m0

1 + MT
m0

ω0. (22)

This recovers the result, Equation (26) in [28], but with much less effort than by the method used
in [28]. The calculation can be performed in the same way for higher vibration modes, giving much
smaller values of m∗ than found in Equation (21). On reading [21], we speculate that the sum of the
effective TMD masses corresponding to each vibration mode will sum up to MT or to a constant value
lower than MT depending on the nature of the mechanical connection between the structure and the
TMD, but we have not investigated this property further.
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Figure 5. Example: uniform cantilever beam TMD. As shown in the text, only 61.3% of the cantilever
beam mass MT effectively contributes as a TMD. The equivalent simple TMD is shown as the
dashed components.

5.5. Rectangular Tuned Liquid Damper

Consider a rectangular container partially filled with a liquid, so the gravity wave modes serve as
TMDs; see Figure 6. Consider, in the uv-plane, the liquid volume to be confined to −D

2 < u < D
2 and

0 < v < H, with the waves occurring on the free surface v = H. For convenience, we set the liquid
density such that MT = HD.
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m
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s
m

∗

x
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Figure 6. Example: Tuned Liquid Damper (TLD). The internal motion is recorded by the maximum
surface elevation x1. The equivalent simple TMD is shown as the dashed components. The combined
mass of the equivalent simple TMD components is identical to the total liquid mass MT . In the sketch,
the typical situation m∗s > m∗ is shown.

For the nth asymmetric standing wave mode admissible in the tank, the wavenumber kn and the
velocity potential φ can be written, see, e.g., [29],

kn = (2n− 1)
π

D
, (23)

φn(u, v) = sin knu
cosh knv

kn sinh knH
, (24)

where the oscillation frequency must naturally satisfy the dispersion relation; see [29]. We use the
divergence theorem to compute MI and MK. Local mass conservation ∇2φ = 0 implies ∇ · (u∇φ) =

∇u · ∇φ and (∇φ)2 = ∇ · (φ∇φ). Therefore, we have from Equations (3)–(5) and (11)–(13):

MI =
∫ D

2

− D
2

du
[

u
∂φn

∂v

]
v=H

=± 2
k2

n
, (25)

MK =
∫ D

2

− D
2

du
[

φn
∂φn

∂v

]
v=H

=
D

2kn
coth knH, (26)

m∗n =
M2

I
MK

= MT
8

(2n−1)3π3
D
H

tanh (2n−1)π
H
D

. (27)
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This result agrees with that of [24], which was also reproduced in [23] as Equation 5.19 (where by
mistake, n + 1 has been used in the place of n). Observe from Equations (11)–(13) that the wave height
x1 relates to the effective motion as x1 = x∗ 4

(2n−1)π tanh (2n−1)π H
D .

We see from the above results that TLDs use a very limited fraction of total liquid mass. With a
fixed total liquid mass MT , the maximal effective TMD mass occurs in the low-depth limit H

D → 0,

with Equation (27) giving m∗1
MT
→ 8

π2 = 0.81, m∗2
MT
→ 0.09, and so on. Furthermore, very shallow TLDs

are impractical, because ugly non-linear effects set in for low values of H
D . 0.40. Using Equation (27),

we get the corresponding ratios of the effective TMD mass to the total liquid mass m∗1
MT
| H

D &0.40 . 0.55

and m∗2
MT
| H

D &0.40 . 0.02. This corresponds to exploiting only the mass of the liquid down to a depth
of 0.22D for n = 1 and down to a depth of 0.01D for n = 2. For large liquid depths, we see from
Equation (27) that m∗1 corresponds to the mass of the liquid down to the depth 8

π3 D = 0.26D and that
m∗2 corresponds to the mass of the liquid down to the depth 8

33π2 D = 0.01D. The relation between m∗1
and the total liquid mass is illustrated in Figure 7.

This example shows an application of the framework developed in Section 3 and demonstrates
the very limited efficiency of TLDs. Consider for simplicity a TLD of horizontal tank length 1 m.
At best, the fundamental mode n = 1 effectively uses the top 26 cm of liquid as a TMD, while the
second mode only effectively uses the upper 1 cm of liquid as a TMD.

Figure 7. Comparison of the effective TMD mass m∗1 and the total liquid mass for rectangular TLDs
operating at the fundamental sloshing frequency, shown for H

D = 0.1, 0.4 and ∞. The grey area contains
a liquid weight equal to the effective TMD mass, and the box illustrates the entire liquid container.

5.6. Cylindrical TLD

We briefly state the results corresponding to the previous section for a cylindrical TLD of liquid
depth H and tank diameter D, using the flow potential given in [23]. The results for the fundamental
wave mode are m∗1

MT
| H

D→0 = 0.84, m∗1
MT
| H

D =0.40 = 0.51 and m∗1 | H
D→∞ = 0.23 MT

H , in agreement with [23].

5.7. Tuned Liquid Column Damper

Consider a TLCD as shown in Figure 8. The liquid of mass MT is contained in a tube of total
length b and horizontal length a. We denote α ≡ a

b . From local mass conservation, we observe that
MI = αMT and MK = MT . From Equations (11)–(13), we then get m∗ = α2MT , x∗s = (1− α2)MT and
x∗ = α−1x1. Note that (as for any TMD with added mass) the effective TMD mass is reduced by the
presence of added mass, with m∗ < αMT < MT . The effective mass ratio, Equations (14)–(15), is now

µ∗ = α2 MT
m0+MT(1−α2)

, and the optimal tuning follows directly from Equation (16) or Equation (18).
This system was studied in [25,26,30], but we can reproduce those results with much less effort.

Using the above, the optimal tuning result of [30,31] (Equation (7b) in [30]) for white noise excitation
is exactly recovered from the classical TMD result, Equation (18). Similarly, the effective mass ratio
in [25,26] is reproduced by Equations (14)–(15). Whereas the references solve the dynamical equations
governing the particular system (TLCD), the above results follow as a simple application of the general
theory developed above.
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Figure 8. Example: Tuned Liquid Column Damper (TLCD). The TLCD consists of a uniform tube of
horizontal length a and total tube length b. The total liquid mass is MT . The equivalent simple TMD is
shown as the dashed components.

5.8. Liquid-Immersed TMD

Consider a solid block immersed in an incompressible liquid, as sketched in Figure 9. The liquid
could have bee introduced for the purpose of introducing damping or for lowering the TMD frequency.
The solid block mass is M1. The displaced liquid mass, i.e. the liquid mass density times the volume of
the steel block, is MD. To the motion of the steel block is associated a hydrodynamic mass MH , which is
of order MD; see, e.g., Blevins [29]. We now have MK = M1 + MH and, due to local mass conservation,

MI = M1 −MD. From Equations (11)–(13), the effective TMD mass is m∗ = (M1−MD)2

M1+MH
< M1.

Typically, for this situation, m∗ � M1 � MT , where MT is the combined mass of the solid
block, the liquid and the container. Therefore, the liquid-immersed TMD only utilizes a very small
fraction of its mass as effective TMD mass, with most of the mass acting as structure-fixed mass
m∗s = MT − m∗. On the other hand, the liquid-immersed TMD typically has very small internal
motions, x1 = M1−MD

M1+MH
x∗ � x∗.
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Figure 9. Example: liquid-immersed TMD; see Section 5.8. The equivalent simple TMD is shown as
the dashed components.

5.9. TMD with Inerter

A mechanical device called the inerter has been proposed [32], which is attached to two points
and uses a flywheel to resist the relative motion of the two points, in effect simulating a large kinetic
mass, which can greatly exceed the mass of the inerter itself. One proposed application of the inerter
for vibration damping is given in [33] and shown in Figure 10. The inerter, whose mass is M′in., adds a
kinetic energy 1

2 Min. ẋ2
1, where Min. � M′in.. Comparing to the discussion of added mass in Section 3

(see Equations (3)–(5)), we note that the inerter simply increases the kinetic energy mass MK associated

with the TMD. The effective TMD mass is then m∗ = M2
1

M1+Min.
. This explains Figure 2 in [33].

The inerter acts to effectively bind part of the combined mass of all the damper components MT to
the structure, with m∗s = MT −m∗. On the other hand, the motion amplitude of the TMD with inerter
is smaller than that of the equivalent simple TMD, with x∗ = (1+ Min.

M1
)x1. Therefore, adding an inerter

to a TMD in the proposed configuration is equivalent to replacing the TMD with a smaller TMD.
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Figure 10. Damper with inerter (the small black box) as considered in [33]. The equivalent simple TMD
is shown as the dashed components.

6. Summary and Conclusions

The presence of added mass, i.e., mass moving in other directions than that of the structural
motion, reduces the effective TMD mass to a lower value than might be expected from a naive
interpretation. This is due to the fact that added mass impedes the movement within the damper,
effectively reducing the damper motion amplitude. This leads to a reduced effective mass ratio,
which in turn influences the optimal damper parameters. A failure to correctly account for the role
of added mass in the effective TMD mass leads to an overestimated mass ratio and to sub-optimal
damper parameters.

We have seen above how general TMDs can be treated in a simple way by the introduction of
an equivalent simple TMD. The theory was developed in Sections 3 and 4. When analyzing a given
general TMD, one simply has to compute three masses: The total mass, the inertial mass and the
kinetic energy mass by Equations (3)–(5). Then, one applies Equations (11)–(13) and (14)–(15) in order
to obtain the equivalent simple TMD parameters and the effective mass ratio. This straightforward
method makes analysis and optimization of general TMDs easy.

The theory has been applied to a number of systems in Section 5. TMDs of certain types,
including TLDs and TLCDs, have been shown to operate with significant added mass, leading to a
smaller equivalent simple TMD mass than might be expected.

The developed framework provides a practical tool for analyzing and tuning general TMDs with
added mass. The method is versatile and can be used for purely mechanical systems, as well as systems
with coupled motion of fluid and solid components. In fact, any linear one degree-of-freedom system
can be analyzed. The framework enables using well-known and proven TMD tuning methods on a
very broad range of TMDs.

The authors hope that this work may alleviate some of the confusion surrounding TMDs with
added mass and provide a useful practical tool for both researchers and engineers.
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