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Abstract: This paper investigates the coupled mechanics of a fluid-conveying microtube embedded
inside an elastic medium and subject to a pretension. The fluid-structure interaction model of the
microsystem is developed based on Lagrange’s equations for the open system of a clamped-clamped
microtube. A continuation model is used to examine the nonlinear mechanics of this microsystem
prior to and beyond losing stability; the growth and the response in the supercritical regime is
analysed. It is shown that the microtube stays stable prior to losing stability at the so-called critical
flow velocity; beyond that point, the amplitude of the buckled microsystem grows with the velocity
of the flowing fluid. The effects of different system parameters such as the linear and nonlinear
stiffness coefficients of the elastic medium as well as the length-scale parameter and the slenderness
ratio of the microtube on the critical speeds and the post-buckling behaviour are analysed.
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1. Introduction

Many microelectromechanical systems (MEMS) using microscale structures such as microshells,
microplates and microtubes have been designed and analysed in recent years [1,2]. Fluid-conveying
microtubes, as an advanced class of fluid-structure systems, are widely used in different MEMS and
microfluidic devices. Fluid-conveying microtubes are available in applications such as actuators,
drug-delivery devices, fluid filtration, micromachines, sensors, and as fluid transport microdevices [3].
For a better design of both macroscale and microscale systems, developing advanced knowledge of
the stability and vibration responses [4–7] would be helpful.

Even though the mechanics of macroscale fluid-conveying structures has been studied extensively
in the literature, studies on the mechanical behaviour of microscale tubes are limited. The early
studies mostly focused on determining the natural frequencies and mode shapes. To obtain the natural
frequency and mode shape, size-dependent theories have been used since size effects are important
at small-scale levels [8–12]. For instance, Ahangar et al. [13] obtained the natural frequencies of a
microtube conveying fluid as a function of the fluid velocity while the microsystem is modelled
based on the modified couple stress (MCS) theory [14–19]; it was shown that depending on the
type of the boundary conditions, the microsystem may possess real, imaginary, or a combination of
real and imaginary natural frequencies. Kural and Özkaya [20] employed the method of multiple
scales to obtain the natural frequencies in the oscillation behaviour of fluid-conveying microtubes
resting on an elastic bed. Xia and Wang [21], based on the Timoshenko beam theory, analysed the
motion of fluid-conveying microtubes via use of the MCS theory and the differential quadrature
method to determine the critical flow velocities of the microsystem. Hosseini and Bahaadini [22]
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analysed the vibration behaviour of a cantilevered microtube in order to obtain the natural frequencies
and mode functions for the transverse motion. Abbasnejad et al. [23] analysed the fluid-structure
interaction vibrations of a piezoelectrically actuated microtube with the aim of determining critical flow
velocities and extracting natural frequency diagrams. Wang [24] examined the vibration behaviour of a
fluid-conveying microtube to determine the natural frequencies of the system as a function of different
system parameters such as the flow speed. Dai et al. [25] analysed the pull-in characteristics of a
fluid-conveying microtube based on a non-local theory in order to determine the instability regions.
Li et al. [26] contributed to the field by obtaining the critical flow velocities of a fluid-conveying
microtube employing both the Euler-Bernoulli and Timoshenko beam theories, based on the Eringen
theory [27]. Deng et al. [28] employed a linear theory in order to analyse the size-dependent
oscillations of microtubes conveying fluid so as to determine the natural frequencies as a function of
the fluid velocity.

In addition to the above-mentioned studies, Dehrouyeh-Semnani et al. [29] extended these studies
by including geometric imperfections and nonlinearities; they constructed bifurcation diagrams for
the transverse bending of the microsystem. Mashrouteh et al. [30] employed the variational iteration
method in order to analyse the nonlinear vibrations of fluid-conveying microtubes; the main aim
was to obtain the relation between the amplitude of the transverse motion and the nonlinear natural
frequency of the microsystem. Yang et al. [31] employed a reduction approach in order to discretise
the model of the system, and then analysed the forced vibrations with the help of the modified couple
stress theory; the bifurcation diagram was developed by means of a single-mode approximation.
Setoodeh and Afrahim [32] determined the natural frequencies of a functionally graded microtube
conveying fluid using a size-dependent continuum mechanics; a stretching type geometric nonlinearity
was considered in the model of the microsystem.

There are two important factors in the model development of the microtube of this study. The
first one is that since there are no work at the boundaries and the system is in the absence of any
energy dissipation, this system is categorised in the class of conservative systems; this system is
prone to divergence via losing stability by means of a pitchfork bifurcation. The second important
factor to be considered is that since the size of the microsystem is small [33], the classical continuum
mechanics cannot capture the response accurately anymore; hence, an advanced continuum mechanics
such as the MCS theory or strain gradient scheme should be employed in order to incorporate the
small-size effects.

This paper, for the first time, analyses the buckling and post-buckling behaviour of a
fluid-conveying microtube embedded in an elastic medium by means of the MCS theory. To this end,
Lagrange’s equations along with as assumed-mode method are utilised to derive the equations of
motion of the microsystem. A continuation method is then used to obtain the critical flow velocities
for divergence as well as the flow-induced post-divergence behaviour of the microsystem. Effects of
different microsystem parameters, such as the flow velocity and the length scale parameter on the
critical flow velocities and post-buckling behaviour are highlighted.

2. Fluid-Structure Interaction Model of the Microtube

In the following section, an attempt is made to present a scale-dependent model for the buckling
instability of a microtube conveying flowing flow while undergoing large deflections. Consider
a microscale tube of length L and outer diameter D as shown in Figure 1. It is assumed that the
microtube contains flowing fluid of a constant speed (U) while embedded in a nonlinear elastic
foundation. Furthermore, the fluid-conveying microscale tube is subject to an axial preload (Ta).
As seen in the figure, a Cartesian coordinate frame with axes x and z is employed to describe the
geometrical properties of the microsystem.



Vibration 2019, 2 104

Figure 1. (a) A fluid-conveying microtube resting on a nonlinear elastic foundation; (b) the free-body
diagram of an ultrasmall element of the microtube; (c) the free-body diagram of an element of the fluid.

In the present work, the effects of geometric nonlinearity [34–41] are considered. Accounting for
the geometric nonlinearities caused by large deformations, the axial strain of the microtube (εxx) can
be written as:

εxx(x, z, t) =

√(
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where u and w are, respectively, the axial and transverse. The symmetric curvature components (χij)
are obtained as follows:
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The symmetric curvature and the deviatoric part of symmetric couple stress (mxy and myz) are related
through [18]:

mxy = 2 l2µ χxy , myz = 2 l2µ χyz , (3)

in which l and µ stand for the length scale parameter and the shear modulus of the microtube,
respectively. To obtain the vibration characteristics of microstructures, a size-dependent theory is used
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since size effects are important at small-scale levels [42–46]. Next, an assumed-mode technique for
divergence analysis is utilised to approximate the longitudinal and transverse displacements as:

[
w
u

]
=
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ηm(x) qm

Nu
∑
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ξm(x) rm

 (4)

where qm and rm stand for the mth generalised coordinate for the w and u motions, respectively.
ηm(x) and ξm(x) are respectively the base functions for the axial and transverse displacements of
a clamped-clamped beam [27]. The potential strain energy of the fluid/elastic microsystem can be
constructed as:
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The kinetic energy for divergence is [27]:
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where M is fluid mass per unit length. Substituting Equations (5) and (6) into Lagrange’s equations
for open systems proposed by Irschik and Holl [47] and introducing the following dimensionless
parameters:
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yields the following coupled Equations:
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In this study, 20 generalised coordinates are retained in the discretised model by setting Nu =
Nw = 10 (see Appendix A for the convergence analysis). To the best of our knowledge, the above
Equations (i.e., Equations (8) and (9)) with this high degree of freedom have not been presented for
the post-buckling of fluid-conveying microtubes. It is worth noticing that in Equations (8) and (9),
the first term of each Equation incorporates the effects of the fluid flow on the coupled buckling and
post-buckling of microtubes. A continuation method is employed to solve this high-dimensional
discretised model; the Floquet theory for the stability analysis is used. The continuation method is a
numerical technique for periodic vibration problems as well as nonlinear buckling analyses. Near the
divergence state, there are multiple solutions for the nonlinear differential equations. The continuation
method is employed since it is capable of obtaining both stable and unstable solutions. In this method,
there are two main loops: (1) internal loop, and (2) external loop. It is worth mentioning that in
the external loop, a predictor is applied to the system of Equations. For more information about
this numerical technique, the reader is referred to chapter 4 (pages 169–197) of the book written by
Seydel [48] about bifurcation analysis.

3. Results and Discussion

In this section, the effects of the speed of flowing fluid, the length scale parameter and the
slenderness ratio on the buckling behaviour of the microtube are examined and discussed. In addition,
the numerical results are presented for different values of the linear and nonlinear spring coefficients.
Finally, the influence of the axial pretension on the nonlinear response of the fluid-conveying
microsystem is investigated. In the numerical simulations, Young’s modulus, Poisson’s ratio, and
the mass density of the microtube as well as the fluid mass density are set to: E = 1.44 GPa, ν = 0.38,
ρp = 1220 kg/m3, and ρf = 1000 kg/m3, respectively. Moreover, in this paper, the length scale
parameter, the inner diameter, the outer diameter and the length-to-diameter ratio of the microtube
are assumed as l = 17.6 µm, Di = 25 µm, D = 50 µm, L/D = 100, respectively. It should be noted
that the small-scale parameter is a material constant obtained from the results of experimental
measurements. In Appendix B, the experiment setup for obtaining the small-scale parameter is
explained. For instance, for epoxy microtubes, it is 17.6 µm while a value of 53.7 µm is obtained for
polypropylene microtubes [24,49].

Figure 2a,b show the variation of the dimensionless transverse displacement of the microscale
tube (w/D) at xd = 0.5 and that of the dimensionless axial displacement (u/D) at xd = 0.125 with the
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speed of the flowing fluid. The effects of the longitudinal pretension and the elastic foundation are not
taken into consideration for this case (i.e., Γ = K1 = K2 = 0). The non-dimensional parameters of the
microsystem are obtained as µ = 0.5746 and Π0 = 1.28 × 105. It is seen in Figure 2 that both transverse
and axial displacements are zero until a certain dimensionless velocity of the flowing fluid (uf = 7.8845).
At this critical point, a buckling instability occurs through a branch point bifurcation, causing lateral
and longitudinal displacements to increase suddenly. After this point, there are two possible stable
solutions (solid line) and one unstable solution (dashed line) for the transverse displacement. For the
case of the axial displacement, there is only one stable solution, as well as one unstable solution after
the occurrence of buckling.

Figure 2. Bifurcation diagrams of the microtube conveying fluid; (a) the transverse displacement at
xd = 0.5; (b) the longitudinal displacement at xd = 0.125.

In order to compare the results of the classical elasticity theory with those of the MCS theory,
the variation of the axial and lateral deflections of the microtube with the velocity of the flowing
fluid is plotted in Figure 3 for both theories. It has been proven that size effects cannot be ignored
at small-scale levels [43,50–56]. While the length scale parameter is equal to zero for the classical
theory, this parameter is assumed to be µ = 0.5746 for the MCS theory. It is observed that the critical
buckling fluid velocity obtained by the classical theory is smaller than that of the MCS theory for
both longitudinal and transverse deflections. In other words, the classical nonlinear beam theory
underestimates the branch point bifurcation of the fluid-conveying microscale system.
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Figure 3. Comparison of the bifurcation diagrams of the microtube obtained via the classical (µ = 0.0)
and MCS (µ = 0.5746) theories: (a) the transverse displacement at xd = 0.5; (b) the longitudinal
displacement at xd = 0.125.

The effect of the linear spring coefficient on the bifurcation diagrams of the microtube containing
flowing fluid is shown in Figure 4. The non-dimensional length-scale parameter and the slenderness
ratio of the tube are µ = 0.5746 and S = 100, respectively. To put more emphasis on the influence of the
linear spring coefficient, the axial pretension and the nonlinear coefficient of the elastic foundation
are set to zero. From the figure, it is found that as the linear spring coefficient increases from 0 to
400, the critical fluid velocity, at which the microscale tube buckles, increases. In fact, a linear elastic
foundation with greater stiffness increases the buckling capacity of the system. Furthermore, at a
velocity in the post-buckling region, the lateral deflection of the microtube decreases with increasing
non-dimensional spring coefficient. The change of the transverse displacement of the microsystem with
the fluid velocity for different nonlinear spring coefficients is plotted in Figure 5. The dimensionless
linear spring coefficient and the axial pretension are set to zero. It is that the critical buckling fluid
velocity of the system is independent of the nonlinear spring coefficient. However, after the occurrence
of the bifurcation point, increasing the nonlinear spring coefficient reduces the transverse deflection of
the microscale tube.
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Figure 4. Bifurcation diagrams of the microtube showing the effect of the linear spring coefficient on
the transverse displacement at the centre.

Figure 5. Bifurcation diagrams of the microtube showing the effect of the nonlinear spring coefficient
on the transverse displacement at the centre.

To illustrate the effect of the slenderness ratio on the bifurcation diagrams of the microtube, the
change of the lateral deflection with the dimensional flow velocity (m/s) is shown in Figure 6 for
various values of the slenderness ratio; for this case, Γ = K1 = K2 = 0. Higher values of the slenderness
ratio lead to a significant reduction in the critical fluid velocity associated with the instability of the
microscale system. It implies that as the length-to-diameter ratio increases, the microtube buckles
at a lower fluid velocity. Another interesting observation is that in the post-buckling region (after
the bifurcation point), the lateral displacement of the microscale tube increases with increasing the
slenderness ratio. To better show the relation between the slenderness ratio and the critical flow
velocity, Figure 7 is constructed. As seen in this figure, the critical flow velocity decreases in general
with increasing slenderness ratio. It is interesting to note that as the length of the pipe increases, the
critical flow velocity becomes less sensitive to changes in the length.
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Figure 6. Bifurcation diagrams of the microtube showing the effect of the slenderness ratio on the
transverse displacement at centre; U is the dimensional flow velocity.

Figure 7. Variation of the dimensional critical flow velocity with slenderness ratio.

In order to investigate the influence of the axial pretension on the buckling behaviour of the
fluid-conveying microtube, the variation of the non-dimensional transverse displacement at centre
with the dimensionless velocity of the fluid is plotted in Figure 8 for different values of the longitudinal
pretention. The material and geometric parameters of the microsystem are set to µ = 0.5746, Π0 = 1.28
× 105 and S = 100. It is assumed that the microscale tube containing flowing fluid is not embedded in
an elastic foundation, i.e. both the linear and nonlinear spring coefficients are set to zero (K1 = K2 = 0).
As seen, the critical fluid velocity related to the buckling of the microsystem increases with increasing
the axial pretension. In other words, the presence of a pretension strengthens the microtube conveying
fluid against buckling. Moreover, it is found that the lateral deflection of the system decreases when
larger axial pretensions are applied. Finally, to show the accuracy and reliability of the present results,
the bifurcation diagrams of a clamped-clamped pipe conveying fluid obtained by the present model
are compared with those obtained in [57] (see Figure 9). An excellent agreement is found between the
present results and those previously published in the literature.
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Figure 8. Bifurcation diagrams of the microtube showing the effect of the axial pretension on the
transverse displacement at centre.

Figure 9. Bifurcation diagrams of a clamped-clamped pipe conveying fluid, showing the centre
transverse displacement; solid and dashed lines show the result of the present study while symbols
show the results obtained in [57].

4. Conclusions

A nonlinear scale-dependent model was developed to study the large amplitude buckling
instability of fluid-conveying microscale tubes under axial pretension and embedded in a nonlinear
elastic foundation. The length scale effect was taken into consideration within the framework of the
MCS theory. In addition, both longitudinal and lateral deflections, as well as the nonlinearity induced
by nonlinear stretching and curvature were taken into account in the theoretical formulation and the
numerical simulations. The coupled nonlinear discretised equations of motion of the microsystem were
derived based on Lagrange’s equations to open medium together with an assumed-mode technique.
To numerically solve the equations, a solution procedure on the basis of a continuation technique
was used. It was found that the critical buckling fluid velocity of the microtube predicted using the
MCS theory is larger than that obtained by the classical theory. It was shown that while the linear
spring coefficient has an increasing effect on the buckling fluid velocity, the nonlinear spring coefficient
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does not affect the critical fluid velocity. Furthermore, the transverse displacement of the microtube
decreases with the increase of each coefficient of the elastic foundation. It was also observed that
microtubes of higher slenderness ratio tend to buckle at a lower fluid velocity with greater lateral
deflections. Additionally, it was shown that buckling capacity of the microscale system carrying
flowing fluid increases with increasing longitudinal pretension.
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Appendix A. Convergence Analysis

A convergence analysis is conducted in this section to verify the accuracy of the discretised model
employed in this study. To this end, the bifurcation diagram of the system of Figure 2 is reconstructed
using three discretized models: a 4-degree-of-freedom (4-DOF) model, an 8-DOF model, and the
20-DOF model employed in this study. The comparison between these discretized models is shown in
Figure A1. It should be noted that for all cases, the number of degrees of freedom for the transverse
and longitudinal motions is the same. As seen in Figure A1, the 4-DOF model does not yield accurate
results. There is slight difference between the predictions of the 20-DOF and 8-DOF models, indicating
that the 20-DOF model yields converged results.

Figure A1. Comparison of different discretised models of the system.

Appendix B. Experiment Setup for Obtaining the Small-Scale Parameter

Figure A2 illustrates an experiment setup for determining the small-scale parameter of a
microscale beam with clamped-free boundary conditions [58]. A louder speaker, laser probe, signal
generator, computer and laser Doppler vibrometer (LDV) are required as shown in the figure. By
comparing the results obtained by this setup and those predicted using the modified elasticity theory,
the small-scale parameter of the microbeam can be determined.
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Figure A2. Experiment setup for obtaining the small-scale parameter.
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