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Abstract: The pantograph-catenary system is responsible for the electric transmission to the
locomotive via the sliding contact between the pantograph head and the contact wire. The separation
of the pantograph head from the contact wire is the main source of arcing, which challenges the normal
operation of an electrified railway. To properly describe the contact loss procedure using simulation
tools, a mathematical model of the reattachment momentum impact between the pantograph head
and the contact wire is proposed in this paper. The Euler-Bernoulli beam is adopted to model the
contact and messenger wires, which are connected by lumped mass-spring droppers. The Lagrange
multiplier method is utilised to describe the contact between the pantograph head and the contact
wire. The momentum impact generated during the reattachment process is derived based on the
principle of momentum conservation. Through several numerical simulations, the contact wire uplift
and the contact force are evaluated with the reattachment impact. The analysis result indicated that
the velocities of the contact wire and the pantograph head experience a sudden jump at the time
instant of reattachment, which leads to a sudden increase of the contact force. When the reattachment
impactis included, the maximum value and the standard deviation of contact forces show a significant
increase. The effect of reattachment impact is more significant with the increase of the pantograph
mass and stiffness.

Keywords: railway; catenary; pantograph; reattachment impact; Lagrange multiplier method;
contact loss

1. Introduction

In electrified railway industries, the catenary and pantograph are widely used for transmitting
the electrical energy to the locomotives. With the increase of the train speed, the vibration of the
catenary—pantograph becomes stronger, which increases the fluctuation of the contact force. The
frequent contact loss between the pantograph head and the contact wire has been one of the technical
issues challenging the current collection quality, as it is the main source of electric arcing and the
interruption of the power transmission. Normally, the contact loss is caused by inadequate contact
force. Thus, the contact force should be stable, and the contact loss should be avoided to ensure
continuous contact of the pantograph and the catenary.

To improve the current collection quality of the pantograph—catenary, many scholars have made
significant contributions to improving the understanding of the pantograph—catenary dynamics. The
relevant study has been reviewed in [1], in which an overview of the mathematical methods of
modelling the catenary—pantograph system has been given. Various internal and external disturbances
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(such as the wind load [2,3], the vehicle vibration [4], the wave propagation [5] and the aerodynamic
instability [6]) to the pantograph—catenary system have also been investigated to improve the robustness
of the system. The methods of modelling the pantograph—catenary contact have been briefly reviewed
in [7], in which the influence of different contact models on the catenary—pantograph dynamic response
has been revealed. In [8], the results of nine pantograph—catenary models are compared to establish a
world benchmark for the validation of simulation tools. At present, the most prevalent method to model
the sliding contact of the pantograph and the catenary is the “penalty function method”, in which,
the contact between the pantograph head and the contact wire is defined through an assumption of
“contact stiffness”. The contact force is calculated based on the interpenetration between the pantograph
head and the contact wire. This method is first introduced to model the pantograph—catenary contact
by Collina and Bruni [9]. The penalty function method is developed and gradually becomes the
dominant approach to model the contact of pantograph—catenary, as it is convenient to be included in
the stiffness matrix [10]. Ambrodsio et al. [11] present a modified penalty function method using the
relative velocities of the two contact bodies. Based on this model, a co-simulation of finite element
and rigid multi-body dynamic codes is performed, and the influence of the environmental wind on
the pantograph—catenary current collection is investigated in [12,13]. In [14], the ACNF (absolute
nodal coordinate formulation) method is adopted to model the catenary. The interface between the
contact wire and the pantograph is described as a spring-damper model, in which the contact loss
is assumed by the compression force. In [15], the non-linearity of the catenary is considered by a
non-linear finite element approach, and its interaction with the pantograph is developed by the penalty
function method. A moving mesh method is developed to improve computational efficiency [16].
However, the penalty function method may not describe the realistic contact condition between the
pantograph head and the contact wire, because an assumption is defined that the two contact bodies
can penetrate each other. Therefore Seo et al. [17] and Lee [18] use the Lagrange multiplier method
to model the interaction between the pantograph and the catenary, which excludes the penetration
assumption and obtained more reasonable results.

The Lagrange multiplier method is widely used in studies of moving load problems [19].
Lee [20,21] firstly proposes a method to describe the separation between the moving mass and the beam.
Subsequently, Ouyang et al. [22,23], Dahlberg [24], Cheng et al. [25] and Lee et al. [26,27] expand this
idea to different application backgrounds. According to [25], after the separation between a mass and a
beam, the reattachment may produce a momentum impact on the beam, which may result in a sudden
jump of the velocity of the beam. Stincioiu et al. [22] develop a simple model for the reattachment
impact and investigate its influence on the dynamic behaviour of the moving mass-beam system. The
results show that in some numerical examples, the impact on reattachment has a significant effect on
the dynamic response.

As is well known, the contact loss of the pantograph and the catenary is the main source
of the deterioration of the current collection quality. To properly describe the separation and
reattachment of the pantograph head and the contact wire is of great importance for understanding the
pantograph—catenary dynamics. To the authors’ best knowledge, no studies have ever been undertaken
to describe the separation and the reattachment for the pantograph—catenary. This shortcoming is
tackled in this paper. A contact model of the pantograph—catenary is presented based on the Lagrange
multiplier method. The contact is described in terms of constraint equations so that the contact loss
can be fully described. The impact of the pantograph head on the contact wire at the reattachment
point is considered by introducing additional velocity into the contact wire. Then, some numerical
simulations at higher speed are performed to analyse the pantograph—catenary interaction considering
the reattachment impact.

2. Modelling of Pantograph—Catenary with Reattachment Impact

Normally, a railway catenary is comprised of two tensioned cables called messenger wire and
contact wire. The contact wire directly contacts with the pantograph head to transmit electricity to the
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locomotive. The messenger wire is used to hang the contact wire to keep it level. The two wires are
connected via several droppers. In this section, the equation of motion for the pantograph—catenary
is derived. To properly describe the high-frequencies behaviour, the beam element with bending
stiffness is adopted to model the contact and messenger wires [28]. Then a contact model is developed
including the momentum impact during the reattachment process.

2.1. Equation of Motion for Catenary

The description of the catenary with a moving contact force is shown in Figure 1. v denotes the
speed of the contact force F.(vt, t) traversing along the contact wire. T, and T}, represent the tensions of
the messenger wire (the upper beam) and the contact wire (the lower beam), respectively. The equation
of motion for the messenger wire can be described by:
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Figure 1. Description of catenary with a moving contact force.
Similarly, the equation of motion for the contact wire can be expressed by:
Fw Pw Pw, dw md j
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In Equations (1) and (2), p, and pj; denote the linear densities of the messenger and contact wires,
respectively. El, and EI, denote the flexural rigidities of both wires. C; and C, are the corresponding
damping for both wires. L denotes the total length of one section. ¢ is the Dirac delta function. wg(x, )
and wy,(x, t) are the deflections of the messenger wire and the contact wire, respectively. F and FZ are
the forces of the ith dropper acting on both wires at the point x = xfi. F{ is the force of the jth steady

arm acting on the messenger wire at the point x = x{. FJ is the force of the jth registration arm acting
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on the contact wire at the point x = x/. m; and k[]i are the mass and stiffness of the ith dropper, which

can only work in the traction condition. mg and k{ are the mass and stiffness of the jth steady arm,

respectively. m{ is the mass of the jth steady arm. nd, nt and nr are the total numbers of droppers,
messenger wire supports and steady arms, respectively. The last equations in Equations (1) and (2)
define the constraint conditions for each wire.

In this work, the modal superposition method is adopted to solve Equations (1) and (2). The beam
deflection can be represented in a modal expansion as [5]:

wa(x, ) = gl () A (8)

= 3)
wy(x, 1) = nél Y (x)Bn(t)

where, A, (t) and B, (t) are the modal coordinates for the nth modal function of the messenger/contact
wire 1, (x), which is determined by the constraint conditions. The general solution for the
Euler-Bernoulli beam is:

W(x) = 91chax + 93shax + 93 cos fx + 94 sin fx (4)

in which, a, B, 91, 92, 93 and 94 are determined by the boundary conditions. As the messenger and
contact wires can be assumed to be simply-supported beams [29], it is obtained that,

31 =0,9=093=0and 94 #0 5)

Thusp =" (n=1,23,... ... 00). Substituting Equation (3) into Equations (1) and (2) yields the
equation of motion for the catenary concerning the generalised coordinates A, (t) and B (t).

2.2. Contact Model of Pantograph—Catenary

As shown in Figure 2, the pantograph is considered as a three-stage oscillator with three lumped
masses (M7, My, M3) connected by three springs with specific stiffness (Kj, K», K3) and damps (Cy, Co,
C3), respectively. The corresponding uplifts of the three masses are y1 (), y2(t) and y3(t) respectively.
Fy is the uplift forces including the aerodynamic effect. The equation of motion for the pantograph is
described by:

d? d d
MR () + o S0 - B (0) + Ka (31 (1) - 12(8) = ~Felet, )
d? d di d d
Mo () + oS0 - B (1) + (L) - B )+ Kiz - y) + a2 - 5) =0 (©
d? d dyo d
MG (1) + o 0~ B (0)+ G (1) + Kalys — ) + Ko =
When the pantograph head contacts with the contact wire, the catenary and pantograph interact
with each other by the contact force. However, when the contact loss occurs, the motion of the catenary

and the pantograph are independent of each other. The criterion for contact and separation can be
governed by the gap ¢ of the contact surface as expressed by:

g = wy(ot,t) = y1(t) )
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When g > 0, the pantograph is separated from the contact wire. If g = 0, the pantograph contacts
with the contact wire. When the contact occurs, the motion of the contact wire is governed by the
following equation:

nd )
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Figure 2. Pantograph—catenary contact model.

It can be observed that when the contact occurs, the deflection of the contact wire at the contact
point is equal to the displacement of the pantograph head. The contact force is acting on a moving
coordinate. The relationship of the acceleration, velocity and displacement at the contact point can be
described by:

yi(t) = wy(x, )],

W) = a;”tb (0t ) + 02 (ot 1) ©)
d? 0% 8 9?
(1) = St (ot 1) +2v S (vt 1) + V253 (vt )

When the pantograph separates from the contact wire (g > O), the vibrations of the catenary and
the pantograph are independent of each other. The equation of motion for the contact wire and the
pantograph can be expressed by:

4 2 nd . nro . .
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If g changes from a positive value to zero, the reattachment occurs, and the pantograph starts to
contact with the contact wire. However, as the description in [22], the momentum impact between
a mass and a beam during reattachment has a noticeable influence on the dynamic response of the
beam. This reattachment impact is modelled in Section 2.3 by introducing an additional velocity in the
contact wire during the reattachment.

2.3. Modelling of Reattachment Impact

Consider that the pantograph separates from the contact wire at time instant t; and reattaches to
the contact wire at time instant ;. During the period #; ~ t;, the contact force between the pantograph
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and catenary is zero. When the reattachment occurs, the equation of motion for the contact wire at
time instant f; due to the reattachment impact is described by:

*w, P*wy, Jwy _ ud i i
EIZY (x, 1) + py B9 (x, 1) = Ty S (x, 1) + Cy 2 (x, ) = L Fio(x - )
1=
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(11)

where, p is the impulse caused by the impact of the pantograph head. The equation of motion for the
pantograph head (the first mass) can be expressed by:
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M
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The influence of the impact p is the jump of the velocity of the contact wire at the time instant f,.
By substituting Equation (3) into Equation (11), the contribution of Fé and F/ to the nth mode of the
contact wire is expressed by:
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Substituting Equation (13) into Equation (11), the equation of motion for the contact wire can be
obtained as:

[oe]
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According to the distribution theory [30], the incremental velocities of the pantograph head and
the contact wire are determined by the total mass. The velocity jump of the contact wire and the
pantograph head from the ¢ to t;r can be derived by:

Jwy thz,t+ dwy (vt b x

(¢9t 2 ) _ (at 2) — ﬁngl gb% (vtz) 15)
dyl( ) dyl(f ) A

dt dt mq

At the reattachment point, the relationship of the velocities of the pantograph head and the contact
wire can be expressed by:

{%(t*) &;‘;b( L)l = %(m, t;)+v%

t:t;r 8t 07x

(ot2, 1) (16)
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in which the high-order term 2 I (vtz, ) that is neglected in [22] is taken into account here. During
the period from #; to tz , the assumption is made that the deflection of the contact wire is not changed

(namely wb(x, t;) = wb(x, t;’ )). So the following equation can be obtained:
d (vt
awh (ot2, £ Z B.(t; w” ot2) (17)

The velocity jump of the contact wire in each mode is:

dB,(t7) dB.(t;
Av, = d(tz ) - d(tZ) = —ﬁ%(vt) (18)

Solving Equations (14)—(16), p can be derived explicitly as:

(dyld(ttz) _n°° 45 (1 )%(U&Hvz B(t; )d‘””d(f”))

=1

P=- g (19)
;l lpn(UtZ) 1
poL T
Substituting Equation (18) into Equation (17) yields:
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The equation of motion for the messenger wire is similar to the contact wire, which can be written

by:
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Implementing the Lagrange multiplier method, the equation of motion for the pantograph—catenary
interaction can be written by:

MU(t) + CU(t) + KU(t) + GT(¢) fo(t) = F(¢) (22)

in which, U(t) is the displacement vector of the pantograph—catenary system. U(t) and U(t) are the
corresponding velocity and acceleration vectors. G(t) is the restrained displacement vector on the
contact surface. F(t) is the external force vector excluding the contact force. The constraint condition
for Equation (21) is:

G(t)U(t) =0 (23)

which can be extended to:

wy (vt 1) — y1 = Z By () (vt) —y1 =0 (24)
n=1
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Equations (21) and (22) can be solved by the direct integration method. Considering a second-order
integration through time, the following incremental equation of motion can be obtained as [31]:

boM + b1 C+boK - G(t+ At) H AU(t + At) ]_[ F(t + At) - [Maq, + Ca + Kqy (25)

boG(t+ At) 0 fet+a) | 7| ~G(t + Ab)q,

where, f(t) is the contact force on both of the contact wire and pantograph head. q, q; and q, are
differential operators of second order:

qo = U(t) + AU(t) + 1(AU0(t)

a; = U(t) + ArU(t) (26)
q, = U(t)
and
bo = 1(A)Bo
by = Atpy (27)
bh=1

in which, g and B are the coefficients in the integration algorithm. In this paper, a linear acceleration
method with fy = % and p; = 1 is adopted. At the reattachment point, Equation (18) is adopted to
govern the reattachment impact.

3. Analysis with Reattachment Impact

The pantograph—catenary model is established using the parameters in Tables 1 and 2. The
maximum speed is 350 km/h. Higher speeds are adopted in the simulation to reproduce the separation
and reattachment between the contact wire and the pantograph head. The influence of the reattachment
impact on the pantograph—catenary interaction is investigated. The electromagnetic force caused by
the arcing during the separation process is neglected in this work, as it is only a small magnitude of the
contact force [32]. Then at different speeds, the separation and reattachment between the pantograph
head and the contact wire are analysed. Finally, the influence of the pantograph head parameters on
the interaction performance is analysed.

Table 1. Simulation parameters of high-speed railway catenary.

Item Value Item Value
Span 48 m Interval of droppers 5/9.5/9.5/9.5/9.5/5 m
Contact wire tension 27 kN Simulated length 10 spans
Messenger wire tension 21 kN Messenger wire type CuMg0.5 AC 120
Number of droppers 5 Contact wire type BZ 11120
Dropper stiffness 1 x 10° N/m Dropper mass 0.4 kg
Messenger wire support 7
tiffness 1 x10” N/m Steady arm mass 1125 kg
Table 2. Simulation parameters of pantograph.
Item 1 2 3
M (kg) 6 7.12 5.8
C (Ns/m) 0 0 70
K (N/m) 9430 14,100 0.1

Maximum operating speed: 350 (km/h); Fy = 0.00097 x v + 70 (N)
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3.1. Analysis with 380 km/h

To reproduce the contact loss between the catenary and the pantograph, the higher speed v = 380
km/h is adopted. The separation between the pantograph and the catenary firstly appears at 42.5 m,
(close to the fifth dropper in the first span). The uplift and the velocity of the pantograph head are
presented in Figure 3a,b. It is seen that the reattachment impact causes a significant increase of the
uplift and the velocity of the pantograph head when the pantograph head re-contacts the contact wire.
The velocity of the contact wire at the contact point are shown in Figure 4. As the Lagrange multiplier
method is implemented, the uplift of the pantograph head matches the displacement of the contact
point in the contact wire. It is seen that the reattachment causes a jump of the velocity of the contact
wire. The contact forces are shown in Figure 5. It is also seen that due to the reattachment impact, the
contact force experiences a sudden increase from 0 to 400 N within a short time. The impact produces
almost excessive 100 N at the peak of the contact force during the reattachment. The overlarge contact
force may exceed the safety criterion and damage the contact wire.
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Figure 3. Uplift and velocity of the pantograph head at contact points (from 38 m to 50 m). (a) Uplift of
the pantograph head; (b) velocity of the pantograph head.
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Figure 4. Velocity of the contact wire at contact points (from 38 m to 50 m).
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Figure 5. Contact force of the pantograph—catenary (from 38 m to 50 m).
3.2. Analysis at Different Operating Speeds

According to the current standard [33], the maximum contact force and the standard deviation of
the contact force are the most important indicators to evaluate the current collection quality of the
pantograph—catenary system. The maximum contact force should be limited to avoid the potential
damage to the catenary. The standard deviation directly describes the fluctuation dispersion of the
contact force around its mean value. Figure 6a—c show the maximum contact force, contact force
standard deviation and the contact loss percentage at different speeds, respectively. It is found that with
the increase of the operating speed, the maximum contact force, the contact force standard deviation
and the contact loss rate increase sharply. When the reattachment impact is included, the maximum
contact force and the contact force standard deviation are generally larger than the results without
the reattachment impact. More contact loss can be observed when the reattachment is included. It
is worthwhile noting that the contact force is not filtered with 0~20 Hz to fully describe the contact
loss. That is why the standard deviation in Figure 6b is significantly larger than previous works [34].
The presence of the reattachment impact introduces more disturbance to the pantograph—catenary
interaction, which increases the maximum contact force, and accordingly increases the fluctuation of
the contact force. These also result in more contact losses of the pantograph—catenary interaction.
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Figure 6. Maximum contact force, contact force standard deviation and contact loss at different speeds.
(a) Maximum contact force; (b) standard deviation; (c) contact loss.

3.3. Analysis with Different Pantograph Head Parameters

In order to understand the effect of pantograph head parameters on the reattachment impact, a set
of simulations is performed with different mass and stiffness of the pantograph head. The contact forces
with different M; are presented in Figures 7 and 8 at 370 km/h and 380 km/h, respectively. In Figure 7a,
the contact forces remain unchanged when the reattachment impact is included, as no contact loss
occurs. However, with the increase of the pantograph head mass, more contact loss appears, and the
difference of the contact forces evaluated by two methods becomes more significant. The similar trend
is also observed in Figure 8. When M, reaches 11 kg, the reattachment impact causes big fluctuations
of contact forces. The maximum contact force, the contact force standard deviation and the contact
loss with different M; at 370 km/h and 380 km/h are shown in Figure 9a—c, respectively. It is seen that
all these indexes increase when the reattachment impact is included. Equation (18) shows that the
increase of the pantograph head mass directly leads to an increase of the reattachment impact. Also,
the previous study has revealed that a big pantograph head mass aggravates the current collection
quality. The reattachment impact makes this negative effect even bigger.

The contact forces with different pantograph head stiffness at 380 km/h are shown in Figure 10.
The corresponding statistics are presented in Figure 11. Similar to the influence of M;, when the
reattachment impact is presented, the fluctuation in contact force becomes larger and more contact loss
can be observed.
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4. Conclusions

In this work, the analysis of the interaction of the catenary—pantograph is performed, including
the effect of reattachment impact. The additional velocity of the contact wire in each mode caused
by the reattachment impact is derived, and its effect is taken into account in the simulation of
pantograph—catenary interaction. The effect of the reattachment impact on the interaction performance
is investigated with different speeds and pantograph head parameters. The analysis results show
that the reattachment impact of the pantograph head can lead to a sudden increase of the velocity for
both the contact wire and the pantograph head, which increases the contact force at the reattachment
point. It is necessary to consider the reattachment impact in simulating the contact loss procedure.
Otherwise, the results of the maximum contact force, the contact force standard deviation and the
contact loss rate may be too conservative. A low pantograph head mass is also suggested to reduce the
reattachment impact.

It should be pointed out that the analysis in this paper only focuses on the mechanical interaction
performance. The arcing occurring in the separation process may cause electromagnetic forces, the
effect of which on the interaction performance will be discussed in the future.
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