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Abstract: Track foundation stiffness (also referred as the track modulus) is one of the main parameters
that affect the track performance, and thus, quantifying its magnitudes and variations along the track is
widely accepted as a method for evaluating the track condition. In recent decades, the train-mounted
vertical track deflection measurement system developed at the University of Nebraska–Lincoln
(known as the MRail system) appears as a promising tool to assess track structures over long distances.
Numerical methods with different levels of complexity have been proposed to simulate the MRail
deflection measurements. These simulations facilitated the investigation and quantification of the
relationship between the vertical deflections and the track modulus. In our previous study, finite
element models (FEMs) with a stochastically varying track modulus were used for the simulation
of the deflection measurements, and the relationships between the statistical properties of the track
modulus and deflections were quantified over different track section lengths using curve-fitting
approaches. The shortcoming is that decreasing the track section length resulted in a lower accuracy
of estimations. In this study, the datasets from the same FEMs are used for the investigations, and the
relationship between the measured deflection and track modulus averages and standard deviations
are quantified using artificial neural networks (ANNs). Different approaches available for training the
ANNs using FEM datasets are discussed. It is shown that the estimation accuracy can be significantly
increased by using ANNs, especially when the estimations of track modulus and its variations are
required over short track section lengths, ANNs result in more accurate estimations compared to the
use of equations from curve-fitting approaches. Results also show that ANNs are effective for the
estimations of track modulus even when the noisy datasets are used for training the ANNs.
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1. Introduction

It is widely accepted that a track modulus, and its variations, are indicators of subgrade
conditions [1–5]. A track modulus is a measure of the vertical stiffness of the rail foundation and is
defined as the ratio of the vertical supporting force per unit length of rail to the vertical deflection [1].
A practical way to assess the track modulus is to measure the rail deflection under specified loads [6–8].
Measured deflections can be correlated to the track modulus using mathematical equations. Two
methods are available to measure rail deflections: trackside measurement techniques and on-train
approaches. Trackside measurement techniques are used to measure the rail deflection at specific
locations under specified static loads or moving loads [9]. Although these techniques provide accurate
estimations of track stiffness, they are laborious and time-consuming, especially when multi-point
measurements are required. On the other hand, on-train measurement systems allow the measurement
of rail deflections over long distances and thus provide a good overall evaluation of the entire railway
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network [10–15]. Comprehensive analysis is typically needed to investigate the relationship between
deflection measurements from on-train systems and track modulus [16,17].

The real-time vertical track deflection measurement system (known as MRail System) developed
at the University of Nebraska–Lincoln, under the sponsorship of the Federal Railroad Administration
(FRA), has become more popular in recent decades [10–12]. The system computes relative vertical
deflection (Yrel) between the rail/wheel contact plane, and the rail surface at a distance of 1.22 m from
the nearest wheel to the sensor system. The MRail system has been tested over different railway lines
in the USA and Canada for evaluating track conditions [18–21]. Results from the MRail field tests
show that the system not only has the potential to identify the local track problems, i.e., muddy ballast,
degraded joints, crushed rail head, broken ties, but also provides an opportunity to map the subgrade
condition and assess the track performance along the railway line [22–25].

In addition to the experimental studies, different numerical models have been used to investigate
the relationship between track modulus and Yrel data, and numerical approaches have been proposed
to estimate the track modulus from Yrel [21,26]. The current study aims to propose a new and advanced
approach for estimating track modulus statistical properties from Yrel data more accurately compared
to previous studies. First, the details of the MRail system are briefly presented, and the numerical
models developed by others and their shortcomings are discussed. Then, artificial neural networks
(ANNs) are explained as the main tool to investigate the relationship between track modulus and
Yrel data in this paper. Different methods for training the ANNs are used, and the effectiveness of
the trained ANNs are investigated using error measurement parameters such as the coefficient of
determination (R2), the root mean square error (RMSE), and mean absolute percentage error (MAPE).
Suitable signatures of Yrel data are identified by conducting both statistical and frequency analysis.
Feedforward neural networks are proposed as a function approximation technique to estimate the
track modulus average (UAve) and standard deviation (USD) from Yrel data. To further investigate
the effectiveness of the ANNs for estimating the track modulus, noisy finite element models (FEM)
datasets are employed for training the ANNs. The accuracy of the track modulus estimations using
these ANNs is also investigated using R2, RMSE and MAPE.

2. The Stiffness Measurement System and Numerical Simulations

2.1. MRail Measurement System

The MRail system was originally developed at the University of Nebraska–Lincoln under the
sponsorship of the Federal Railroad Administration (FRA) [10–12]. The system measures the relative
vertical deflection (Yrel) between the rail surface and the rail/wheel contact plane, at a distance of 1.22
m from the nearest wheel to the acquisition system (Figure 1a). The sensors consist of two laser lines
and a digital camera mounted on the side frame of the rail car (Figure 1b). The laser system projects
two curves on the rail surface, whose minimum distance (d) is captured by the camera (Figure 1c).
Subsequently, the distance between the camera and the rail surface (h) is computed by converting
d. Finally, the relative deflection Yrel is calculated by subtracting h from (Yrel + h), the fixed distance
between the rail/wheel contact plane and the camera.

The MRail system can measure the deflection at different sampling rates with the speed up to
96 km/h (60 mph). The Winkler model and the finite element models have been used to estimate the
track modulus from Yrel [24].
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applied load (P) is computed as follows: ( ) = (cos + sin )2 	 (1) 

where β is the stiffness ratio, which is equal to (U/(4EI))0.25, U is the track modulus, E is the modulus 
of the elasticity of the rail, and I is the second moment of area of the rail. 

From the Winkler model, the vertical deflection profile of a rail is only dependent on the track 
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modulus, the rail vertical deflection profile can be estimated using Equation ((1), and from the rail 
vertical deflection profile, Yrel can be calculated as the relative vertical deflection between the rail 
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[11,30]. The main shortcoming in this method is that the Winkler model assumes a track modulus is 
constant along the track while the field data shows that a track modulus stochastically varies along 
the track [31,32]. Therefore, the estimation of the track modulus from the Yrel measurements needs 
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Figure 1. Demonstration of the MRail system (real-time vertical track deflection measurement system)
for Yrel measurements: (a) the measurement system on a rigid frame; (b) the sensor system; and (c) the
projections of the laser lines on the railhead.

2.2. Winkler Model

Rail deformation and bending stress under specific loads are typically estimated using THE
Winkler model, which considers the track as an infinite beam on a continuous elastic foundation [27–29].
Using the Winkler model (Equation (1)), the vertical rail deflection (y) at a distance x from the applied
load (P) is computed as follows:

y(x) =
Pβe−βx(cos βx + sin βx)

2U
(1)

where β is the stiffness ratio, which is equal to (U/(4EI))0.25, U is the track modulus, E is the modulus of
the elasticity of the rail, and I is the second moment of area of the rail.

From the Winkler model, the vertical deflection profile of a rail is only dependent on the track
modulus value when the rail size and vertical loads are known. Once a value is assumed for track
modulus, the rail vertical deflection profile can be estimated using Equation (1), and from the rail
vertical deflection profile, Yrel can be calculated as the relative vertical deflection between the rail surface
and the rail/wheel contact plane at a distance of 1.22 m from the nearest wheel (Figure 1a) [11,30]. The
main shortcoming in this method is that the Winkler model assumes a track modulus is constant along
the track while the field data shows that a track modulus stochastically varies along the track [31,32].
Therefore, the estimation of the track modulus from the Yrel measurements needs more advanced
numerical models.

2.3. Finite Element Model

FEMs allow the simulation of a stochastically varying track modulus, and therefore, a more
accurate simulation of Yrel measurements. Fallah Nafari et al., developed 90 FEMs with a stochastically
varying track modulus to facilitate a more detailed investigation of the relationship between the
Yrel and the track modulus [21]. Datasets from the 90 FEMs were used for the study in this paper.
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Hence, the details of the models are discussed briefly. The models are developed using CSiBridge
software, where each model includes a 180.8 m track structure with two rails, crossties, and spring
supports [33]. To develop each model, a normal track modulus distribution is assumed and randomly
selected numbers from this distribution are assigned to the spring supports along the track. Statistical
properties of the assumed normal distributions are summarized in Table 1, and the applied loads are
depicted in Figure 2. RE136 rail size and 0.508 m tie spacings are used in the models.

Table 1. Statistical properties of the track modulus in the FEMs.

Track Modulus Average (MPa) Coefficient of Variation (COV) No. of Simulations

41.4 0.25; 0.5; 0.75 30 (10 simulations for each COV)
27.6 0.25; 0.5; 0.75 30 (10 simulations for each COV)
12.8 0.25; 0.5; 0.75 30 (10 simulations for each COV)
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Figure 2. The loading condition in the finite element models (FEMs).

Individual Yrel values are calculated from the vertical deflection profile at every 0.3048 m (≈1 ft)
interval while the moving loads pass the track model. The dynamic effects of track–train interactions
are not considered during the simulations due to the software’s limitation. This is acceptable within
the scope of this study which mostly focuses on the Canadian freight lines where speeds are most
likely lower than 65 km/h.

Figure 3 shows an example of the inputted track modulus to the model and corresponding Yrel
output. Fallah Nafari et al., used basic statistical analysis and curve fitting approaches to study the
relationship between the statistical properties of track modulus (U) and Yrel [21]. The results showed
that the average and standard deviation of the track modulus over a track section length can be
estimated from the average and standard deviation of Yrel over the same track section length. However,
the estimation accuracy becomes lower by decreasing the track section length [21]. To overcome this
shortcoming and increase the estimation accuracy of the track modulus, ANNs are proposed for the
track modulus estimations in this study.
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2.4. Estimation of Track Modulus Average

2.4.1. Multilayer Perceptron Artificial Neural Networks

Multilayer perceptron neural networks (MLPNN) are typically useful for classification, and
function approximation problems [34–38]. The implementation of MLPNN is operated with two
stages of performance, i.e., training and testing procedures. Once the training process is successfully
performed in a self-adaptive manner with all defined parameters (such as learning algorithm and
network architecture including several layers, and neurons in each layer), the network can effectively
approximate the input–output mapping function.

MLPNN is a network containing two or more neurons distributed in different layers, such as
input layers, output layers, and hidden layers that connect the input and output layers (Figure 4a).
Each neuron has a nonlinear differentiable activation function that creates real values and is highly
connected to other neurons based on synaptic weights wij (n) (Figure 4b) as the level of connectivity.
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Figure 4. (a) Example of a two-hidden layer perceptron; (b) typical operation at neuron j.

One of the most complicated tasks before executing an MLPNN is that all the required parameters
should be well defined to approximate the input–output relationship, which is called the learning
process that contains two phases. In the forward phase, the inputs are fed into the network from left to
right, and layer by layer with the fixed values of synaptic weights. In the backward phase, the error
vector is first computed by subtracting the output of the network from the expected target. The error is
then propagated backward from the output to the input layer. In this phase, the synaptic weights are
adjusted to minimize the network error by solving the credit-assignment problems in the operation of
each hidden unit. Each synaptic weight will be updated differently based upon the contribution of the
corresponding hidden unit to the overall error. More information about training the network using
backpropagation and gradient descent is in Haykin’s book [34].

2.4.2. Estimation Procedure and Results

The inputted track modulus and the corresponding Yrel data from the 180 m track models are
divided into equivalent groups based on a track section length (e.g., 5 m, 10 m, etc.). Once the
subgroups are defined, the average and standard deviation of Yrel in each subgroup are used as the
networks’ inputs whereas the track modulus averages in the corresponding track segments are defined
as the network’s outputs.

Yrel data extracted from eighty-one FEMs (out of ninety FEMs) are used to train the neural network.
The accuracy of the trained network is then tested using the remaining nine (unseen) FEMs. These
nine FEMs are called “unseen models” hereafter as they are not used in training the network. To
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test the trained network, track modulus average is estimated from Yrel average and the standard
deviation for the nine unseen models. The estimated track modulus average is then compared with
the track modulus inputted initially into the FEMs to generate Yrel data. The effectiveness of the
proposed network is measured based on three parameters: the coefficient of determination (R2), the
root mean square error (RMSE), and the mean absolute percentage error (MAPE) [39]. These measures
are described as follows:

R2 =

 1
N

∑N
i=1

[
(oi − oi) ·

(
yi − yi

)]
σo · σy


2

(2)

RMSE =

√√√ N∑
i=1

(yi − oi)
2

N
(3)

MAPE =
1
N

N∑
i=1

100

∣∣∣yi − oi
∣∣∣

yi
(4)

where oi, yi, σo, and σy are the average and standard deviation of the estimated, and targeted values; N
is the number of testing samples.

When a network is trained, five-fold cross-validation is employed to minimize any potential
over-fitting problem and increase the network’s generalization. Regarding the network architecture, a
network with two hidden layers (each contains 15 hidden nodes) is used in this study. This network
ensures an acceptable error range, avoids over-fitting, and optimizes the computational efficiency.
From different tests, it is noted that increasing the number of hidden nodes and hidden layers, does
not necessarily mean the network’s performance is improved. In fact, the input configuration is the
most important factor that controls the network performance.

Five networks for five different track section lengths have been fully trained to perform this study.
The track modulus average over five section lengths is then estimated for the nine new models using
the trained networks. Table 2 presents the accuracy level of these estimations. From the table, the
network performs better when the track section length increases although the error is acceptably small
even with the case of a 10 m section length. R2 is 0.95 for the case of the 10 m section length, which
means that the estimated and inputted track modulus averages are well correlated. Moreover, the
RMSE and MAPE are quite small, i.e., 2.81 MPa, and 6.99% respectively, considering that range of
inputted track modulus average is 12.8 to 41.4 MPa. In addition to confirming the applicability of the
Yrel data in indicating the track modulus information, the current methodology provides more accurate
results than the other method in the literature [21]. As shown in Table 2, the R2 value computed in the
related study decreases as the length of the track segment reduces, whereas the R2 in the current study
is almost constant for cases with a 10 m track section and more.

Table 2. Estimation accuracy of the track modulus average (no noise added).

Section Length (m) MAPE * (%) RMSE ** (MPa) R2 R2 in [21]

5 12.42 4.58 0.86 0.79
10 6.99 2.81 0.95 0.93
15 5.90 2.56 0.95 N/A
20 4.32 1.60 0.98 0.96
25 3.87 1.63 0.98 N/A

* Mean Absolute Percentage Error; ** Root Mean Square Error.

The accuracy of the estimation method for the case of the 10 and 20 m section lengths are
demonstrated in Figure 5 for four models as an example. These four models had a different track
modulus average and variations. From the figure, the values estimated from the networks are very
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close to the actual track modulus average inputted to the FEMs. Better results can be observed in the
case of a 20 m section length (Figure 5b) although the performance of the estimation of track modulus
over the shorter section length (Figure 5a) is still satisfactory. Most importantly, the local fluctuation of
the track modulus is well captured.
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The effectiveness of the framework is further investigated by adding artificial noise to the Yrel data
extracted from the FEMs. This simulates the real-life condition in which the Yrel measurements are
affected by parameters such as the resolution of the MRail measurement system, track irregularities,
etc. The artificial noise was added based on Equation (5) [40]. An example of pure vs. noise-added Yrel
is shown in Figure 6:

Yrel−noisy = Yrel + α · 0.12 + β · 0.1 ·Yrel (5)

where α, and β are random numbers ranging from −1 to 1.
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The noisy Yrel is used to train new networks, and then the trained networks are used to estimate
the track modulus average. The estimated track modulus is then compared with the inputted track
modulus for each model and the error is reported in Table 3. From the table, the estimation of the track
modulus average (Uave) from the noisy Yrel is still successful even for the short track section length of
10 m as R2 is 0.95, and RMSE is 2.77 MPa. This demonstrates that the framework performs effectively
even when the Yrel data contain noise, and thus is expected to work with real-life data.

Table 3. Estimation accuracy of the track modulus average (with added noise).

Section Length (m) MAPE (%) R2 RMSE (MPa) R2 in [21]

5 14.09 0.83 5.07 0.79
10 7.01 0.95 2.77 0.93
15 5.93 0.96 2.36 - *
20 6.07 0.97 1.98 0.96
25 3.98 0.98 1.53 - *

* Not available for comparisons since those section lengths are not available in the previous study.

2.5. Estimation of Track Modulus Standard Deviation (USD)

The estimation of the track modulus standard deviation from the Yrel data using statistical methods
and curve-fitting approaches has not been successful for track section lengths shorter than 80 m [21].
Therefore, frequency characteristics of the deflection data are investigated in this study to increase the
estimation accuracy of track modulus standard deviation. The coefficients associated with the Yrel
frequency components are employed as one of the inputs to the ANNs, whose outputs are the track
modulus standard deviation over different track section lengths. As demonstrated in Figure 7, Yrel and
the track modulus data are divided into different subgroups based on various track section lengths
(similar to the procedure used for estimating the track modulus average). Then, statistical analysis, fast
Fourier transform, and a liftering technique are applied on the Yrel data in each subgroup to extract the
average and standard deviation of the Yrel and average and the standard deviation of liftering the fast
Fourier transform (FFT) coefficients. These parameters are used as the inputs of ANNs.

Figure 8a shows an example of the FFT coefficients of the Yrel data over a track section of 30 m for
81 models. As can be seen, the coefficients at higher orders are relatively small. This is undesirable
for training the ANN due to possible bias. Therefore, the coefficients are processed using a liftering
technique (Equation (6) to roughly normalize their variances) [41]:

X′(k) =
(
1 +

L
2

sin
(
π(k + 1)

L

))
·X(k), k = 0, . . . , N − 1 (6)

where L is the sin lifter parameter, which is 50 in the current study, and X(k) is the FFT coefficients.
Once the liftering technique is applied (Figure 8b), the average and standard deviations of the

lifted FFT are calculated using Equations (7) and (8) are used as two additional inputs for ANNs.

P1 =
2

N − 1

(N−1)/2∑
k=0

∣∣∣X′(k)∣∣∣ (7)

P2 =

√√√
2

N − 1

N/2∑
k=0

(∣∣∣X′(k)∣∣∣− P(1)
)2

(8)

The architecture used for developing the network in this section has two hidden layers and 15
hidden nodes in each layer, similar to the network’s architecture for estimating the track modulus
average. The trained networks are used for estimating the track modulus standard deviation over
different track section lengths and three accuracy measurements are reported in Table 4. In order



Vibration 2020, 3 157

to show that the current input–output pair is optimized, and two network architectures are trained
(ANN-1 with four inputs, i.e., the average and standard deviation of Yrel, and the average and standard
deviation of the lifted FFT; ANN-2 with two inputs, i.e., mean and standard deviation of Yrel). In each
case, the two networks are trained and tested multiple times and the mean and standard deviation of
the performance parameters are computed and reported in Table 4. For the case of 5 m section length,
for instance, the networks’ input, and output are first extracted based on the chosen section (5 m), then
ANN-1 and ANN-2 networks are trained using the training data and tested against the data extracted
from nine unseen FEMs.Vibration 2020, 3 FOR PEER REVIEW  9 of 14 
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Table 4. Estimation accuracy of the USD (no noise added, the standard deviation in the parenthesis).

Section Length (m) Network Configuration RMSE (MPa) MAPE (%) R2 R2 in [21]

10
ANN-1 3.00 (0.16 *) 18.41 0.83 0.53
ANN-2 3.05 (0.22) 19.12 0.82 -

15
ANN-1 2.36 (0.08) 15.01 0.89 -
ANN-2 2.61 (0.39) 15.79 0.87 -

20
ANN-1 2.23 (0.11) 14.49 0.91 0.66
ANN-2 2.59 (0.89) 14.47 0.88 -

25
ANN-1 1.83 (0.13) 11.96 0.94 -
ANN-2 1.99 (0.30) 11.72 0.92 -

30
ANN-1 2.08 (0.17) 11.61 0.92 -
ANN-2 2.14 (0.44) 11.79 0.91 -

* Standard deviation of the estimation error.

From Table 4, the error values show that the standard deviation of track modulus (USD) can be
estimated satisfactorily by both network configurations (ANN-1 and ANN-2). Even for the 10-m
section length case, for instance, the coefficient of correlations between the actual USD and the one
estimated by the two networks are very high, e.g., 0.83 and 0.82 respectively. However, the networks
with four inputs (ANN-1) slightly outperform the one with two inputs (ANN-2) regardless of the
section lengths. Specifically, the RMSE and MAPE are always smaller than those arising from the
trained networks whose inputs are the statistical properties of Yrel only (ANN-2). Values estimated
using the networks with four inputs have relatively high R2 in all cases showing that the methodology
is successful. In particular, the R2 is as high as 0.94 for the case of the 25 m section length and the RMSE
is 1.83 MPa, which is a relatively small error considering that the maximum standard deviation of the
inputted track modulus in the FEMs is 31.05 MPa. Moreover, the first network (ANN-1) provides more
reliable results as the standard deviation of RMSE remains stable (varying from 0.11 to 0.17 MPa) and
lower than those of ANN-2. Therefore, combining FFT and statistical analysis to configure the input
for the networks noticeably improves the estimation accuracy, and increases the stability of the ANNs,
the mapping function between the Yrel characteristics and the track modulus standard deviation (USD).
Most importantly, there is a big step forward in this paper compared to the previous study, where
the R2 coefficient is 0.748 even though the 40 m section length is used [21]. The performance of this
estimation can be considered ineffective as the R2 coefficient reduced significantly in shorter track
segment cases (Table 4). Hence, considering the current results, it can be claimed that neural networks
are more powerful for mapping the relationship between Yrel and track modulus, especially over the
short track section lengths.

For more descriptive results, the strong correlation between the actual and estimated track
modulus’s standard deviation for the 25 m section length is demonstrated in Figure 9. As can be seen,
the estimated standard deviations follow the same patterns as those of the actual values, which vary
greatly from 3.2 to 31.05 MPa.
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The effectiveness of the methodology is further validated by adding noise into the deflection data
(Yrel). Similar to the procedure mentioned in the previous section, noise is added to the Yrel data from
90 models using Equation ((5). The dataset from 81 models is then used to train the networks using
two approaches: networks with two inputs (average and standard deviation of Yrel) and networks
with four inputs (average and standard deviation of Yrel and average and standard deviation of the
lifted FFT). The developed networks are used to estimate the track modulus standard deviations over
the different section lengths from the unseen Yrel data. The estimated values are compared with the
standard deviation of track modulus inputted to FEMs and results are reported in Table 5. The results
show that the proposed approaches work very well even when Yrel datasets are affected by noises. The
R2 is again higher than 0.90 when the 25 m or higher section lengths are utilized.

Table 5. Estimation accuracy of the USD (with noise added).

Section Length (m) Network Configuration R2 RMSE (MPa) MAPE (%)

10
ANN-1 0.82 3.06 20.12
ANN-2 0.81 3.14 19.64

15
ANN-1 0.87 2.59 16.30
ANN-2 0.87 2.64 16.23

20
ANN-1 0.89 2.42 16.13
ANN-2 0.89 2.45 14.71

25
ANN-1 0.94 1.86 11.96
ANN-2 0.93 1.88 11.73

30
ANN-1 0.94 1.84 10.43
ANN-2 0.93 1.89 10.95

3. Conclusions

In this paper, two frameworks are proposed for estimating the track modulus average, and the
standard deviation over the different track section lengths. The frameworks employed Yrel data (a
relative rail vertical deflection measured using the MRail system) for the track modulus estimations. The
relationship between the statistical properties of the track modulus and the Yrel data were investigated
using artificial neural networks (ANNs). Datasets from FEMs are used to train the ANNs in which their
outputs are either the track modulus average or standard deviations. Both statistical and frequency
analyses were conducted to identify the optimized inputs for the ANNs from the Yrel data. From the
results, the track modulus average over a track section length of 10 m or longer is accurately estimated
from the average and standard deviation of the Yrel data within the corresponding section length.
Additionally, the standard deviation of the track modulus over a section length of 25 m or longer is
estimated with an acceptable level of accuracy. It is also shown that the trained ANNs work very well
for the track modulus estimations even when the Yrel values as the ANN inputs are affected by noise.
The proposed ANNs are only applicable to a specific rail type and loading condition. Hence, a similar
procedure should be followed to train the ANNs for different ranges of rail sections and loading types.
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