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Abstract: This paper aims to focus on the design and analysis of a novel ring-based mono-stable
energy-harvesting device that is considered as an alternative to the beam and tube models used thus
far. The highly sensitive ring second flexural mode, when combined with the nonlinear external
magnetic force, results in an ideal combination that yields increased frequency range, and can be
considered as novel in the field of vibration-based energy harvesters. A mathematical model for the
ring structure, as well as a model to generate nonlinear magnetic force that acts on the ring structure,
is formulated. The discretized form of the governing equations is shown to represent a Duffing
oscillator in the presence of an external magnetic field. The forms of the system potential energy,
as well as the restoring force, are examined to ensure that the mono-stable behavior exists in the
proposed model. Numerical predictions of time response, frequency response, phase diagram, and
bifurcations map when the system is subjected to ambient harmonic excitation, have been performed
for the purposes of gaining an insight into the dynamics and power generation of this new class
of harvesters.

Keywords: ring harvester; mono-stable system; nonlinear energy harvesting; macro scale; low
frequency; linear system; nonlinear actuator

1. Introduction

The exploitation of nonlinear dynamic system phenomena in the design of vibration-based
harvesters has recently received much attention. The nonlinearity is often brought to the system via
external co-ordinate-dependent nonlinear force. The present study focusses on the interaction of
nonlinear magnetic forces that act on a flexible ring structure. An investigation into the performance of
such a novel design, namely the mono-stable ring structure with nonlinear magnetic force, has been
demonstrated via numerical simulations.

The nonlinear energy harvesters have become an evolving alternative to the use of batteries within
electrical sensing and instrumentation systems. Vibration energy can be converted to electric energy
using the common transduction mechanisms based on piezoelectric [1,2], electrostatic forces [3], or
electromagnetic forces [4]. Several studies have described the behavior of mono-stable and bi-stable
type nonlinear vibration energy harvesters; however, few studies compared their performance relative
to one another. Daqaq et al. [5] provided a basic electromechanical model of a beam that can be used
to build a quantitative understanding of nonlinear vibration energy harvester and they found that
output voltage depends on the magnitude of base acceleration and the shape of the potential well. In
particular, Stanton et al. [6] showed how magnetic levitation could be used to extend device bandwidth
through a hardening frequency response.
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A mono-stable energy harvester tube-structure that utilizes magnetic force is proposed by Mann
and Sims [7]. In this study, the effect of large amplitudes on a wide frequency range is investigated.
Further, Mann and Owens [8] investigated nonlinear behavior of a bi-stable energy harvester considering
a series of magnets that are positioned to design a bi-stable tube system. Experimental and theoretical
investigations are performed to extend the frequency range via a potential well. In another study
related to the tube structure, Liu et al. [9] investigated a single degree of freedom oscillator in a
cylindrical tube vibration energy harvester. The primary purpose of their study was to establish a
dimensionless performance analysis method of a nonlinear electromagnetic vibration energy harvester
system and to detect the effects of the parameters and nonlinearity of the system on the harvester
performance. Zheng et al. [10] and Ramlan et al. [11] investigated the stochastic and periodic excitation
of a bi-stable beam structure harvester theoretically and experimentally. Results of this study indicate
that using a periodic excitation is more useful than the stochastic excitation to increase the bandwidth.
Masana and Daqaq [12] investigated the influence of the potential shape and the excitation level on
the performance of mono-stable and bi-stable clamped-clamped flexible beam-based vibration energy
harvester. The study concluded that when the harvester is subjected to a base acceleration of small
amplitudes, the mono-stable harvester outperformed the bi-stable harvester with deeper potential
shape, whereas at high amplitudes, the bi-stable harvester performed better. Abusoua and Daqaq [13]
demonstrated via theoretical work that the effective nonlinearity associated with the resonant dynamics
of a mono-stable asymmetric oscillator can be adjusted by injecting a hard high-frequency non-resonant
excitation. In another study, Abusoua and Daqaq [14] demonstrated experimentally that vibration
resonance phenomenon in bi-stable mechanical oscillators could help activate the inter-well dynamics
of a bi-stable structure at lower amplitudes of the slow excitation. Shengxi et al. [15] proposed a
novel nonlinear piezoelectric energy-harvesting model that consists of a linear piezoelectric energy
harvester connected by linear springs to improve broadband energy harvesting based on a beam
structure. Martínez-Ayuso et al. [16] performed an experimental study employing novel materials,
such as the porous piezoelectric ceramics, in order to validate the applicability of homogenization
theories and finite element approaches for energy harvesting applications. In their work, the beam is
excited in a range of frequencies close to the first and second modal frequencies using base excitation.
It may be noted that use of such materials can be considered as promising in the field of present and
future vibration-based energy harvesters. Zhou and Zuo [17] demonstrated that nonlinear dynamic
analysis of asymmetric tri-stable energy harvesters could be used for enhanced energy harvester for
various conditions.

It is worth noting that most of the studies described above employed beam and tube structures
to design harvesting systems. However, ring structure harvester is more promising due to inherent
advantages such as high mode sensitivity and minimal sensitivity to temperature fluctuation when
compared with other structures. To the best of the author’s knowledge, it appears that no study has
been performed on employing a ring structure as a harvester. Hence, there is a need for extending
the applications to other responsive structural systems such as the ring systems proposed in the
present study.

A number of studies on the linear and nonlinear dynamic behavior of vibrating rings have been
undertaken in the recent past. Evensen [18] performed one of the early studies on the nonlinear
vibration of rings considering only the in-plane vibrations of a thin circular ring and derived nonlinear
equations of motion. Evensen [19] later performed detailed studies on nonlinear flexural vibrations of
rings considering two vibration modes. Further, the dynamic behavior of angular rate sensors that
are subjected to external excitation was studied by Huang and Soedel [20] to evaluate the natural
frequencies and mode shapes under ring rotation. Asokanthan and Cho [21], and Cho [22] developed
mathematical models for rotating ring-based angular rate sensors for the purposes of investigating
linear, nonlinear dynamic behavior and dynamic stability of angular rate sensors. The dynamic response
behavior of rotating thin circular rings for use in vibratory angular rate sensors was investigated
by Gebrel et al. [23] via numerical simulations, by employing the linearized model considering the
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second mode. In the same study, they developed a suitable theoretical model to generate nonlinear
electromagnetic forces that are used for exciting the ring from two positions to obtain improved
device sensitivity.

In the present study, a novel ring-based nonlinear energy harvester device is designed. Magnetic
forces are employed to generate appropriate nonlinear systems that exhibit mono-stable behavior
which can be utilized as harvester. A mathematical model that represents the dynamic behavior
of the system is derived based on a vibratory ring assuming that the ring is completely symmetric.
The equations of motion are simplified by ignoring the extensional vibrations, since only the second
resonant flexural mode is excited in this class of applications. An external magnetic field is employed
in a repulsive configuration to assist the harvesting of energy from the vibratory flexural motion of the
ring when subjected to ambient sources. The dynamic behavior of ring harvester has been investigated
via numerical simulations to examine the efficacy of this class of harvesters. Time responses, a phase
diagram, and a bifurcation map are investigated under harmonic excitation that represents ambient
energy sources. Frequency response in the form of bifurcation maps is utilized to optimize the
conditions for harvester operation. It is worth noting that the current proposed ring configuration has
multiple magnet positions to attain the harvesting function compared to the beam, which has limited
positions for the magnets. Further, the proposed ring harvester can also benefit from multiple driving
directions for a single ring, which is not feasible with a single beam structure.

2. Governing Equations

The governing equations of flexural motion of vibrating thin circular rings are developed for the
purpose of investigating the dynamic behavior of ring harvester. In the present model, simplified
equations of motion have been obtained by assuming the circumferential strain in mid-surface
is zero and isotropic, as well as homogenous material properties. In addition, Euler–Bernoulli
assumptions—that the plane sections remain plane after deformation and normal to the neutral
surfaces, and that the transverse shear deformation effect is ignored as presented by Asokanthan and
Cho [21]—are adopted in this model. Galerkin’s procedure is used to discretize the equations for
numerical response predictions. The viscous damping of the ring harvester is included in the final
approximated equations of motion.

Figure 1 illustrates the geometry and parameters used in the present study. The ring is considered
to be supported internally with eight springs with the stiffness components kr and kθ, which represent
the radial, and circumferential components, respectively, while ur and uθ represent the transverse and
circumferential displacements, respectively. The support springs are considered to possess significantly
low stiffness and hence assumed not to have significant effects on the ring. A body-fixed frame X, Y, Z
has been used for representing the angular motion of the ring with respect to the inertial frame R,
and the locations of the neutral surface elements in the rotational co-ordinates can be defined by
introducing curvilinear surface co-ordinates α1,α2, and α3.
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The general equations of motion that govern the transverse and circumferential motions can
be derived via Hamilton’s principle, as described in the papers by Asokanthan and Cho [21] and
Huang and Soedel [20]. For this purpose, expressions for various energy terms are developed. The
kinetic energy of the rotating ring is generated in the absence of translational and rotational rigid body
motion of the ring. Under this condition, using the equations developed in Cho [22] in the presence
of external nonlinear magnetic excitation force fNm (An, Bn,θi) as well as an ambient force fe , the
governing equation for the vibrating ring with linear in-extensional condition in the radial direction
takes the form:

EA
br2

(
u′θ + ur

)
−

EI
br4

(
u′′′θ − u′′′′r

)
+ krur + ρh

..
ur = fNm (An, Bn,θi) + fe , (1)

where the time derivatives are indicated by
.
( ), while the spatial derivatives are indicated by ( )′. In

Equation (1), E is Young’s modulus, I denotes the area moment of inertia for the ring cross-section ,ρ
represents mass density, EI represents flexural rigidity, A is the cross-sectional area of ring, b denotes
axial thickness of ring, h represents radial thickness, and r is the mean radius of the ring. Oscillatory
external nonlinear magnetic force magnitude is represented by fNm (An, Bn,θi), while the area moment
of inertia of the ring cross-section about its neutral axis is expressed as I = bh3/12.

Assuming mode shapes for the ring second flexural modes, the partial differential Equation (1)
is reduced to linear ordinary differential equations by applying Galerkin’s procedure. Due to the
periodic nature of solutions and choice of deflection modes, the most general radial and circumferential
(extensional) displacements compatible with the continuity requirements can be assumed as follows [18]:

ur = [An(t) cos nθ+ Bn(t) sin nθ] (2)

uθ = −
1
n
[An(t) sin nθ+ Bn(t) cos nθ] (3)

where An and Bn denote time-dependent generalized co-ordinates, while n denotes the number of
modes. Evensen [18] has performed a detailed investigation of the dynamics of this class of structures.
Each An and Bn can, in turn, be expanded as a Fourier series in time; thus, it is possible to represent
virtually any radial or circumferential deflection of interest here in the Equations (2) and (3). The
functions cos nθ and sin nθ are the linear vibration modes of the ring; and since only flexural motions
are considered, Equations (2) and (3), in the present study, are restricted to n = 2. In order to apply
Galerkin’s procedure, Equations (2) and (3) are substituted for ur in Equation (1) and the resulting
expression is then multiplied by weighting function associated with An(t) and integrated with respect
to θ from 0 to2π. This procedure yields an ordinary differential equation involving primarily An(t).
When an equation for Bn(t) is obtained in a similar fashion, both equations are coupled in the linear
terms. The weighting functions used in this procedure are:

∂ur

∂An
= cos(nθ), (4a)

and
∂ur

∂Bn
= sin(nθ), (4b)

to obtain the equations for the co-ordinates An(t) and Bn(t), respectively.
The equations of motion that govern linear dynamic behavior employing the second mode with

nonlinear magnetic force, as well as harmonic ambient excitation, are derived employing Equations (1)
through (4a) and (4b) as

ρhπ
..

An + 2ζω0
.

An +
[ EI
br4

(
n2
− 1

)
n2 + kr

]
πAn = fNm1 (An, Bn,θi) + fe (5)



Vibration 2019, 2 275

ρhπ
..

Bn + 2ζω0
.

Bn +
[ EI
br4

(
n2
− 1

)
n2 + kr

]
πBn = fNm2 (An, Bn,θi) + fe (6)

In Equations (5) and (6), the co-ordinate An can be considered to represent the primary excitation
or the driving co-ordinate of the ring, while the co-ordinate Bn can be used as a secondary driving
co-ordinate. The primary and secondary directions are shown in Figure 2. The parameter ζ represents
the mechanical damping ratio, and ω0 represents natural frequency.
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Figure 2. Visualization of primary and secondary directions of the ring, showing Nodal and
Anti-nodal lines.

In the present study, only the second flexural modes are considered, hence, the number of nodal
diameter (or mode number) n in the equations of motion, is taken to be 2. In order to represent the
external forces in the ring, nonlinear magnetic forces fNm1,2 (An, Bn,θi) are considered as an external
force. The harmonic excitation to be received from the ambient vibratory energy sources is represented
by fe = f cos(ωt), where ω is the excitation frequency, and f is the excitation amplitude. The positions
of magnets on the system correspond to θi, i = 1, 2, 3, 4.

The present study focuses on a mono-stable energy-harvesting-based ring structure using the
primary co-ordinate and, hence, Equation (5) must be employed together with an equation that
represents the output power generation. The governing equations for the energy generator directly
powering a resistive load are given by

ρhπ
..

An + 2ζω0
.

An +
[ EI
br4

(
n2
− 1

)
n2 + kr

]
πAn − γ1I = fNm1 (An, Bn,θi) + fe (7)

L
.
I + Ř I + γ1

.
An = 0 , (8)

where An is the displacement of the ring in the transverse directions, I is the electrical current, is the
inductance of the coil, and Ř represents the load resistance, while γ1 denotes the transducer constant
(see, e.g., Ref. [8]), which can be derived from Faraday’s law of inductions, that couples the mechanical
and electrical systems.

3. Development of Nonlinear Magnetic Forces for the Ring-Based Harvester Model

A schematic diagram of the magnetic configurations system is shown in Figure 3. Many
arrangements of the magnets have been examined so that an efficient ring harvester system utilizing
the second mode of a ring structure can be realized in practice. In order to represent the oscillatory
nonlinear magnetic force that acts on the ring structure, a novel design and analysis of a theoretical
model formulation is employed. This analysis is restricted to mono-stable configurations. For the
purposes of accounting the interactions between the magnets (mA, mB, and mC), the potential energy
and force expressions are derived from a dipole model by the law of Biot and Savart (see, e.g., Ref. [24]).
The important features of the force characteristics are introduced via force expressions for an interacting
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magnetic dipole for one side of the system, as shown in Figure 3. The magnetic flux density is
defined by

→

BBA = −
µ0

4π
∇

→
mB.

→
rBA∣∣∣∣→r BA

∣∣∣∣3 , (9)

where µ0 = 4π × 10−7H/m denotes the magnetic permeability of free space, ∇ is vector gradient,
→
mB = −MBVB

→
e r, MB is the magnetization, and VB represents the volume of the source magnet, and∣∣∣∣→r BA

∣∣∣∣ = −(d− ur)
→
e r is the distance between magnets mB and mA. The potential energy of the magnet

→
mA in the field generated by the magnet

→
mB is

Um = −
→
mA.

→

BBA, (10)

where
→
mA = MAVA, MA is the magnetization, VA represents the volume of the source magnet, and

Um is the potential energy, (see, e.g., Ref. [24]). The expression for the interaction force between the
magnets can then be obtained by taking the gradient of Equation (10). As shown in Figure 3, magnets
B and C are identical and their distance from magnet A is designated as d. The expression for the total
potential energy associated with magnets A, B and C can be derived employing Equations (9) and (10)
considering the flux density between the magnets:

Um =
µ0

2π
MAMBVAVB

 1

(d− ur)
3 +

1

(d + ur)
3

, (11)

where d represents the distance between magnets. An expression for the magnetic force between two
magnets can now be obtained by differentiating the potential energy expression Equation (11) with
respect to r; the force expression takes the form:

fNm =
µ0

2π
MAMBVAVB

 3

(d− ur)
4
−

3

(d + ur)
4

 (12)

In order to simplify the force expression, Taylor expansion is applied to Equation (12) to yield the
following equation:

fNm = 3 ∗
µ0

2π
MAMBVAVB

 (8 ∗ ur)

d5 +

(
40 ∗ u3

r

)
d7 +

(
112 ∗ u5

r

)
d9 + O

(
u7

r

). (13)

When terms of up to the third order are retained in Equation (13), the fNm, which is a nonlinear
function of ur, can be thought of as generating the nonlinear stiffness terms that govern the mechanics
of the ring structure. The first term in the brackets is the linear part of the force, while the remaining
terms represent nonlinear parts. The expression given in Equation (12) may be extended to handle
multiple magnets that may be arranged around the periphery of the ring. In order to extend the
magnetic dipole configurations to multiple sets, a novel example with four sets separated by 90 degrees
is developed, as shown in Figure 3. In this case, the expression for the nonlinear magnetic force which
affects the system from four positions when i = 1, 2, 3, 4 is derived. The expression for the nonlinear
magnetic force that affects the system at the four positions, employing Equations (2) and (12) developed
for single magnet system, is derived as

fNm1(An, Bn,θi) =
µ0
2πMAMBVAVB

4∑
i=1

cos(nθi)
[

3
(d−An cos(nθi)−Bn sin(nθi))

4

−
3

(d+An cos(nθi)+Bn sin(nθi))
4

] (14)
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where θi represents the position of magnets on the system namely, i = 1, 2, 3, 4. The magnetic force
component presented in Equation (14) forms the basis of harvester dynamics. This force introduces
not only a change in the linear stiffness but also a change in the nonlinear stiffness component.Vibration 2019, 2 FOR PEER REVIEW  7 of 14 
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4. Natural Frequency of Ring Structure

The primary purpose of the present paper is to understand the mechanics of a ring-based
mono-stable harvester, with an ultimate intent of further understanding the effects of nonlinear
magnetic/ambient forces that act on a ring-based harvester. This paper also serves as an aid for the
experimental system design. The priority for the design scaling was given to using materials that lend
themselves to easy fabrication and an easily identifiable second flexural mode with a relatively low
natural frequency.

It may be noted that the mechanical model conforms to the experimental system developed as
presented in the research performed by Cho [22]. Figure 4 illustrates the experimental arrangement
developed for studying the natural frequency of the ring system in the present study and will be used
further for studying the dynamic behavior of ring harvesters in forthcoming studies. This arrangement
consists of a circular cylindrical structure where all sensors and actuators and a sensor driver are setup
on a test base which is attached to a precision Single-Axis rate Table. The cylindrical structure made
of blue-tempered spring steel is able to be excited via non-contact electromagnetic excitation. The
ring structure is attached on the center of the test base, while two electromagnets are arranged on an
anti-nodal line to excite the free cylinder end. Two Eddy-current displacement sensors are arranged
on the other anti-nodal line and one of the nodal lines. The behavior of the ring can be observed by
examining the free end of the cylinder, considering it as a ring attached on a cylinder-end. Hence, all of
the sensors and exciters are arranged along the free end circumference of the cylinder. It can be noted
there is no physical contact present between the free cylinder-end and the exciter.
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For the chosen material and dimensional properties, the natural frequencies of the system have
been validated experimentally. The system natural frequency associated with the second flexural mode
has been computed mathematically to be 61.34 rad/sec and experimentally to be 58.24 rad/sec. The
discrepancy may be attributed to the uncertainty in system parameters, as well as inherent structural
mass mismatch. It may be noted that, for simulation purposes, the excitation frequency was selected
close to the theoretical natural frequency.

5. Results and Discussion

As discussed above, Equations (7) and (8) form the foundation for the mono-stable energy
harvesting analysis based on the ring structure. To achieve the objectives of the present study, a
dynamic response analysis of the system subjected to nonlinear magnetic force as well as harmonic
force is examined via the numerical procedure. The analysis is based on the mathematical model
derived in the previous sections. Prior to performing the dynamic response analysis, natural frequency
has been determined for the linear model. The potential energy of the system is investigated to ensure
that the mono-stable behavior exists in the proposed model. Restoring force, which is the derivative of
the potential energy with respect to the displacement, is also examined for the purpose of identifying
the hardening behavior of the system. Time responses, phase diagram, and bifurcation maps are
generated under harmonic excitation to determine the output system’s characteristics. In addition,
to characterize the behavior due to varying frequencies of the input excitation, a frequency sweep
analysis is performed.

5.1. Potential Energy and Restoring Force

Figure 5a shows the function of the total potential energy of the mono-stable energy harvester.
It can be seen that the harvester has one potential well. In order to illustrate the applicability of the
analytical results, typical parameters associated with a macro ring-type harvester are considered, as
shown in Table 1. Based on an approximate form of Equation (13) by retaining terms of up to order 3, a
practical physical system has been realized when a magnet mA of small mass and two fixed magnets
mB, mC are used. These magnets, when arranged in a repulsive configuration as depicted in Figure 3,
leads to a “hardening” system where the force plot takes the form as shown in Figure 5b, while the
potential energy takes the form as shown in Figure 5a, which shows a mono-stable configuration
with one stable equilibrium point. Further, it can be shown that dipole arrangements with multiple
sets around the ring at anti-nodal lines also lead to mono-stable configurations. This mono-sable
configuration can be utilized to harvest energy.



Vibration 2019, 2 279

Vibration 2019, 2 FOR PEER REVIEW  9 of 14 

 

Table 1. Material and geometric properties of the ring harvester. 

Parameter Notation Value 

Density of Ring 𝜌 7833.41 𝑘𝑔 𝑚ଷ⁄  
Young’s Modulus 𝐸  2.068 × 10ଵଵ 𝑁 𝑚ଶ⁄  

Radius of Ring 𝑟 92.5 × 10ିଷ 𝑚 
Radial thickness of Ring ℎ 0.1016 × 10ିଷ 𝑚 

Axial Length of Ring 𝑏 150 × 10ିଷ 𝑚 

 
                 (a)                                        (b) 

Figure 5. Variation of (a) potential energy 𝑈௠ (b) restoring force 𝑑𝑈௠ 𝑑𝑢௥⁄  with the displacement. 

5.2. Time and Frequency Responses 

For the purposes of predicting the response characteristics of the harvester, Equations (7) and 
(8) have been solved numerically. The system parameters are chosen based on the available 
experimental ring-structure setup that has been used in Cho [22] and which is also under 
development for future experimental validation of the present study. For the electrical subsystem, 
the number of turns of the coil, 𝑁௖௢௜௟  is taken to be 3000 turns. The coil inner radius 𝑟௖௢௜௟  has a value 
of 0.025 𝑚 while the coil height, 𝑙௖௢௜௟  is 0.0608 𝑚. The inductance of the coil is estimated from 𝐿 ≈

𝜇଴(𝑁௖௢௜௟
ଶ 𝜋𝑟௖௢௜௟

ଶ 𝑙௖௢௜௟⁄ ) and it takes the value of 0.3652 𝐻  (see, e.g., Ref. [25]). The system natural 
frequency, 𝜔଴ has been determined and it has a value of 60 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ . The system parameters 𝜁 = 0.01 
and  𝛾ଵ = 10 𝑉𝑠 𝑚⁄ . The load resistance 𝑅  can be derived from inductive reactance formula 𝑅 =

2𝜋𝜔଴𝐿 and it takes the value of 137 𝑜ℎ𝑚. 
For the system parameters used in the present study, the system natural frequency associated 

with the second flexural mode has been computed mathematically to be  61.34 𝑟𝑎𝑑 𝑠𝑒𝑐⁄  and 
experimentally to be 58.24 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ . Figure 6 illustrates the output power, generated current, and 
displacement time responses for the system at an excitation frequency of 60 𝑟𝑎𝑑 𝑠𝑒𝑐⁄  chosen close to 
the system natural frequency. An initial displacement in driving direction of amplitude of 5 × 10ିଷ 𝑚 
and initial zero velocity are imposed on the system. The resulting response has a periodic oscillatory 
behavior. The steady state value of the displacement is 0.002167 𝑚, while steady state values of the 
generated current and power are 3.326 𝑚𝐴 and 1.515 𝑚𝑊, respectively. The obtained output power 
from the current ring design is comparable to the bi-stable tube or bi-stable beam harvesters 
presented in previous studies (see, e.g., [5,8]). For similar system parameters and initial conditions, if 
the excitation amplitude is increased, the transient response is followed by large amplitude periodic 
oscillation on high energy with a substantially improved power response, as shown in Figure 6. 
 

U
m

 [
J]

d
U

m
/d

u
r (

N
)

Figure 5. Variation of (a) potential energy Um (b) restoring force dUm/dur with the displacement.

Table 1. Material and geometric properties of the ring harvester.

Parameter Notation Value

Density of Ring ρ 7833.41 kg/m3

Young’s Modulus E 2.068× 1011 N/m2

Radius of Ring r 92.5× 10−3 m
Radial thickness of Ring h 0.1016× 10−3 m

Axial Length of Ring b 150× 10−3 m

5.2. Time and Frequency Responses

For the purposes of predicting the response characteristics of the harvester, Equations (7) and (8)
have been solved numerically. The system parameters are chosen based on the available experimental
ring-structure setup that has been used in Cho [22] and which is also under development for future
experimental validation of the present study. For the electrical subsystem, the number of turns of
the coil, Ncoil is taken to be 3000 turns. The coil inner radius rcoil has a value of 0.025 m while the coil
height, lcoil is 0.0608 m. The inductance of the coil is estimated from L ≈ µ0

(
N2

coilπr2
coil/lcoil

)
and it takes

the value of 0.3652 H (see, e.g., Ref. [25]). The system natural frequency, ω0 has been determined and it
has a value of 60 rad/sec. The system parameters ζ = 0.01 and γ1 = 10 Vs/m. The load resistance R
can be derived from inductive reactance formula R = 2πω0L and it takes the value of 137 ohm.

For the system parameters used in the present study, the system natural frequency associated with
the second flexural mode has been computed mathematically to be 61.34 rad/sec and experimentally
to be 58.24 rad/sec. Figure 6 illustrates the output power, generated current, and displacement time
responses for the system at an excitation frequency of 60 rad/sec chosen close to the system natural
frequency. An initial displacement in driving direction of amplitude of 5 × 10−3 m and initial zero
velocity are imposed on the system. The resulting response has a periodic oscillatory behavior. The
steady state value of the displacement is 0.002167 m, while steady state values of the generated current
and power are 3.326 mA and 1.515 mW, respectively. The obtained output power from the current ring
design is comparable to the bi-stable tube or bi-stable beam harvesters presented in previous studies
(see, e.g., [5,8]). For similar system parameters and initial conditions, if the excitation amplitude is
increased, the transient response is followed by large amplitude periodic oscillation on high energy
with a substantially improved power response, as shown in Figure 6.
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Figure 7 shows the velocity vs. displacement trajectories for the present magnetic configurations.
As can be seen from the periodic orbits appearing in this figure, the steady state vibration amplitude
can be clearly seen to be stable. However, the presence of nonlinearities seems not to be evident from
the plot, hence a predominantly linear behavior is displayed by periodic orbits for the mono-stable
harvester system.
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Simulations have been performed for varying amplitudes of excitation force in the range ( f =

0.01− 1.5 N), and the corresponding current output has been depicted in Figure 8. An increase in the
excitation force magnitude results in an increase in generated current from the harvester.
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For the purposes of estimating the performance of the ring harvester, a frequency sweep was
performed, numerically employing the displacement, current and power data considering the Poincare’
data sets. For this purpose, the bifurcation behavior with a linear slowly varying frequency spanning
the range from 0−120 rad/sec has been computed and shown in the form of a bifurcation map in
Figure 9. Variation of the frequency was executed such that the resulting high amplitudes, close to the
natural frequency as well as the frequency range, can be extracted from the steady-state behavior of the
system. The largest level of excitation used in the present study detected a significant broadening of the
peak responses in the range 50–70 rad/sec, as shown in Figure 9. This may be attributed to the magnetic
actuation provided in the present harvesting system. Further, a Power–frequency bifurcation map was
generated in the absence of magnetic actuation, as shown in Figure 10. The comparison to the case
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with magnetic excitation depicted in Figure 9c reveals that, although higher peak values of power close
to the natural frequency can be obtained in this case, this is at the expense of a significant reduction in
the range of frequencies. It may be observed that the range is reduced to approximately 60–65 rad/sec
from 50–70 rad/sec. The increased frequency response achievable with the use of magnetic actuation is
envisaged to improved generation of power in the presence of more realistic band-limited random
ambient excitation.
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dots represent a bifurcation map in the presence of nonlinear force.
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6. Conclusions

In the present study, the dynamic behavior of the ring harvester has been investigated via
numerical simulations. Equations of motion that govern the dynamic behavior of a macro-scale ring
harvester employing the second mode with a nonlinear magnetic force in the presence of harmonic
ambient forces are derived. For this purpose, a novel model that generates a nonlinear magnetic
force which affects the system at four angular positions is formulated. An improvement in the system
output has been demonstrated by increasing the excitation amplitude. This paper illustrates that this
enhanced bandwidth is dependent on the level of input external excitation, the size of the magnet and
the shape of the potential function. The potential energy and restoring force have been examined to
ensure that the mono-stable behavior exists in the proposed model. Results on the dynamic response
obtained via time response, phase portraits, frequency response, and a bifurcation map are envisaged
to provide physical insight into underlying mechanics. Further, the power predictions in the form of
bifurcation maps may be utilized to achieve design improvements of ring-based harvesters, as well as
provide aid for ongoing experimental research.
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