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Abstract: A nonlinear vibration analysis is conducted on the mechanical behavior of axially
functionally graded (AFG) microscale Timoshenko nonuniform beams. Asymmetry is due to both
the nonuniform material mixture and geometric nonuniformity. Using the Timoshenko beam theory,
the continuous models for translation/rotation are developed via an energy balance. Size-dependence
is incorporated via the modified couple stress theory and the rotation via the Timoshenko beam
theory. Galerkin’s method of discretization is applied and numerical simulations are conducted for a
size-dependent vibration of the AFG microscale beam. Effects of material gradient index and axial
change in the cross-sectional area on the force and frequency diagrams are investigated.
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1. Introduction

Vibrating [1] standard structural continuous elements (plates, shells, and beams) are the building
blocks in many civil structures and machines even at small-scale levels [2–7]. The micro/nanoscale
version of these structural elements are the building blocks of micro/nanomachines [8–11]. In some
of these microscale devices, high thermal resistance in addition to mechanical resistance is required.
One such a way to fabricate such a structure is powder metallurgy, where two materials (usually
ceramics and metal) are mixed to fabricate so-called functionally graded (FG) materials [12–20]. If
the material properties alter in an in-plane/axial direction, the beam/plate structure is called axially
functionally graded (AFG).

At microscales and nanoscales, the mechanical response has been indicated to be
size-dependent [21–31] and thus classical models of elasticity must be modified so as to include
size influences [32–42]. A number of modification procedures based on the nonlocal elasticity [43–46],
couple stress model [47–52], and strain gradient theory [53,54] have been proposed. More recently,
a significant number of size-dependent models with microstructure-dependent deformational and
nonlocal stress influences have been proposed [55,56]. The practicality and validity of nonlocal strain
gradient models have been also tested and demonstrated for describing different physical phenomena
at ultrasmall levels [57]. These models have been also developed for small-scale FG beams [58,59].
In this analysis, according to a modified version of the couple stress theory (CST), size influences
are described.

The motion behavior of AFG microscale beams has been investigated in a limited number of
papers. Akgoz and Civalek [60] employed a linear vibration theory for the analysis of nonuniform AFG
microscale beams via a modified version of the CST for determination of mode-shapes and natural
frequencies. Simsek [61] conducted a nonlinear analysis on a single degree of freedom (DOF) model of
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AFG microscale beams employing the modified CST. Shafiei et al. [62] applied a single-mode-truncation
for the axial/transverse oscillation analysis of AFG tapered microscale beams.

The asymmetric scale-dependent vibrations of AFG microscale Timoshenko nonuniform beams is
investigated incorporating rotation using the Timoshenko beam theory; this is for the first time. The
translational motions are also formulated coupled with the rotational motion. The size-dependence is
incorporated using the modified CST. An energy method is used to derive the coupled continuous
model. Galerkin’s method for discretization is used and the resultant model is solved numerically for
frequency/force diagrams.

2. Model Development

A two-phase (ceramics–metal) nonuniform AFG microscale Timoshenko beam with all ends
clamped is shown in Figure 1; the length, thickness, and width are shown by L, h, and b, where the
latter one varies with x (as the axial coordinate). Also, [φ; w; u] are [rotation; transverse-displacement;
axial-displacement]. The microscale beam is subject to F(x)cos(ωt) transversely. It is assumed that
the microbeam is thick and short, therefore the Timoshenko beam theory is utilized, which is more
appropriate than the Euler–Bernoulli one in this case. In addition, it is assumed that size influences are
induced only by couple stresses. Another assumption is that the geometrical nonlinearity is induced
only by the stretch of the microbeam centerline. This assumption is reasonable since the effects of
curvature-type nonlinearity can be neglected when the boundary conditions are clamped.
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Figure 1. Axially functionally graded (AFG) microscale nonuniform Timoshenko beam: (a) Side view; 
(b) top view. 
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Figure 1. Axially functionally graded (AFG) microscale nonuniform Timoshenko beam: (a) Side view;
(b) top view.

The axial variations for nonuniformity in geometry and material properties are defined as [63]:

X(x) = ( x
L )

n(XR −XL) + XL, with
X ≡ [E; b;ρ; l; ν]
µ(x) = E(x)/[2(ν(x) + 1)]
hR = h,
hL = h,
A(x) = hb(x),

(1)
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with [L; R] as [left-end; right-end] of the microbeam. Also [µ; E; l; ρ; ν] are [shear modulus; Young’s
modulus; length-scale parameter; mass density; Poisson’s ratio]; the length scale parameter is the
representative of the modified CST employed in the modeling of the AFG microsystem; A is the
area of cross-section. It should be noticed that the mechanical behaviors of macroscale structures are
scale-free, namely the non-dimensional mechanical characteristics are not dependent on the size of the
structure [64–67]. In contrast, size influences have an important impact on the mechanics of microscale
structures. For instance, the dimensionless natural frequency of a microscale beam alters when its
length is changed. For a Timoshenko beam [68]:

θy = 1
2

(
φ− ∂w

∂x

)
,

θx = θz = 0,
(2)

χxy = χyx =
1
4

(
∂φ

∂x
−
∂2w
∂x2

)
, (3)

εxz =
1
2

(
φ+ ∂w

∂x

)
= εzx,

εxx = ∂u
∂x + 1

2

(
∂w
∂x

)2
+ z∂φ∂x ,

(4)

defining Ks as shear correction, the potential energy becomes (when Equations (3) and (4) are
considered) [69]:
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(5)

In the above relations, large deformations are also incorporated since large deformations
happen in many engineering problems at both ultrasmall and large-scale levels [70–78].
An internal-damping-related work is:

δWD = −cd

∫ L

0

(
δu
∂u
∂t

+ δw
∂w
∂t

)
dx− cr

∫ L

0

(
δφ
∂φ

∂t

)
dx. (6)

Where cr and cd denote the damping coefficient related to rotation and displacements, respectively.
The external-force one becomes:

δWT =

∫ L

0
F(x) cos(ωt)δw dx. (7)

The motion energy, incorporating rotary inertia, is [69]:

T =
1
2

∫ L

0

ρ(x)A(x)
(
∂u
∂t

)2

+ ρ(x)I(x)
(
∂φ

∂t

)2

+ ρ(x)A(x)
(
∂w
∂t

)2
dx. (8)

Hamilton’s principle as [79–83]:∫ t2

t1

(δT − δU + δWT + δWD)dt = 0, (9)
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for Equations (5)–(8) gives the following dimensionless continuous model:
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with the dimensionless quantities given (asterisk is ignored for briefness):

x∗ = x
L , (u∗, w∗) = (u,w)

h , E∗(x) = E(x)
EL

,

ρ∗(x) = ρ(x)
ρL

, µ∗(x) = µ(x)
EL
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h ,
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(13)

3. Discretized Equations of Motion and Solution Procedure

The continuous model of the AFG microscale nonuniform Timoshenko beam is discretized using
Galerkin’s technique [84–87]. As such:

w(x, t) =
8∑

j=1
ϕ j(x)q j(t),

φ(x, t) =
8∑

j=1
ψ j(x)p j(t),

u(x, t) =
8∑

j=1
ξ j(x)r j(t),

(14)

with time-dependent terms as generalized coordinates and x dependent as basis functions of a
clamped-clamped non-AFG beam. The basis functions depend on the boundary conditions of the
beam regardless of its material [88–90]. Since the boundary conditions are clamped-clamped, the basis
functions of a non AFG clamped-clamped beam can be used in this analysis. They are normalized
using the non-dimensional parameters given by Equation (13). These basis functions make a good
approximation because of two reasons: (1) They satisfy the boundary conditions of the beam, and (2) a
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high number of them are used in the solution procedure, which leads to a good approximation. Taking
f (x) = f 1, inserting Equation (14) into Equations (10)–(12) gives:

8∑
j=1
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Employing a 24 DOF model (with equal dimensions for each motion) ensures converged results.
The pseudo-arclength continuation method is used for numerical simulations.

4. Asymmetric Size-Dependent Vibrations

Consider an AFG microscale nonuniform Timoshenko beam with [h = hR = hL= 2 µm; lR = 0.2 µm;
lL = 0.8 µm; L/h = 60; bL/h = 1; bR/h = 3]; a modal damping ratio of ζ=0.009 is used throughout; ζ is
defined as the ratio of damping coefficient (c) to critical damping coefficient (ccr). The AFG microsystem
is made of Aluminium at the left end and ceramics (SiC) at the right end; [ρL = 2700 kg/m3; EL = 69 GPa;
νL = 0.33], and [ρR = 3100 kg/m3; ER = 427 GPa; νR = 0.17]; Ks =5/6. These values have been used
unless otherwise stated.

Figure 2 shows the asymmetric and symmetric vibrations (in frequency diagrams) where
ω1 = 42.2806. The asymmetry in material distribution and nonuniform geometry give rise to
asymmetric modes of vibration. The peak amplitude in the q1 motion is almost 5 times that of the q2

motion; the contribution of the q2 motion is quite strong. The motion (in all the symmetric/asymmetric
modes) is hardening with two saddle-type bifurcations at Ω/ω1 = 1.2254 and 1.0447. The number
of stable branches is two and that of unstable is one; as the frequency is increased, the response
amplitudes in the frequency diagrams increase until hitting point A, where practically a jump occurs to
a lower motion amplitude, then the asymmetric/symmetric vibration amplitudes decrease with further
frequency increment. A decrease in the frequency from the upper-bound in the figure, the AFG system
shows a reverse scenario characterized by an amplitude jump at point B.
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dimensions. This figure highlights that neglecting higher modes in the analysis results in both linear
and nonlinear results.
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The force diagrams are shown in Figure 4 for both asymmetric and symmetric vibration modes
for ω1 = 42.2806. For all the symmetric and asymmetric components of axial/rotational/transverse
motions, there are two bifurcations at f 1 = 137.3 and 22.9, representing the jumps. For sufficiently
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effect of the MCS theory in the linear regime. In addition, capturing scale influences leads to an 
increase in the frequency parameter of AFG microbeam since scale influences associated with couple 
stresses increase the structural stiffness at microscales. Size effects are very significant at nanoscales 
and microscales [91–98]. A comparison between Figures 5 and 6 reveals that, in the presence of a 
larger gradient index, the size-dependence is more significant. The nature of hardening nonlinearity 
remains the same for both the theories and for both the asymmetric/symmetric vibration modes. 
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Figures 5 and 6 highlight the importance of employing the modified CST, for n = 1.0 and 8.0
(i.e., for a linear and nonlinear material and width variations, respectively), respectively. For both the
gradient indices, a reduction in the peak amplitude is observed according to the modified CST for all
the asymmetric and symmetric motions owing to the fact that at microscales, the structural stiffness
is increased when the modified CST is utilized; a shift to the right is also observed, which shows
the effect of the MCS theory in the linear regime. In addition, capturing scale influences leads to an
increase in the frequency parameter of AFG microbeam since scale influences associated with couple
stresses increase the structural stiffness at microscales. Size effects are very significant at nanoscales
and microscales [91–98]. A comparison between Figures 5 and 6 reveals that, in the presence of a larger
gradient index, the size-dependence is more significant. The nature of hardening nonlinearity remains
the same for both the theories and for both the asymmetric/symmetric vibration modes.
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The taper ratio effect on the frequency diagrams is highlighted in Figure 7; the motion is hardening
for all the cases. The largest peak amplitude is for the ratio of 0.5. The asymmetric transverse mode is
weakened as the taper ratio is decreased. The larger the taper ratio is (i.e., the right end is thicker than
that of the left end), the linear natural frequency increases and the transverse fundamental nonlinear
peak-amplitude decreases; nevertheless, this is reverse for the secondary transverse mode. Moreover,
the asymmetric axial mode and the rotation follow the scenario of the fundamental transverse mode.
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Figure 8 shows that how the gradient index alters the coupled frequency diagrams. In the
symmetric transverse modes, increasing n increases the peak-amplitude; the same-scenario happens
for the symmetric rotation. Moreover, increasing the gradient index decreases the natural frequency in
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both the linear and nonlinear regimes for the transverse and rotation motions; this is not necessarily
valid for the axial motion in the nonlinear regime.
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5. Concluding Remarks 

This study aimed at conducting an analysis on the nonlinear asymmetric vibrations of AFG 
microscale nonuniform Timoshenko beams. All the asymmetric and symmetric components of the 
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5. Concluding Remarks

This study aimed at conducting an analysis on the nonlinear asymmetric vibrations of AFG
microscale nonuniform Timoshenko beams. All the asymmetric and symmetric components of the
coupled transverse/rotational/longitudinal motion (displacement/velocity/acceleration) were retained
in the analysis. The modified CST is used to incorporate size dependence. Beam’s width and material
properties were assumed to be functions of the axial coordinate. An energy method was utilized for
the coupled equations. Galerkin’s method was applied and the resultant high-dimensional system was
integrated numerically. From the numerical results, the following new findings were concluded:

• Asymmetry and stretching-type nonlinearity in the AFG microsystem cause necessity for a high
DOF analysis.

• The size effect is more significant for larger gradient indices.
• For larger gradient indices, the symmetric transverse and rotational-mode peak-amplitudes

are larger.
• All the asymmetric and symmetric modes in the coupled transverse/axial/rotational motion display

hardening motions.
• The modified CST, in all the asymmetric and symmetric modes, reduces the peak-amplitude and

shifts the frequency diagrams to the right.
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