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Abstract: This study examines the vibratory characteristics of rectangular membranes having an outer
rounded-edges periphery. This class of membranes with rounded outer corners has a great advantage
over membranes with a rectangular platform wave propagation at the boundary being greatly diffused.
As a result, such membranes have a great potential for use in practical engineering applications,
especially in waveguides-based structures. Based on an effective 2D Differential-Quadrature numerical
method, the frequencies and respective modeshapes of a rectangular membrane with rounded-edges
are computed. This method is shown to yield better versatility, efficiency and less computational
execution than other discretization methods. The simulated results, showing complex mode exchanges
occurring for the higher order modes, demonstrate advantageous use for such membrane patterns in
the design of tunable waveguides.
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1. Introduction

The vibrational properties of the membrane are essential in the design of drums, speakers, receivers,
and more significantly acoustic and electromagnetic transverse mode (TM) waveguides. Such devices
are basic structures confining and conveying microwaves. Such characteristics of membranes with
classical boundary shapes edges, such as circle, ellipse, and rectangle, have been previously investigated
using separation of variables methods [1,2]. For all other irregular boundary shapes, numerical or
semi-numerical means are necessary. To this end, the present paper considers a rectangular membrane
with rounded-edges type of boundaries. For both membranes and waveguides, such arrangement of
the boundaries is easier to manufacture than rectangular shaped edges, and because of the rounding,
energy losses are expected to be minimal [3].

Previous reports [4–9] on the Helmholtz equation governing the free vibrations of rectangular
membranes assuming rounded-edges boundaries were somehow incomplete. Using finite elements,
Lagasse and Van Bladel [4] considered three fundamental transverse magnetic modes with not a
single reported numerical frequency. An improved finite element method was carried out by Ooi and
Zhao [5]; however, only one fundamental frequency was reported. A dual-coordinate finite difference
method was suggested by Fanti and Mazzarella [6] without reported numerical results. Eigenfunction
expansion and boundary integral were suggested by Ruiz-Cruz and Rebollar [7] with one reported
fundamental transverse magnetic frequency. A method for a two-region point match was used by Shen
and Lu [8], also for one examined frequency. Notice that the rounded-edges boundary arrangement is
somehow unsuitable for the boundary-fitting Ritz method, which was formerly applied successfully to
rectangular and skew type of membranes in [9,10].

The aim of the present work is to propose the use of an accurate modal expansion methodology
along with a point match technique to acquire the first lowest frequencies and modeshapes for a
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rectangular membrane assuming rounded-edges boundary. The results could be relevant as well for
the analysis of the TM modes in membrane like waveguides.

2. Problem Formulation and Numerical Methodology

Figure 1a shows a membrane with rounded-edges boundaries. The membrane is composed of a
rectangle of 2L by 2aL (a > 0) with semi-circular ends of radius L. The aspect ratio is thus equal to:

AR =
2aL + 2L

2L
= a + 1. (1)

Normalizing all the lengths by the membrane half width L and the frequency by L
√
ρ/T where ρ

is the mass per area and T is the tension, the membrane transverse vibration amplitude w is governed
by the following Helmholtz equation [2]:

∇
2w +ω2w = 0, (2)

where ω is the normalized frequency. The boundary conditions are initialized such that w is zero on
the boundaries.

Next, let the Cartesian coordinates (x, y) be situated at the membrane centroid. Since the
membrane shape has vertical and horizontal symmetries, there can only be four kinds of vibration
modes as follows:

• The SS modes: symmetrical in both x and y directions,
• The SA modes: symmetrical in the x direction and anti-symmetrical in the y direction,
• The AS modes: anti-symmetrical in the x direction but symmetrical in the y direction, and
• The AA modes: anti-symmetrical in both x and y directions.
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Figure 1. (a) 2D schematic of the rectangular membrane with rounded-edges boundary and (b) the
first quadrant illustrating the assumed polar coordinates.

Considering the first quadrant shown in Figure 1b, assuming the displayed polar coordinates (r,
θ) at the center of the semi-circle, the solution to Equation (1) can be written as a sum of the membrane
eigenfunctions as follows: 

w(r,θ) =
n−1∑
i=0

Ai cos(iθ)Ji(ωr)

or

w(r,θ) =
n∑

i=1
Ai sin(iθ)Ji(ωr)

. (3)

In the above expressions, Ai are unknown coefficients, Ji are the Bessel function of the first kind,
and the infinite sum is truncated to n-terms.
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The boundary conditions are fulfilled through an n equally-distributed points on the membrane
frontier, consisting of the straight segments: AB, BC and the circular segment: CD. For the points on
the segments BC and CD, w is set to zero for all examined modes.

• For the SS mode, the cosine form in Equation (2) is selected, and, for the points on the segment
AB, the normal derivative of w is set to zero, i.e.:

∂w
∂x

= cos(θ)
∂w
∂r
−

sin(θ)
r

∂w
∂θ

= 0. (4)

• For the SA mode, the sine form in Equation (2) is chosen, and Equation (3) on AB holds.
• For the AS mode, the cosine is selected and w is set to zero on AB.
• For the AA mode, the sine is chosen and w is set zero on AB.

The free vibration differential equation (the Helmholtz equation), Equation (2), can be solved for
its respective natural frequencies and modeshapes using some numerical descretization techniques
such as: the Finite-Difference Method (FDM), the Galerkin Modal Expansion Technique resulting
into a Reduced-Order Model (ROM)), the Differential-Quadrature method (DQM), the Rayleigh–Ritz
Expansion, etc . . . In this work, the DQM will be used. The central motivation behind assuming DQM
as a discretization technique is that the different order partial derivatives of a function at a given
point can be approximated by a weighted sum of function values at all discrete points in the variable
domain [11,12]. Therefore, the kth order derivative of a function at a given point in the space can be
approximated within an acceptable error range with weighted linear sum of functional values at all
discrete points in the assumed space [12]. It has been observed that DQM has few advantages over the
other descretization techniques such as [13]:

• there is no restriction required on the distribution and number of discrete grid points, and
• the weighting coefficient can be determined using a simple recurrence relation instead of solving

a set of linear algebraic equations.

The conditions on the discrete N points results into N linear algebraic equations. For non-trivial
coefficients Ai, the determinant of the coefficients is set to zero, yielding the frequency ω.

Let M be the number of points on segment AB. The total number of points is

N = Integer(M(1 + a + π/2)). (5)

3. Results and Discussion

In this section, the results are presented and discussed. Table 1 shows the convergence rate as the
considered points in the DQM method are increased. It is worth mentioning that the convergence is
fairly fast. We used M = 5 with at least four-digit accuracy (error around 10−4).

Next, Table 2 shows a comparison with the few published results. It is worth noting that, although
boundary collocation methods have been used a lot in several mechanics related problems [14], its
convergence is not guaranteed. The effectiveness of the present method mainly relies on the centrally
located polar coordinates and the evenly-spaced collocation points on the boundaries.

Table 1. Convergence rate of frequency k for some typical cases.

M a = 1
1st Mode-SS

a = 1/2
4th Mode-SS

a = 3/2
6th Mode-AA

a = 3/4
7th Mode-SA

a = 2
9th Mode-AS

2 1.7862 3.7204 3.4515 4.3762 3.6150
3 1.7860 3.7203 3.4508 4.4542 3.6153
4 1.7859 3.7209 3.4506 4.4546 3.6154
5 1.7859 3.75209 3.4506 4.4546 3.6154
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Table 2. Comparison of the first (fundamental) frequency for the case of a = 1 (AR = 2) and assuming
the SS case.

Reference Numerical Method Frequency

[4] Finite elements 1.809
[6] Boundary integrals 1.7858
[7] Two regions point match 1.786

Current Work DQM 1.7858

Having examined the accuracy of the numerical approach, we proceed next to study the vibrational
properties of the rectangular membrane with rounded-edges. Table 3 lists the first lowest frequencies
for various assumed aspect ratios and Figure 2 outlines the first vibrational modeshapes assuming
three different aspect ratios. Note that, for the case of a = 0, the membrane is simply a circle, for which
the exact solution can be written as:

w(r,θ) = cos(iθ)Ji(ωr) or w(r,θ) = sin(iθ)Ji(ωr) (6)

and the frequency ω is the root of Ji(ωr) = 0. In addition, and due to polar symmetry, some circular SS
modes and AA modes have the same frequency, and the eigenfunctions are the same when rotated a
certain angle. Similarly, some AS modes are the same as the SA modes. We included both forms to
illustrate the continuity of the modes.

Table 3. The lowest frequencies of the rectangular membrane with rounded edges assuming different
aspect ratio cases. SS, AS, SA and AA denote the respective modeshape.

a = 0 a = 1/4 a = 1/2 a = 3/4 a = 1 a = 3/2 a = 2

2.405
SS

2.118
SS

1.953
SS

1.852
SS

1.785
SS

1.707
SS

1.664
SS

3.832
AS

3.189
AS

2.778
AS

2.501
AS

2.306
AS

2.061
AS

1.918
AS

3.832
SA

3.546
SA

3.4036
SA

3.282
SS

2.962
SS

2.537
SS

2.277
SS

5.135
SS

4.335
SS

3.720
SS

3.324
SA

3.275
SA

3.073
AS

2.69
AS

5.135
AA

4.460
AA

4.056
AA

3.804
AA

3.640
AA

3.222
SA

3.146
SS

5.52
SS

5.071
SS

4.678
AS

4.102
AS

3.668
AS

3.45
AA

3.195
SA

6.38
AS

5.444
AS

4.879
SA

4.454
SA

4.159
SA

3.636
SS

3.35
AA

6.38
SA

5.5
SA

4.921
SS

4.832
SS

4.387
SS

3.794
SA

3.592
SA

7.015
AS

5.967
AS

5.493
AS

4.951
SS

4.761
AA

4.212
AS

3.615
AS

7.015
SA

6.521
SS

5.635
SS

5.177
AA

4.816
SS

4.218
AA

3.900
AA

7.588
SS

6.526
AA

5.745
AA

5.238
AS

5.044
AS

4.692
SA

4.0944
SS

7.588
AA

6.601
SA

6.270
SS

5.812
SS

5.4
SA

4.758
SS

4.257
SA
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Figure 2. The first lowest modeshapes of the rectangular membrane with rounded-edges showing 
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Figure 2. The first lowest modeshapes of the rectangular membrane with rounded-edges showing
mode swapping between the 3rd and 4th modes, and also among the 5th and 7th modes.

Considering both Table 3 and Figure 2, one can realize that the normalized frequencies decrease
with increasing the membrane aspect ratio. Furthermore, the fundamental (lowest) frequency is always
the first SS mode, which has no interior nodal curves. The second lowest frequency denotes the
AS mode, with a single nodal line through the centroid and perpendicular to the major axis. For a
larger value of the aspect ratios, the modeshapes intersperse sequentially between SS and AS, almost
perpendicular to the major axis. The SA mode is the 3rd mode for a low aspect ratio; nevertheless,
it converts to the 4th mode for the cases of a = 1/2 and a = 3/4. It is then converting to the 5th mode
for a = 3/2 and the 6th mode for a = 2. In general, SA mode and AA modes decrease in the order
hierarchy with increased aspect ratio. Numerous mode changes occurred for several assumed cases,
especially for higher modes, offering the possibility for such membranes to be used as waveguides of
distinguishing frequency tunability characteristics.
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4. Conclusions

In this work, a Differential-Quadrature Method was examined to obtain the frequencies and
their respective modeshapes of a rectangular shaped membrane assuming rounded-edges boundaries.
The examined method was shown to be numerically effective and accurate in comparison to other
methods. The discussed results showed complex mode exchanges occurring for the higher order
modes, demonstrating an opportunity of such rounded-edges membrane design to be used in frequency
tunable based waveguides-based applications.
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