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Abstract: The purpose of the present investigation was to examine the acute effects of whole
body vibration (WBV) on isometric mid-thigh pull force–time curve (FTC) characteristics. Eleven
recreationally trained subjects were randomly assigned to three treatment conditions: sham no
vibration protocol (T1), vibration protocol 30 Hz 2–4 mm amplitude (T2), and vibration protocol
30 Hz 2–4 mm (T3). After completing a standardized warm-up, the subject stood on a vibration
platform with the knee at a 120◦ angle and performed one of the three interventions. Each treatment
condition required the subject to stand on the platform for thirty-second treatments, each separated by
thirty seconds of recovery. Five minutes after the completion of the treatment conditions, the subjects
performed the isometric mid-thigh pull. All FTCs were analyzed with standardized procedures for
peak force (PF) and peak rate of force development (PRFD). A 1 × 3 repeated measures analysis of
variance (ANOVA) was used to compare the three treatments. Additionally, coefficients of variance
(CV), as well as intraclass and interclass correlations, were performed. There were no significant
differences (p > 0.05) for any of the FTC analyses performed in this investigation. The CV and the
95% confidence interval (CI) indicate that the WBV protocol resulted in trivial changes in PF and
beneficial changes in PRFD. A 30 Hz 2–4 mm amplitude WBV does not result in a significant increase
in isometric mid-thigh pull performance.
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1. Introduction

The use of whole body vibration (WBV) as a method to enhance neuromuscular and strength-power
performance has only recently begun to be explored by sport scientists [1–7]. Specifically, WBV training
has been shown to improve countermovement vertical jump performance over 3–4 months versus
resistance training alone in previously untrained and older men and women [8–11]. Additionally,
acute exposure to WBV has been suggested to produce transient increases in force production [12–14],
vertical jump displacement [1,7,13], and power output [7,12,15,16] recorded while performing various
ballistic and non-ballistic tasks. On the basis of these transient responses, it has been suggested that
WBV could be an affective pre-activity warm-up practice [1,17].

It has been hypothesized that the reported acute WBV-induced increases in performance occur
as a result of alterations in neuromuscular stimulation, namely reflex potentiation (RP) and post
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activation potentiation (PAP) [1,4,18]. Such alterations have been suggested to reside in motor unit,
recruitment, and synchronization, as well as increased sensory input resulting in improvements
in force generation and enhanced proprioception [19]. Specifically, most studies have ascribed the
observed improvements to the likelihood of WBV producing a “tonic vibration reflex” (TVR) in which
a moderate level of force is produced, and then maintained following an initial high phasic discharge
from primary Ia muscle spindle afferents. The resultant motor response evoked is thought to result in
the excitation of the alpha-motor neurons innervating extrafusal fibers [1]. This response may lead to
a greater synchronization of motor units as a result of homonymous motor unit contraction [19,20].
Support for this contention has been found in the vibration-induced shifts in electromyography (EMG)
pattern during direct application to a muscle [19,21,22]. Overall, the response of the TVR is dictated
by the frequency and amplitude of the WBV stimulus, as well as body alignment in relation to the
plate [2,20,23–25]. During WBV exposure, the stretch rand Hoffman-reflex’s (H-reflex) are both initially
inhibited via pre-synaptic inhibition, while sensory information from other key mechanoreceptors
induces a TVR [20,26]. Collectively the occurrence of these three WBV-induced responses is termed
the “vibration paradox” [20]. The H-reflex has been shown to be depressed to a greater extent
than the stretch-reflex and takes longer to recover [3,27,28]. The stretch-reflex appears to be initially
depressed, but then may experience potentiation [20]. The frequency, amplitude, and duration of
application of the WBV stimulus appear to affect the rate of recovery seen in those of the stretch and
H-reflex [1,2,9–11,28,29].

Vibration is an oscillatory motion characterized by a frequency and peak–peak amplitude. Optimal
vibration protocols are not well established in the scientific literature. However, there seems to be
a consensus in the literature indicating that a WBV frequency as low as 30 Hz may lead to acute
enhancements in strength-power performance in the lower limbs [2,19]. Cardinale and Lim [19]
reported that the highest reflex activation of muscles within the quadriceps femoris, as indicated
by EMGrms data, occurs within the Vastus Lateralis while squatting statically on a WBV platform
oscillating at 30 Hz. Collectively, the literature appears to suggest that strength and power performance
of the lower limbs can be acutely enhanced with the use of a 30 Hz frequency [2,13,14,19,23].

While some acute performance responses to WBV support these suggested mechanistic responses,
not all investigations report improvements in muscular force [1,17], vertical jump [15], and power
production in response to acute WBV [1,17]. For example, Cormie et al. [1] examined the effects of
WBV on performance during an isometric squat and found no significant improvement in peak force
following 30 s of a 30 Hz and 2.5 mm amplitude WBV stimulus. Interestingly, while not statistically
significant, there appeared to be less of a decline in isometric peak force as a result of fatigue generated
at 5 and 15 min post-WBV. While these data may suggest a trend toward enhancement of the isometric
force–time curve, no data were reported on other force–time curve characteristics such as the rate of
force development (RFD). de Ruiter et al. [30] reported the RFD achieved during a maximal volitional
contraction (MVC) knee extension was unaffected by WBV applied at 30 Hz and 8 mm peak–peak
amplitude for five bouts of one minute. While this finding is interesting, it may be warranted to
evaluate the isometric force–time curve using multi-joint isometric muscle actions such as the isometric
mid-thigh pull. To date, only one study has attempted to elucidate relationships between acute
WBV and performance during an isometric mid-thigh pull and reported no significant differences
in RFD or ground reaction forces [17]. However, those authors compared five different warm-up
protocols, all completed on the same day, to determine if there were differences between dynamic
and isometric warm-ups, both with and without vibration, after which subjects would complete the
isometric mid-thigh pull assessment. Owing to the various layers of interactions in this study design
being conducted on only fifteen subjects and the potential for fatigue manifestation affecting the results,
further study on WBV and isometric mid-thigh pull performance is warranted. A comparison of data
collected during an isometric muscle action with those observed in dynamic muscle actions is dictated
by the similarity of the activity to the dynamic muscle action [27]. Because RFD is considered to be
an important factor underlying the expression of explosive strength [8,14,31], it is imperative that
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further investigation into the acute effects of WBV on this important force–time curve characteristic
be performed.

It is possible that acute WBV exposure may result in alterations to specific aspects of the force–time
curve during the performance of a ramp maximal isometric contraction. Therefore, the primary
purpose of this investigation was to examine the acute effects of WBV administered using a 30 Hz and
2–4 mm amplitude during isometric body weight squats upon subsequent force–time characteristics
recorded during an isometric mid-thigh pull.

2. Methods

Experimental Approach to the Problem: The present study was designed to investigate the
effects of whole body vibration (WBV) on isometric mid-thigh pull force–time curve characteristics.
Each subject went through four testing sessions that consisted of a preliminary/familiarization testing
session and three testing sessions in which various treatment conditions were undertaken. The three
random ordered testing sessions were each separated by seven days (Figure 1). During each testing
session, the subjects underwent a standardized warm-up protocol, which was followed by one of the
three treatment conditions. Treatment condition 1 (T1) was an isometric pull-sham treatment, while
treatment conditions 2 (T2) and 3 (T3) were isometric pull vibration treatments. Five minutes after the
sham or WBV treatments, the subject performed two maximal isometric mid-thigh pulls separated
by 2 min. Athletes were instructed to avoid vigorous activity within 48 h of the testing session. A
summary of the testing protocol can be found in Figure 2.

Subjects: Eleven (four women and seven men) recreationally trained individuals served as subjects
in the present investigation, which was approved by the East Tennessee State University Institutional
Review Board (IRB). All subjects were actively engaged in resistance exercise for the previous 12 months,
although not necessarily in a competitive manner. All subjects read and signed informed consent
documents in accordance with the East Tennessee State IRB.

The first testing session was used to perform all preliminary testing. This testing included the
collection of the subject’s physical characteristics. A summary of the subject characteristics is presented
in Table 1. Additionally, during this session, each subject was familiarized with the isometric mid-thigh
pull testing procedures. Seven days after the completion of the familiarization session and 48 h after
their last exercise bout, the subjects performed one of the three randomly assigned treatment conditions.
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Figure 1. Testing timeline. * The sham could have occurred at T1, T2, or T3.

Testing Protocol: Hydration status was measured at the start of each testing session using a
refractometer (ATOGO, Tokyo, Japan) to ensure that dehydration did not negatively impact testing.
Prior to initiating the testing sessions, each subject performed a standardized warm-up protocol
consisting of 20 jumping jacks, 5 mid-thigh pulls with a 20 kg (Werksan Barbell, Moorestown, NJ,
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USA), and then 3 sets of 5 repetitions of mid-thigh pulls with either 40 kg (women) or 60 kg (men).
Once the warm-up was completed, the subjects then performed one of the randomly assigned
treatment conditions.
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Table 1. Subject physical characteristics (n = 11).

Males
(n = 7)

Females
(n = 4)

Combined
(n = 11)

Mean ± SD Mean ± SD Mean ± SD

Age (y) 24.7 ± 1.8 23.5 ± 1.0 24.3 ± 1.6
Height (cm) 179.2 ± 6.2 164.8 ± 6.8 173.9 ± 9.5
Weight (kg) 101.7 ± 12.9 65.3 ± 5.2 88.4 ± 21.1

Treatment Condition 1: T1 was an isometric pull-sham treatment condition. In this condition,
the subjects stood with a knee angle of 120◦ for thirty seconds on a WBV platform (Power Plate North
America, Northbrook, IL, USA), which delivered no vibration. The subjects performed this treatment
three times with 30 s of rest separating each trial. After the completion of the third trial, the subjects
rested for 5 min and then performed the isometric mid-thigh pull protocol.

Treatment Condition 2 and 3: T2 and T3 consisted of a WBV protocol in which the subjects stood
for 30 s with a knee angle of 120◦ on a vibrating platform (Power Plate North America, Northbrook, IL,
USA), which oscillated in three planes (superior to inferior, medial to lateral, and anterior to posterior).
A 30 Hz frequency with 2–4 mm amplitude was utilized as the WBV protocol based upon previously
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published research [1,2,19,23]. A total of three bouts of vibration each separated by 30 s were performed
by each subject during these sessions. Five minutes after the completion of the vibration protocol,
the subjects performed the isometric mid-thigh pull protocol.

Isometric Mid-Thigh Pull Methods: All isometric mid-thigh pulls were performed on a custom
isometric rack that allowed the bar to be fixed at any height above the floor and was placed over a
force plate (Rice Lake, WI, USA), which sampled at 1000 Hz [27,29,32]. The subjects performed a total
of four isometric mid-thigh pulls during this part of the testing protocol. The first two pulls were
performed at 50% and 75% of perceived maximal effort and served as a warm-up, while the next two
pulls were performed at maximal effort. A two-minute rest was given between each of the isometric
pulls performed during this part of the test. If the two maximal isometric pulls were different by more
than 250 N for peak force, a third trial was completed. For each pull, the subjects were told to “remain
neutral on the bar . . . 3,2,1, pull!”. The force–time curve generated by each isometric mid-thigh clean
pull was recorded using a shielded BNC adaptor (BNC-2090, National Instruments, Austin, TX) and an
A/D card (NI PCI-6014, National Instruments, Austin TX). The recording of all force–time curve data
was performed with a 1000 Hz analogue to digital sampling rate using LabVIEW software (Version 8.5,
National Instruments, Austin, TX, USA). Data were smoothed using a moving average.

Data Analysis: The analysis of all force–time curve data was performed with the use of a custom
LabVIEW (Version 8.5, National Instruments, Austin, TX, USA) program and previously published
methods [1,29,33]. The absolute peak force and peak forces at 50, 90, 200, and 250 ms were determined.
Additionally, the RFD between 0 and 50 ms, 0 and 90 ms, 0 and 200 ms, and 0 and 250 ms was also
quantified. In order to account for the effect of different body sizes in the present subject pool, all data
were also allometrically scaled by applying the two-thirds power law: load × (body mass0.67)−1 [33].
Finally, percent differences were calculated between selected variables with the following formula:

% Di f f erence =
(Vibration− Sham)

Sham
× 100

Statistical Analysis: All data from the present investigation are reported as means ± standard
deviation (SD) and analyzed using SPSS (version 14.0, SPSS Inc., Chicago, IL). Multiple 1 × 3 (variable
× treatment) repeated measures analyses of variance (ANOVA) with significance set at p ≤ 0.05 was
performed for all force–time curve variables analyzed. When significant F values were determined,
follow-up paired comparisons were performed in conjunction with a Holm’s Sequential Bonferroni in
order to control for Type I errors [31]. Reliability of the measures performed was determined with the
methods presented by Hopkins [34]. Additionally, coefficients of variance were calculated between the
sham and vibration treatments (T1 and T2; T1 and T3) in order to determine if the vibration treatment
resulted in a worthwhile enhancement in performance [35]. Pearson’s product moment correlations
were calculated to quantify relationships between percent differences in the tested measures and the
subject’s body mass.

Results: When assessing the reliability of the different measurements performed in the present
study, it was determined that all variables were highly reliable, as indicated by high intraclass and
interclass correlations performed between the two isometric mid-thigh clean pull trials performed
under each condition (Table 2). Additionally, there were no statistically significant differences between
any of the treatment groups for the force–time curve parameters analyzed (p > 0.05). A summary of
these results can be found in Tables 3 and 4.

The results of the coefficient of variance, intraclass correlation, and interclass correlation analyses
performed between the sham and vibration treatments (T1 vs. T2; T1 vs. T3) are presented in
Table 4. Finally, the percent difference scores between the T1 versus T2 and T1 versus T3 are presented
in Figures 3 and 4. There were no significant differences (p > 0.05) for the percent differences
between the sham and vibration conditions for any of the force–time curve variables analyzed in the
present investigation.
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Table 2. Reliability of force–time curve measurements.

T1 T2 T3

ICCα 95% CI R 95% CI ICCα 95% CI R 95% CI ICCα 95% CI R 95% CI

Peak Force @ 50 ms 0.96 0.87–0.98 0.95 0.85–0.98 0.94 0.83–0.98 0.94 0.83–0.95 0.94 0.84–0.98 0.94 0.81–0.98
Peak Force @ 90 ms 0.97 0.92–0.99 0.97 0.90–0.99 0.97 0.91–0.99 0.98 0.94–0.99 0.88 0.67–0.96 0.87 0.63–0.96

Peak Force @ 200 ms 0.98 0.95–0.99 0.98 0.93–0.99 0.93 0.80–0.98 0.93 0.80–0.98 0.96 0.89–0.99 0.96 0.87–0.99
Peak Force @ 250 ms 0.99 0.98–1.00 0.99 0.97–1.00 0.98 0.93–0.99 0.97 0.91–0.99 0.96 0.90–0.99 0.96 0.89–0.99
Maximal Peak Force >0.99 0.99–1.00 1.00 0.99–1.00 >0.99 0.99–1.00 >0.99 0.99–1.00 >0.99 0.99–1.00 1.00 0.99–1.00

PRFD @ 0–50 ms 0.92 0.79–0.97 0.91 0.75–0.97 0.81 0.53–0.93 0.79 0.46–0.93 0.89 0.70–0.96 0.89 0.69–0.96
PRFD @ 0–90 ms 0.93 0.79–0.97 0.92 0.76–0.97 0.88 0.69–0.96 0.90 0.72–0.97 0.86 0.63–0.95 0.85 0.59–0.95
PRFD @ 0–200 ms 0.97 0.91–0.99 0.97 0.90–0.99 0.95 0.87–0.98 0.95 0.85–0.98 0.88 0.67–0.96 0.87 0.64–0.96
PRFD @ 0–250 ms 0.97 0.92–0.99 0.97 0.91–0.99 0.93 0.82–0.98 0.93 0.80–0.98 0.97 0.94–0.99 0.97 0.89–0.99

Note: ICCα = intraclass correlation; 95% CI = 95% confidence interval; R = Pearson’s correlation; PRFD = peak rate of force development.

Table 3. Isometric mid-thigh pull force–time curve results.

Treatment Conditions
1 × 3 ANOVA

T1 T2 T3

Variables Mean ± SD Mean ± SD Mean ± SD P η2 1 – β

Peak Force @ 50 ms (N) 1351.8 ± 487.2 1337.7 ± 457.1 1394.5 ± 535.2 0.64 0.09 0.10
Peak Force @ 90 ms (N) 1838.5 ± 754.6 1744.5 ± 666.8 1811.5 ± 732.0 0.74 0.07 0.09

Peak Force @ 200 ms (N) 3013.3 ± 1000.0 2875.5 ± 874.90 3019.3 ± 988.1 0.59 0.11 0.12
Peak Force @ 250 ms (N) 3096.3 ± 1064.0 2931.9 ± 951.6 3078.9 ± 1057.1 0.36 0.21 0.20
Maximal Peak Force (N) 4466.8 ± 1580.7 4469.7 ± 1574.7 4325.6 ± 1543.2 0.32 0.22 0.21

PRFD @ 0–50 ms (N·s−1) 7744.3 ± 5521.7 7123.9 ± 6084.3 7845.7 ± 5979.5 0.86 0.03 0.07
PRFD @ 0–90 ms (N·s−1) 9998.7 ± 6263.6 8262.0 ± 5604.3 9370.7 ± 5659.6 0.36 0.20 0.19
PRFD @ 0–200 ms (N·s−1) 8775.7 ± 4419.3 8796.2 ± 4043.7 10,123.0 ± 4525.1 0.33 0.22 0.21
PRFD @ 0–250 ms (N·s−1) 8680.2 ± 3618.8 7740.4 ± 3025.7 8172.9 ± 3057.9 0.20 0.30 0.30

Note: T1 = isometric pull-sham treatment; T2 = isometric pull vibration treatment; T3 = isometric pull vibration treatment; PRFD = peak rate of force development; ANOVA = analysis
of variance.
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Table 4. Allometrically scaled isometric mid-thigh clean pull force–time curve results.

Treatment Conditions
1 × 3 ANOVA

T1 T2 T3

Variables Mean ± SD Mean ± SD Mean ± SD P η2 1 – β

Peak Force @ 50 ms (N) 65.6 ± 14.0 65.5 ± 14.8 67.5 ± 16.2 0.73 0.07 0.09
Peak Force @ 90 ms (N) 88.7 ± 24.5 85.3 ± 24.8 87.4 ± 22.7 0.78 0.05 0.08
Peak Force @ 200 ms (N) 147.4 ± 33.0 141.7 ± 29.7 147.8 ± 32.4 0.67 0.08 0.10
Peak Force @ 250 ms (N) 150.8 ± 31.9 144.0 ± 32.3 150.0 ± 31.7 0.44 0.17 0.16
Maximal Peak Force (N) 218.2 ± 49.9 218.5 ± 51.7 211.4 ± 49.6 0.35 0.21 0.20

Note: T1 = isometric pull-sham treatment; T2 = isometric pull vibration treatment; T3 = isometric pull vibration
treatment; PRFD = peak rate of force development.

There were only trivial to small correlations between body mass and the percent difference in
potentiation for peak force at 50 ms (T1 vs T2: r = −0.29; T1 vs T3: r = 0.29), 90 ms (T1 vs T2: r = −0.46;
T1 vs T3: r = 0.02), 200 ms (T1 vs T2: r = −0.39; T1 vs T3: r = −0.08), and 250 ms (T1 vs T2: r = −0.48;
T1 vs T3: r = −0.11). Similar results were found when looking at the RFD results at 50 ms (T1 vs T2:
r = −0.33; T1 vs T3: r = −0.23), 90 ms (T1 vs T2: r = −0.36; T1 vs T3: r = −0.40), 200 ms (T1 vs T2:
r = −0.04; T1 vs T3: r = 0.14), and 250 ms (T1 vs T2: r = −0.36; T1 vs T3: r = −0.36).

3. Discussion

The primary finding of the present study was that the application of WBV at 30 Hz, 2−4 mm
amplitude, 5 min prior to an isometric mid-thigh clean pull, resulted in no statistically significant
improvements in any force/time variables. Similar to the present study, Cormie et al. [1] reported that
the application of a 30 Hz, 2.5 mm amplitude WBV resulted in no statistically significant increases in
peak force or RFD during the subsequent performance of an isometric back squat at 5, 10, or 30 min
post WBV.

A careful examination of the individual subject’s data revealed large individual variation regarding
responsiveness to the WBV protocol. While the subjects had some resistance exercise background, a
greater training age and strength level requirement, resulting in a more homogenous sample, may
have lessened the degree of variation. It is possible that individual differences in muscle and tendon
properties partially explain this phenomenon. Cardinale and Lim [19] suggest that the stiffness of an
exposed muscle group is modulated by mechanoreceptors as well as dermal and epidermal receptors
during WBV exposure. They hypothesized that there could be a large amount of individual variation
in the body’s damping effects to WBV, which may partially explain the inter-individual variation noted
in the present investigation. It has been speculated that this dampening effect could also be related to
the subject’s overall body mass [3,30]. Interpretation of the correlation data from the present study
appears to discount this contention, revealing non-significant, trivial correlations between body mass
and percent change in select force–time characteristics. Recent studies have utilized electromyography
to assess neural activation in response to various applications of WBV in an attempt to determine the
most appropriate individualized WBV doses [19,23,30,34].

Another potential explanation for the present findings may center on individual subject
differences in muscle fiber type, training state, reflex excitability, and overall level of fatigue [36].
Armstrong et al. [37] suggests that muscle fiber type may be a major factor dictating the responsiveness
of a subject to a WBV protocol. In their study, the H-reflex was determined to express high levels
of inter-subject variability, which was partially explained by the fiber type of the subject. However,
the gender or training status of the subjects did not appear to be responsible for the differences noted in
the H-reflex. Additionally, Adams et al. [2] noted that increased motor unit rate coding, synchronization,
muscular coordination, and proprioceptor responses were related to acute improvements in strength
and power performance seen following WBV exposure. The variability and lack of statistically
significant findings in the present investigation may be partially explained by individual differences in
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fiber type and neuromuscular responsiveness to the WBV protocol. For example, owing to individual
responses, perhaps 5 min was too long and the acute performance benefit was missed.

While every attempt was made to minimize the pre-testing level of fatigue, it is possible that this
affected the outcome measures collected during the isometric mid-thigh pull. Additionally, the training
status of the subjects used in the present study may have impacted the effectiveness of the WBV protocol
as a pre-conditioning activity [38]. Contrary to Armstrong et al. [37], Cochrane et al. [38] suggested
that training status can significantly impact a subject’s responsiveness to a WBV stimulus. The same
authors reported no ergogenic effect following an acute WBV protocol in non-elite athletes, suggesting
elite athletes may have responded more favorably. Specifically, they suggest that elite athletes have
more fine-tuned central nervous system control, which may facilitate muscle and mechano-receptor
sensitivity. On the basis of these findings, it is plausible that heavily resistance trained athletes may
exhibit greater responsiveness to the WBV protocol used in the present study.

While there were no statistically significant increases in the variables measured in the present
study, it is possible there is still a positive effect in response to the WBV protocol. Hopkins et al. [35]
suggest that an absolute increase of 10% should be considered as the minimum worthwhile increase
in a treatment-induced alteration. Additionally, a coefficient of variance of 0.3−0.6% appears to be
an important change for elite athletes. For example, increasing the coefficient of variance by 0.6%
increases the chance of winning a competitive event by ≈9−19% [35]. Therefore, on the basis of
the changes in the coefficient of variance noted in this study, it is possible that the application of a
WBV protocol may have a meaningful result when applied to an athletic population. In the present
study, the application of a WBV protocol resulted in increases in the coefficients of variance when
compared with the sham protocol of the magnitude of 3.9−60.6%, depending upon the variable
analyzed. With such high coefficients of variance, there is the potential for some acute ergogenic benefit
of the WBV protocol, but more research, especially with high level athletes, and possibly with larger
sample sizes, is warranted to further investigate this hypothesis.

Additional support for this hypothesis can be found by examining the 95% percent confidence
intervals noted for each of the coefficients of variance calculated and presented in Table 5 [28]. Batterham
and Hopkins [28] suggest that a three-level scale of magnitude can be used to determine meaningfulness
in a data set: beneficial, trivial, and harmful effects. In the present study, it may be inferred based upon
the 95% confidence intervals that the effect of WBV on the peak force generated at 50, 90, 200, and
250 ms yielded trivial effects (Table 5). Conversely, using the same technique, a beneficial effect was
noted for WBV effect upon peak RFD from 0 to 50 ms, 0 to 90 ms, and 0 to 200 ms (Table 5). Additionally,
as the p-values determined for the peak RFD at 0–90 ms (p = 0.36), 0–200 ms (p = 0.33), and 0–250 ms
(p = 0.30) were all between 0.05 and 0.50, it is difficult to determine the effects of WBV, as p-values
in these ranges are suggested to be in an indeterminate range [39]. Thus, it might be suggested that
chronic use of WBV may result in an enhancement in select force–time characteristics. This contention
may be supported by the statistically significant increases seen in vertical jump performance reported
to occur as a result of 3–4 months of WBV [8–11].
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Table 5. Coefficient of variance, intraclass correlations, and interclass correlations between treatment conditions.

T1 vs T2 T1 vs T3

Variable CV % 95% CI ICCα 95% CI R 95% CI CV% 95% CI ICCα 95% CI R 95% CI

Peak Force @ 50 ms 11.7 8.0–21.4 0.93 0.75–0.98 0.92 0.71–0.98 7.4 5.1–13.3 0.97 0.90–0.99 0.97 0.89–0.99
Peak Force @ 90 ms 14.5 9.9–26.8 0.92 0.73–0.98 0.91 0.68–0.98 8.0 5.5–14.5 0.98 0.91–0.99 0.97 0.89–0.99
Peak Force @ 200 ms 10.8 7.5–19.8 0.93 0.77–0.98 0.93 0.75–0.98 3.9 2.7–7.0 0.99 0.97–1.00 0.99 0.96–1.00
Peak Force @ 250 ms 8.9 6.1–16.1 0.96 0.85–0.99 0.95 0.82–0.99 3.8 2.6–6.8 0.99 0.97–1.00 0.99 0.96–1.00
Maximal Peak Force 4.2 2.9–7.5 0.99 0.96–1.00 0.99 0.96–1.00 5.9 4.1–10.7 0.98 0.93–0.99 0.98 0.91–0.99

PRFD @ 0–50 ms 60.6 41.9–112.6 0.76 0.43–0.91 0.74 0.35–0.91 40.1 28.3–71.1 0.88 0.69–0.96 0.87 0.64–0.96
PRFD @ 0–90 ms 33.5 23.8–58.5 0.89 0.70–0.96 0.88 0.65–0.96 23.5 16.9–39.9 0.93 0.82–0.98 0.94 0.81–0.98

PRFD @ 0–200 ms 34.6 23.1–68.5 0.72 0.25–0.92 0.70 0.17–0.92 30.8 20.6–60.2 0.78 0.37–0.94 0.76 0.30–0.93
PRFD @ 0–250 ms 15.3 11.1–25.4 0.92 0.78–0.97 0.91 0.75–0.97 7.9 5.8–12.8 0.98 0.93–0.99 0.98 0.94–0.99

Note: CV = coefficient of variance; 95% CI = 95% confidence interval; T1 = mid-thigh pull sham treatment; T2 = mid-thigh pull vibration treatment 1; T2 = mid-thigh pull vibration
treatment 2; PRFD = peak rate of force development.
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On the basis of the current research, the application of a 30 Hz, 2–4 mm amplitude vibration does
not result in any statistically significant alterations in isometric mid-thigh pull force/time characteristics
in recreationally trained males. However, it is still possible that the changes in performance noted
by the coefficient of variance and the 95% confidence intervals suggest a performance enhancing
effect following WBV application. This finding is somewhat in line with research suggesting that the
application of WBV can be used as a warm-up protocol for jumping activities [1]. The use of a higher
frequency and amplitude combination may produce different results. However, any positive benefits
seen following acute WBV application are likely related to the training status of the individual as well
as the activity used after the warm-up protocol. More research is needed in order to determine the
optimal application of WBV in field-based settings using both athletes and non-athletes.
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