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Abstract: In this paper, the exact solution of the Timoshenko circular beam vibration frequency
equation under free-free boundary conditions was determined with an accurate shear shape factor.
The exact solution was compared with a 3-D finite element calculation using the ABAQUS program,
and the difference between the exact solution and the 3-D finite element method (FEM) was within
0.15% for both the transverse and torsional modes. Furthermore, relationships between the resonance
frequencies and Poisson’s ratio were proposed that can directly determine the elastic constants.
The frequency ratio between the 1st bending mode and the 1st torsional mode, or the frequency ratio
between the 1st bending mode and the 2nd bending mode for any rod with a length-to-diameter ratio,
L/D > 2 can be directly estimated. The proposed equations were used to verify the elastic constants
of a steel rod with less than 0.36% error percentage. The transverse and torsional frequencies of
concrete, aluminum, and steel rods were tested. Results show that using the equations proposed in
this study, the Young’s modulus and Poisson’s ratio of a rod can be determined from the measured
frequency ratio quickly and efficiently.

Keywords: Timoshenko beam; dynamic elastic modulus; Poisson’s ratio; finite element; non-
destructive testing

1. Introduction

Non-destructive testing (NDT) methods are often used to estimate the elastic properties of
a material such as the dynamic elastic modulus and Poisson’s ratio. There are several types of
non-destructive testing (NDT) methods available. These include ultrasonic pulse velocity methods,
resonance frequency methods, and other wave propagation techniques. Material properties measured
with these methods are called dynamic elastic constants. Researchers have used forced vibration and
impulse vibration to measure the dynamic elastic constants of steel plates [1] as well as impact-echo
resonance and Rayleigh wave velocity [2]. Kolluru et al. proposed a technique to determine the elastic
material constants of a standard test cylinder using the longitudinal resonance frequencies of concrete,
steel, and aluminum [3]. The ratio between the 2nd and 1st longitudinal resonance frequencies was
used to determine the Poisson’s ratio for a variety of length-to-diameter ratios (L/D) and afterward the
elastic modulus was estimated. Similarly, Chen and Leon proposed a method to find the two elastic
constants using the 1st bending mode and the 1st torsional for rectangular prisms [4]. Nieves et al. also
estimated the shear modulus and Poisson’s ratio for short cylinders using the two lowest axisymmetric
natural frequencies [5]. Verification of their methods was made using various cylindrical specimens
with an L/D less than 3. Wang et al. proposed a method to evaluate Poisson’s ratio of a rod with
only two experimental impact-echo values (fundamental longitudinal and cross-sectional resonant
frequencies). However, their methods require an L/D > 25v for the dynamic Poisson’s ratio to be
valid [6].
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ASTM (215 (2014) and ASTM E1876 (2015) standards are widely used to determine the dynamic
elastic modulus using the fundamental resonance frequency. The equations provided in these standards
were formulated by simplifying the free-free vibration solution of a Timoshenko beam with the effects
of shear and rotational inertia reduced to a simple correction constant. However, the value of the elastic
modulus cannot be directly calculated without knowing the material’s Poisson’s ratio. Therefore,
in order to calculate the dynamic modulus and Poisson’s ratio, a lengthy iteration process is needed.

In this paper, the exact solution of the Timoshenko beam vibration frequency equation under
free-free boundary conditions was determined. The fundamental transverse and torsional frequencies
were used to determine the dynamic elastic modulus and Poisson’s ratio of rods with an L/D > 2.
Then, relationships between the resonance frequencies and Poisson’s ratio were proposed that can
directly determine the elastic modulus and the Poisson’s ratio, simultaneously without the need for
iteration, using the frequency ratio between the 1st bending mode and the 1st torsional mode, or the
frequency ratio between the 2nd bending mode and the 1st bending mode.

2. Analysis

For a homogenous and isotropic material, the Timoshenko beam vibration equation can be
expressed as follows:
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In the equation, y is the transverse displacement; ¢ is time; k’ is a shape factor that depends only
on Poisson’s ratio; G is the shear modulus; E is the Young’s modulus; I is the moment of inertia of the
cross-section; p is the mass density; and m is the mass per unit length. In Timoshenko’s publication [7],
a shape factor of 3 was assumed for a circular cross-section. However, Hutchinson derived more
accurate shape factors for a variety of geometries which match more closely with experimental
results [8]. In this paper, Hutchinson’s shape factor, Equation (2), was used to calculate the shape factor
for a circular cross-section:
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For a rod with free-free boundary conditions, the following can be applied:
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Using these boundary conditions for a nontrivial solution, the frequency equation can be written
as follows [9,10]:
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where r TS = oAz Y = TwZ, and A is the cross-sectional area; « and  represent the

eigenvalues of the frequency equation. The eigenvalues a and 8 can be expressed as follows:
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In this paper, a MATLAB program was used to solve for the eigenvalues of the frequency equation.
The natural frequencies (Hz) can be expressed using the eigenvalues [11]:
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Let i =1 to obtain the 1st bending mode and i = 2 for the 2nd bending mode.

2.1. Finite Element Analysis

Dynamic analysis using the 3-D finite element method (FEM) was carried out and compared to
the exact solution for the transverse and torsional modes of a rod. The density was assumed to be
2400 kg m 3. Six different sets of elastic modulus and Poisson’s ratio were used in the FEM simulations
as shown in Table 1.

Table 1. Elastic modulus and Poisson’s ratio assumed in the finite element method (FEM).

Test Elastic Modulus (GPa) Poisson’s Ratio

1 25.0 0.1
2 25.0 0.15
3 25.0 0.2
4 10.0 0.2
5 20.0 0.2
6 30.0 0.2

A total of 199,950 elements of 2.0 mm (0.08 in) cubes, 8-node linear brick with reduced integration
and hourglass control elements (C3D8R) from the ABAQUS program were utilized. A 75 mm (diameter)
x 300 mm (length) rod was modeled as a free-free beam. The 1st and 2nd bending modes as well as
the 1st torsional mode are shown in Figure 1.

(a) (b)

(c)

Figure 1. Mesh of 75 mm (D) x 300 mm (L) rod: (a) 1st bending mode: 2101.5 Hz, (b) 2nd bending
mode: 4910.6 Hz, (c) 1st torsional mode: 3622.1 Hz.
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A comparison between the FEM and the analytical solutions is shown in Table 2. Results show
that the percent error for all the cases is less than 0.13%. This indicates that the elastic modulus and
Poisson’s ratio obtained from the roots of the Timoshenko beam frequency equation in the analysis
section above is accurate and the 1st free-free torsional mode from the Euler-Bernoulli beam solution,
n' = ﬁ \/F,ER, is also close to exact, where R is the ratio between the polar moment of inertia and
the equivalent moment of inertia, for a rod R = 1.0. Since the FEM usually requires large amounts of
computations using commercial software, it would be more efficient to use the analytical solutions to

determine the transverse and torsional vibration frequencies.

Table 2. Comparison of the FEM and the analytical solutions.

Transverse Mode (Hz)

T Torsional Mode (Hz)
est 1st 2nd
Exact FEM Error (%) Exact FEM Error (%) Exact FEM Error (%)

1 2103.083  2101.5 0.08% 4914.196  4910.6 0.07% 3626.66 3622.1 0.13%
2 2100.394  2098.9 0.07% 4896.9 4894.0 0.06% 3546.943 35424 0.13%
3 2097.75 2096.3 0.07% 4879969 48774 0.05% 3472262  3467.8 0.13%
4 1326.551 1325.6 0.07% 3085.938  3084.3 0.05% 2195.749  2193.0 0.13%
5 1876.349  1875.0 0.07% 4364.927  4362.6 0.05% 3105.793  3101.8 0.13%
6 2297917  2296.3 0.07% 5345.615  5342.8 0.05% 3803.585  3798.8 0.13%

2.2. Frequency Ratio Analysis

The ratio between the fundamental torsional frequency and the fundamental transverse frequency,
Xt, can be expressed as follows [11]:

2
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where n” is the fundamental torsional frequency (Hz) and n; is the 1st fundamental transverse

frequency (Hz). Using the roots of the Timoshenko frequency equation, Equation (3), and the solution

for the torsional mode, the frequency ratio, x¢, is expressed as Equation (7):

I 2
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Equation (7) was evaluated for a variety of Poisson’s ratios and rod dimensions as shown in
Figure 2. From Figure 2, a linear relationship between the Poisson’s ratio, v, and the ratio x; can be
observed. A clear linear trend can be seen after normalizing the frequency ratio, x; , with x; atv=0as
shown in Figure 2c. It was found that the slope of the line and the y-intercept are independent of the
elastic modulus and the mass density. The frequency ratio, x;, only depends on the diameter and the
length of the rod as shown in Equation (7). Hence, the ratio x; can be expressed as Equation (8):

" 2
Xt:2<1:11) (0+1) = Arv+ By ®

The Poisson’s ratio can then be calculated using the equation below:
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Figure 2. Relationship between x; and Poisson’s ratio with different rod dimensions (diameter x
length): (a) 100 mm x 400 mm, (b) 20 mm X 160 mm, and (c) normalized yx; for different L/D ratios
(L/D =2,4,8,and 10).
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Furthermore, after knowing Poisson’s ratio, the elastic modulus can be determined using the
experimental torsional frequency with Equation (10):

E = 8pL%n"?(1+v).

(10)

The values of A; and B, for different specimen dimensions were found by calculating x; for different

length /diameter ratios as well as varying Poisson’s ratio (shown in Appendix A). The constant B; was
found by calculating x; when Poisson’s ratio was equal to zero. The calculated values for B; are shown
in Table 3. A similar procedure was carried out to determine A;. After plotting x;, the slope of the
best-fit line was used to find A;. Table 3 shows the calculated value of A; for different length/diameter

(L/D) ratios.
Table 3. Values of By and A for different length/diameter ratios.
Length/Diameter (L/D)
Coefficient 2 3 5 8 10 20 50 100
B1 259893  4.25642  6.50793  9.37206  21.7075  33.0728 127.7261 790.2198 3156.257
Aq 0.26573  0.30686  0.33084  0.34551  0.36556  0.37104 0.37898  0.38135  0.38617
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As shown in Figures 3 and 4, polynomials can be used to express the values of By and A;.
Although only nine L/D points are shown in Table 3, a total of 97 L/D data points were used to find
the best-fit polynomials. Due to the wide range of By, shown in Figure 3, a single polynomial will
have a 3% difference between the estimated values and the theoretical values found using Equation (8)
when % < 10. Therefore, to reduce the difference to less than 0.06%, two polynomials (sixth-order) are
needed to express B; for two separate intervals, Equations (11) and (12).

« Data Points Equation (11) = Data Points Equation (12)
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Figure 3. Plot of By versus the length/diameter ratio: (a) % < 10 and (b) % > 10.
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Figure 4. Plot of A; versus diameter/length (D/L) ratio.
For % <10,
6 5 4
By= —220790 x 10-%( ) +9.69895 x 10-5( )" — 178941 x 103 ()
(11)
3 2
+0.0179955(f ) +0.208881 (5 )"+ 0.368369 ) +0.908491.
For £ > 10,
6 5 4
By = 230473 x 107 2(f ) +1.38944 x 1071°( )" —3.08859 x 105 (f5 ) +
(12)
3

3.34001 x 106 ()" + 0.315287(%)2 +4.89786 x 1073 () + 149164
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Unlike By, only a single polynomial expression is needed for A;. Equation (13) was found from
the best-fit curve shown in Figure 4. Equation (13) can be used to obtain A; for any diameter/length
(D/L) ratio:

Ay = 9.44922(%)6 - 13.8392(%)5 + 5.60087(%)4 + 1.08665(%)3 = 1.27914(%)2+ )
547273 x 107 (R ) +0381757.

Although the method presented above can be used to determine the dynamic elastic constants
easily and quickly, it has two disadvantages. First, it requires a precise measurement of the torsional
mode which is difficult to excite in a cylindrical specimen [6,12]. Additionally, it requires two separate
experimental tests. Therefore, it would be beneficial to develop a method based on only the transverse
bending modes which can be measured simultaneously and accurately. Similar to x;, the ratio between
the 2nd bending mode and the 1st bending mode was used to directly calculate Poisson’s ratio and the
dynamic elastic modulus.

The ratio between the 2nd and 1st fundamental transverse frequencies, x;, can be expressed with

2 4
np T2
=(=) =%, (14)
X (m ) 7

where 15 is the 2nd fundamental transverse frequency (Hz). 1 and 7, are the roots from the frequency
equation, shown in Equation (3), for the 1st and the 2nd bending modes. For a very slender rod,
the relationship shown in Equation (15) can be derived to express x; for a Euler-Bernoulli rod with
free-free boundary conditions:

the following relationship:

4
= T @

However, for the vibration of a non-slender rod, x; can only be expressed with the roots of the
Timoshenko frequency equation using Equation (3). Hence, Equation (14) was evaluated for a variety
of Poisson’s ratios and rod dimensions as shown in Figure 5. From Figure 5, a slightly parabolic
relationship between the Poisson’s ratio, v, and the ratio )x; can be observed. A clear trend can be seen
after normalizing the frequency ratio, x;, with x; at v = 0 as shown in Figure 5c. The y-intercept, E,
corresponds to the value of x, when v = 0. It was found that the frequency ratio, X, is independent of
the elastic modulus and the mass density, and x; only depends on the roots of Equation (3). Hence,
the ratio xj can be expressed as Equation (16):

2
Xp = (”2) —C,®+Dyv+Ey. (16)

nm

Cy, Dy, and E; are the coefficients of the second-order polynomial describing the relationship
between x};, and Poisson’s ratio. Table 4 shows the calculated values of 1, 72, and x; due to different
Poisson’s ratio and length/diameter (L/D). As expected, as the L/D ratio becomes very large, the values
of y1 and vy, approach 4.73 and 7.853. They are the same values shown in Equation (15) and correspond
to a Euler-Bernoulli beam. For a very slender rod (L/D = 200), x; is no longer dependent on Poisson’s
ratio and approaches a constant value.

The Poisson’s ratio can then be calculated using the equation below:

—D, — \/D% — 4, (El — (7;)2)

v= 2C, : (17)
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Figure 5. Relationship between x; and Poisson’s ratio with different rod dimensions (diameter X
length): (a) 100 mm x 400 mm, (b) 20 mm x 160 mm, and (c) normalized ) for different L/D ratios
(L/D =2, 4,8, and 10).
Table 4. Calculation of 1, 2, and xj for different length/diameter ratios.
Poisson’s L/ID=4 L/D =20 L/D =50 L/D =100 L/D =200
Ratio, v
" 72 Xb T 72 Xb T 72 Xb " 72 Xb 7 72 Xb
0 43609 6.801 5511 4.7108 7.789 7.441 47269 7.843 7.572 4.7293 7.851 7.592 4.7298 7.853 7.597
0.1 43526 6.776 5460 4.7103 7.786 7.435 4.7268 7.842 7571 4.7292 7.850 7.592 4.7298 7.853 7.597
0.2 43443 6.753 5412 47097 7.784 7.429 47267 7.842 7570 4.7292 7.850 7.591 4.7298 7.852 7.597
0.3 43362 6.730 5.365 4.7091 7.782 7.423 47266 7.842 7.569 4.7292 7.850 7.591 4.7298 7.852 7.597
0.4 43281 6.708 5.321 4.7085 7.780 7.418 4.7266 7.841 7.568 4.7292 7.850 7.591 4.7298 7.852 7.597
0.5 43202 6.686 5.278 4.708 7.778 7.412 47265 7.841 7.568 4.7291 7.850 7.591 4.7298 7.852 7.597

Therefore, Poisson’s ratio can be readily calculated using the experimentally measured transverse
vibration frequencies, 1y and n7. Furthermore, after knowing Poisson’s ratio, the elastic modulus
can be determined using the first bending mode as shown in Equation (18). To find 7y;, one can use
Equations (7) and (8) and the calculated Poisson’s ratio from Equation (17). Hence, the elastic modulus

can be calculated directly as follows:

E_ 64m%pLn3

= 4pL°n3(Aq1v + By).
D2 pLoni(Aq 1)

(18)
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The equation can also be used to determine the first bending mode solely from the dimensions of
the rod and assumed elastic constants without solving the Timoshenko frequency equation. The values
of C1, D1, and E; for different specimen dimensions were found by calculating x; for different
length /diameter ratios as well as varying Poisson’s ratio (shown in Appendix A). It is noted from
Equation (14) that the frequency ratio ); is only dependent on the roots of the Timoshenko frequency
equation and is independent of the elastic modulus and mass density. Therefore, any set of material
properties would produce the same values of C;, D1, and E;. The values of x; and its derived Cy, Dy,
and E; shown in this paper are only applicable to the 1st and 2nd bending modes of a Timoshenko rod
with free-free boundary conditions. The constant E; was found by calculating x; when Poisson’s ratio
was equal to zero. The calculated values for E; are shown in Table 5.

Table 5. The values of Cy, Dy, and E; for different length/diameter ratios.

Length/Diameter (L/D)
Coefficient 2 3 4 5 8 10 20 50 100
Eq 3.69886 4.282677 5.51093 5.99205 6.78228 7.03545 7.44104 7.57243 7.59195
D, —0.83478  —0.60134 —0.51647 —0.44455 —0.27264 —0.19948 —0.06117 —0.01043  —0.00263
C 0.22969 0.12914 0.10186 0.08175 0.04227 0.02862 0.00748 0.00120  0.0002986

A similar procedure was carried out to determine the coefficients C; and D;. The transverse modes
were determined using Poisson’s ratio ranging from 0.0 to 0.5 in increments of 0.05. After plotting xy,
the best-fit second-order polynomial was used to find C; and D;. The coefficient of determination, R?,
was above 0.999 for all the cases. Table 5 shows the calculated values for different specimen dimensions.
Unlike E;, the coefficients decrease when the length/diameter ratio is enlarged. As the rod gets longer,
the values of C; and D; approach zero, indicating that the rod behaves more like a Euler-Bernoulli
slender rod. For larger length/diameter ratios (L/D > 20), x;, approaches a constant value equal to
only E;.

As shown in Figures 6-8, the three coefficients can be estimated using polynomial equations, and to
increase the accuracy of the proposed method, two intervals are specified for C; and D;. A total of 97 L/D
data points were used to determine the polynomials. The proposed equations can be used to find the
coefficients for any L/D > 2 and allows for the calculation of the elastic constants after knowing the
1st and 2nd bending modes as well as the rod’s dimensions. The sixth-order polynomials were found
to have a maximum percent difference of 0.12% with the theoretical values. On average, the percent
difference was 0.01% indicating that the sixth-order polynomials can be used adequately to estimate
the coefficients.

2D Equation (19)
R2=1 .
0.2 :
0.15 L
g e
0.1
o
0.05 / =
Equation (21)
- s z =
o st R?=1
0 0.1 0.2 03 0.4 0.5
Diameter/Length

Figure 6. Plot of C; versus the diameter/length (D/L) ratio.
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Figure 8. Plot of E; versus the diameter/length (D/L) ratio.
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C = 112.284(%)6 —223.341 (%)5 + 185.884(%)4 - 77.1737(%)3 + 15.7309(%)2—

0.952765( £ ) +273114 x 102, (19)
D, = —340.388(%)6 + 717.045(%)5 - 588.110(%)4 + 224.277(%)3_ -
35.7879(%)2 - 0.603707(%) + 0.0468.
For % > 10,
C = 2541.87(%)6 —920.988 (%)5 + 72.8415(%)4 - 2.22046(%)3 +3.02631 (%)2_ o1
3.61314 x 10—4(%) +1.08041 x 1076,
D, = 2744.60(%)6 = 4196.55(%)5 + 1132.34(%)4 - 11.5492(%)3 = 26.1754(%)2— o)

1.98589 x 10~ () +6.00293 x 10°°.
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A single sixth-order polynomial can be used to estimate E;. The equation is shown below:

B, =39.7722(R) * 1269519 (2) > 530656 (2) 't 350.357( ) ®  96.4206 (?) 2+ -
1.08854( P ) + 758933,

As an example, the FEM was performed for a steel rod with an assumed elastic modulus, Poisson’s
ratio, and density of 200 GPa, 0.3, and 7750 kg m ™2, respectively. The values of A; and By were obtained
from Equations (11)—(13), whereas C;, Dj, and E; were obtained using Equations (19)-(23). Table 6
shows that the 1st and 2nd bending modes as well as the 1st torsional mode frequency calculated using
Equations (9), (10), and (16) compare closely with the FEM results with a maximum difference of 0.36%.

Table 6. Steel rod with different length/diameter ratios.

Size FEM Theoretical
(mm X mm) Bending (Hz) Tor;i[onal Ay By G Dy E Bending (Hz) Toriilonal
1st 2nd (Hz) 1st 2nd (Hz)
100 x 2000 112.09 305.44 784.8 0.381786 127.7267 0.00748  —0.06116 7.4433 11232  306.079  787.62

100 x 400 2468.2 5718.0 3932.7 0.330818  6.50796  0.10188  —0.51670 5.5142  2470.39 5723.82 3938.11

3. Experiments

Aluminum, steel, and concrete rods with different length/diameter ratios were experimentally
tested to validate the proposed methods. The density and specimen dimensions can be found in
Table 7. It should be noted that the dimensions of the rods must be measured accurately for a correct
estimation of the elastic modulus and Poisson’s ratio.

Table 7. Material properties of the rods.

. Properties
Material
Diameter (mm)  Length (mm) Density (kg m~3)
Aluminum 63.50 736.60 2780.56
Steel 46.83 279.4 8143.13
Concrete 99.63 622.30 2288.75

The impact resonance frequency method was used to measure the fundamental transverse and
torsional modes. Figure 9 shows the instruments and specimens used in the experiment. The rods were
suspended with soft flexible rubber tubing placed at approximately 0.15L to allow free vibration in the
fundamental transverse and torsional modes as shown in Figure 9. The accelerometer was attached to
the specimen centered at 0.55L from the edge of the specimen using a hot glue adhesive. The torsional
frequency was also tested for each rod. The supports were kept at the same location as the transverse
mode experiment. The accelerometer was placed with hot glue adhesive on a rigid metal tab which
was located 0.223L from the edge of the specimen. A tangential impact was made using another metal
tab located 0.13L from the other edge. A schematic of the torsional mode testing can be found in ASTM
C215. For each test, the acceleration time history was plotted on a LabView waveform analyzer. Using
fast Fourier transform (FFT), the time domain was converted to the frequency domain.
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(b)

Figure 9. Picture of experiment: (a) Impact hammer, accelerometer, and specimens; (b) Experimental setup.

Experimental Data

Typical acceleration time histories for the impact and response before and after performing the
FFT are shown in Figures 10 and 11. The excitation frequency range for the transverse and torsional
impact is approximately 5000 Hz. To find the peak frequency, the frequency response function, which
is the ratio between the output response and the input excitation force in the frequency domain,
was calculated [13]. Four peaks can be seen in the output response; these peaks correspond to the
first four fundamental bending modes. In this study, only the 1st and 2nd bending modes were
analyzed; however, the 3rd and 4th bending modes could be used as verification of the measured
elastic constants.
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Figure 10. (a) Typical acceleration time history and (b) Typical response power spectrum (transverse mode).
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Figure 11. (a) Typical impact loading time history and (b) Typical impact power spectrum (transverse mode).
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Similarly, Figures 12 and 13 present the typical acceleration time histories and the frequency
response function for the torsional mode. A clear peak can be seen in all the specimens.
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Figure 12. (a) Typical acceleration time history and (b) Typical response power spectrum density
(torsional mode).
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Figure 13. (a) Typical impact loading time history and (b) Typical impact power spectrum (torsional mode).

Table 8 presents the average measured frequencies for the fundamental transverse and torsional
frequencies of the three rods. The average value was determined from at least four tests. The sampling
frequency for both impact force and acceleration response was 25.6 kHz, and the resolution of the
measured frequencies was increased to 0.25 Hz using a signal processing technique.

Table 8. Calculated properties of the aluminum, steel, and concrete rods.

Transverse Frequency (Hz) Torsional v E (GPa)
Rod Frequency
1st 2nd (Hz Method1  Method2  Method1  Method 2
Aluminum  531.05+0.03  1415.85 £+ 0.07 2,083.02 £ 0.45 0.434 0.364 75.12 75.08
Steel 2589.83 £0.33 6460.95 £ 0.43 5686.97 £ 0.87 0.332 0.300 219.10 21891
Concrete 847.02 £0.20 2130.61 £0.43 1972.06 £+ 0.77 0.283 0.241 35.38 35.35

4. Data Analysis

The values for Ay, By, C1, D1, and E; can be obtained for each rod specimen using their respective
L/D ratio. Using Equations (9) and (17), the Poisson’s ratio for the three rods was calculated and is
shown in Table 8. The calculated values for the dynamic elastic modulus using Equations (10) and (18)
are also shown in Table 8. Table 8 shows a comparison between Method 1 and Method 2. Method 1
uses X to calculate Poisson’s ratio and elastic modulus. As expected, Method 2, which uses the 1st and
2nd bending modes, produces more reasonable elastic constants. This is mainly due to the inaccuracy
of the experimental torsional mode frequency. Note, the largest difference occurs in the Poisson’s ratio
while the elastic modulus for both methods are almost identical.
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Sensitivity Analysis

In this study, the diameter and length of the specimens were measured with a resolution of
0.01 mm, while the mass had a resolution of 0.01 kg. A sensitivity analysis of the proposed methods
was conducted using the experimental resolution. The experimental frequencies were measured with
a resolution of 0.25 Hz, which was achieved using a signal processing technique. It was found that
Poisson’s ratio and the elastic modulus had a maximum deviation of 0.3 4= 0.001 and 218.91 + 0.2 GPa,
respectively, when changing the diameter or length by 0.01 mm. Therefore, it is recommended to
at least have a resolution of 0.1 mm in order to achieve an accuracy of Poisson’s ratio with +0.01
deviation. It was also found that a mass change of 0.01 kg can influence the elastic modulus by
£0.5 GPa. Furthermore, if only a 0.25 Hz frequency resolution is obtainable, the estimated Poisson’s
ratio can have a large deviation of £0.05 when a specimen has a large L/D like the aluminum specimen
(L/D =11.6). This is because, as shown in Figure 5 and Table 4, Poisson’s ratio is not sensitive to the
change of the bending frequency ratio x;, when L/D becomes large. During the experiment, the concrete
and steel rods both showed high accuracy in the measurement of Poisson’s ratio using the bending
modes as displayed in Table 9. However, since the aluminum rod has an L/D = 11.6, a frequency
resolution of £0.05 Hz was used to reduce the Poisson’s ratio deviation to +0.009. For an accurate
measurement of the Poisson’s ratio, it is recommended that an L/D = 6 be used when using x5.

Table 9. Sensitivity analysis of the aluminum, steel, and concrete specimens.

Measured Aluminum Steel Concrete
Properties Method
P E (GPa) v E (GPa) v E (GPa) v
Mass 1 75.12 £ 0.1 - 219.10 £ 0.5 - 35.38 + 0.03 -
(£0.01 kg) 2 75.08 +£ 0.1 - 21891 £ 0.5 - 35.35 + 0.03 -
0.434 + 0.332 + 0.283 +
L (+:0.01 mm) 1 75.12 + 0.003 0.00004 219.10 £ 0.02 0.00009 35.38 + 0.002 0.00004
0.364 + 0.241 +
2 75.08 £+ 0.003 0.00008 218.91 + 0.02 0.300 £ 0.0002 35.35 + 0.002 0.00009
D (40.01 mm) 1 75.12 + 0.05 0.434 + 0.0004 219.10 £ 0.2 0.332 £+ 0.0005 35.38 + 0.001 0.283 + 0.0002
’ 2 75.08 &+ 0.05 0.364 £+ 0.0009 21891 £ 0.2 0.300 + 0.001 35.35 + 0.001 0.241 + 0.0005
1y (40.25 Hz) 1 75.12 £+ 0.07 0.434 + 0.001 219.10 £ 0.04  0.332 + 0.0003 35.38 £ 0.02 0.283 £ 0.0008
1 ) 2 75.08 £ 0.1* 0.364 + 0.05 * 218.91 + 0.06 0.300 + 0.004 35.35 + 0.03 0.241 + 0.01
1 - - - - - -
mp (+0.25 Hz) 2 75.08 £ 0.01 * 0364 £0.02* 218.91 +0.008  0.300 £ 0.001 35.35 + 0.004 0.241 + 0.004
1 75.12 + 0.07 0.434 4+ 0.001 219.10 £0.001 0.332 +0.0001 35.38 + 0.0003  0.283 + 0.0003

n” (£0.25 Hz) 5 i : ) i i -

* For a frequency resolution of +0.05 Hz for ny, E = 75.08 £ 0.02 GPa and v = 0.364 + 0.009. ** For a frequency
resolution of +0.05 Hz for n,, E = 75.08 4= 0.002 GPa and v = 0.364 + 0.004.

5. Discussion

The frequency ratio between the first torsional mode and the first bending mode, x;, was found
to be linearly proportional to the Poisson’s ratio with a slope, A1, and a y-intercept, By, whereas the
frequency ratio between the first two bending modes, x;, was slightly parabolic with coefficients
C1, D1, and E;. It was found that the constants A;, By, C1, D1, and E; depend only on the dimensions
of the specimen and can be tabulated for different specimen sizes. Values for A1, By, C;, D1, and
E; at different length /diameter ratios were found, allowing the use for any rod dimensions. As the
length /diameter ratio increased, the value of A; could be ignored and x; approached to a constant.
In other words, )x; is independent of Poisson’s ratio at very large length/diameter ratios. Likewise, as
the length/diameter increases, the values of C; and Dj approach to zero, and x; approaches a constant
value of 7.598. Equations for the elastic modulus, E, and Poisson’s ratio, v, were proposed in this paper
using the tabulated values of Ay, B1, C1, Dj, and E;, allowing for a quick calculation of both E and v.
The proposed methods do not require any iterations to solve for the material constants. Results show
that, using the equations proposed in this study, the Young’s modulus and Poisson’s ratio of a rod can
be determined from the measured frequency ratio quickly and efficiently.
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6. Conclusions

This paper presents a method to calculate Poisson’s ratio and dynamic elastic modulus using
experimentally measured transverse and torsional modes. The method is based on the exact solution to
the frequency equation for a Timoshenko rod under free-free boundary conditions. The finite element
method using the ABAQUS program was shown to match the exact solution with less than 0.15%
error for both the transverse and torsional modes. Equations for the elastic modulus, E, and Poisson’s
ratio, v, were proposed in this paper using the frequency ratio values, allowing for a quick calculation
of both E and v. The frequency ratio between the first bending mode and the first torsional mode
or the frequency ratio between the first bending mode and the second bending mode for any rod
with a length-to-diameter ratio of L/D > 2 can be directly estimated using the proposed equations.
The proposed method does not require any iterations to solve for the material constants and can be used
to calculate the elastic constants of rods with different dimension sizes. The proposed equations were
used to verify the elastic constants of a steel rod with less than 0.36% error percentage, and the equations
were also used to measure elastic constants of three rods with different material properties (aluminum,
steel, and concrete) using simple impact vibration. It was found that the torsional mode is more
difficult to excite and not as reliable as the bending modes, whereas a more accurate measurement can
always be obtained from using the 1st and 2nd bending modes which were measured simultaneously.
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Appendix

Values of frequency ratios x: and ), and values of the first two roots (1 and ;) of the Timoshenko
frequency equation for different length/diameter ratios (L/D) at various Poisson’s ratios.

Table A1l. Values of x; and y; for different length/diameter ratios at various Poisson’s ratios.

Length/Diameter Poisson’s Ratio T %) Xt Xb

0 3.948 5.476 2.599 3.699

0.1 3.938 5.431 2.626 3.617

0.2 3.928 5.389 2.653 3.541

2 0.3 3.919 5.348 2.679 3.469
0.4 3.909 5.309 2.705 3.402

0.5 3.900 5.271 2.731 3.338

0 4.275 6.336 4.256 4.827

0.1 4.267 6.305 4.288 4.768

0.2 4.259 6.275 4.319 4.712

3 0.3 4.252 6.246 4.349 4.658
0.4 4244 6.218 4.379 4.607

0.5 4237 6.191 4.408 4.558

0 4.439 6.801 6.508 5.511

0.1 4.433 6.776 6.542 5.460

0.2 4.427 6.753 6.576 5.412

4 03 4422 6730 6608 5365
0.4 4.417 6.708 6.640 5.321

0.5 4411 6.686 6.672 5.278
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Table Al. Cont.

Length/Diameter Poisson’s Ratio Y1 Y2 Xt Xb
0 4.530 7.088 9.372 5.992
0.1 4526 7.068 9.408 5.948
0.2 4.522 7.049 9.443 5.906
5 0.3 4.518 7.031 9.477 5.866
04 4.514 7.013 9.510 5.827
0.5 4.510 6.996 9.543 5.790
0 4.645 7496  21.707  6.782
0.1 4.643 7485 21.745 6.755
0.2 4.641 7475  21.782  6.729
8 0.3 4.639 7465 21.818 6.704
04 4.637 7455 21.853  6.680
0.5 4.636 7446 21888  6.656
0 4.675 7613  33.073  7.035
0.1 4.673 7606 33111 7.016
0.2 4.672 7598 33.149  6.997
10 03 4671 7591 33185 6978
04 4.669 7584 33221  6.960
0.5 4.668 7577 33256  6.943
0 4.716 7789  127.726 7.441
0.1 4.715 7786  127.766 7.435
0.2 4.715 7.784 127.804 7.429
20 03 4715 7782  127.841 7423
0.4 4.714 7780 127.877 7.418
0.5 4.714 7778 127913 7.412
0 4.728 7.843  790.220 7.572
0.1 4.728 7.842 790259 7.571
0.2 4.728 7.842 790298 7.570
50 0.3 4.728 7.842  790.335 7.569
0.4 4.728 7.841 790372 7.568
0.5 4.727 7.841  790.408 7.568
0 4.729 7851  3156.257 7.592
0.1 4.729 7.850 3156.297 7.592
0.2 4.729 7.850 3156.335 7.591
100 0.3 4729 7850 3156373 7.591
04 4.729 7.850  3156.409 7.591
0.5 4.729 7.850 3156.446 7.591
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