
vibration

Review

Jerk within the Context of Science and
Engineering—A Systematic Review

Hasti Hayati 1,* , David Eager 1 , Ann-Marie Pendrill 2 and Hans Alberg 3

1 School of Mechanical and Mechatronic Engineering, University of Technology Sydney, P.O. Box 123,
Broadway, Ultimo, NSW 2007, Australia; David.Eager@uts.edu.au

2 National Resource Centre for Physics Education, Lund University, Box 118, SE 221 00 Lund, Sweden;
Ann-Marie.Pendrill@fysik.lu.se

3 Hägerstens Alle 20, lgh 1303, SE 129 37 Hägersten, Sweden; alberg.hans@gmail.com
* Correspondence: Hasti.Hayati@uts.edu.au

Received: 14 September 2020; Accepted: 10 October 2020; Published: 21 October 2020
����������
�������

Abstract: Rapid changes in forces and the resulting changes in acceleration, jerk and higher order
derivatives can have undesired consequences beyond the effect of the forces themselves. Jerk can
cause injuries in humans and racing animals and induce fatigue cracks in metals and other materials,
which may ultimately lead to structure failures. This is a reason that it is used within standards for
limits states. Examples of standards which use jerk include amusement rides and lifts. Despite its use
in standards and many science and engineering applications, jerk is rarely discussed in university
science and engineering textbooks and it remains a relatively unfamiliar concept even in engineering.
This paper presents a literature review of the jerk and higher derivatives of displacement, from
terminology and historical background to standards, measurements and current applications.
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1. Introduction

Jerk—the time derivative of acceleration—is an important consideration for many applications
in science and engineering. For example, jerk has long been used as a design factor to ensure ride
comfort, e.g., in amusement rides [1–7], ships [8–10], lifts/elevators [11] and buses [12], and there
are many reasons to believe that the relevance of jerk—and higher derivatives of displacement—will
increase. A number of ISO standards also refer to jerk [13–19].

Displacement, velocity and acceleration are well known concepts for everyone who has studied
physics at secondary level, whereas jerk—the time derivative of acceleration—and higher derivatives
are rarely mentioned, let alone discussed, even in university physics or engineering textbooks.
This omission was pointed out three decades ago by Sandin [20], who only found one reference
to jerk [21] in a dozen reviewed text books. In addition, in an earlier article for university physics
teachers [22], Schot presented the concept and also discussed the radial and tangential components of
jerk. However, despite this early effort for jerk to be included in text books, jerk is not yet discussed in
physics and engineering courses, except for a few textbooks [23–25]. The lack of detail in textbooks
also contributes to some confusion concerning terminology.

Higher derivatives have been discussed by Thompson in a conference presentation [26], where he
argued that since immediate acceleration onsets have a detrimental effect on equipment, acceleration
should be ramped up by placing a limit on jerk. He then proposed an alternative strategy, claimed to
be even better, which is ramping up jerk by placing a limit on its higher derivatives of snap, crackle
and pop. However, the details of his studies are beyond the scope of this work.
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Jerk and higher derivatives of acceleration are relevant for understanding the impact of motion
and vibrations in a wide range of applications, as reviewed in this paper [1–12,27–195]

The considerable interest is also reflected in the large number of downloads (>100,000) of a 2016
paper on jerk and higher derivatives [1].

To support secondary school teachers and university lecturers who would like to introduce
the concept of jerk, as well as higher derivatives, in their science or engineering courses, we have
conducted a thorough systematic review, from terminology and historical background to standards,
measurements and current applications. The articles are divided, based on the applications of jerk,
into twenty-one categories. Each article is ranked against where it is published using Scientific Journal
Rankings (SJR)—Scimago index, from the quartiles Q1 to Q4, where Q1 is occupied by the top 25% of
journals, Q2 by the top 25% to 50% and so on. We used N/A for thesis, reports, and conferences and
journals where we were unable find any information with regards to their quality. Other sources are
also included in the reference list. The rationale for including these sources is the scarcity of research
on jerk. It is then the responsibility of the reader to evaluate the articles against their own objective.
A number of papers have been included which use the concept of jerk, even if they don’t explicitly
mention the term or only refer to it briefly.

Background

There is a limited number of good textbooks about the history of mechanics. The best are probably
Szabo [196] (in German) and Dugas [197] (in French and translated into English [198]). Although these
books contain a lot of interesting information, neither covers jerk or higher derivatives.

Newton’s second law of motion is commonly written as F = ma, i.e., “force equals mass times
acceleration”, although Newton did not use the term acceleration in his equations but stated that the
rate of change in momentum is equal to the applied force. The concept of acceleration was formalized
by Pierre Varignon (1654–1722) [199]. Before the second world war German engineers, including
Melchior [200] and Schlobach [201], pointed at applications of jerk for handheld machines.

One aspect that is frequently overlooked is terminology. By standardizing terminology,
misunderstandings could be avoided, communication between scientists from different disciplines
could be enabled, and searches on the global network would be facilitated. The term “jerk” for the first
derivative of acceleration seems to be most widely used. However, alternative terms like “acceleration
onset rate” are also used, e.g., Whinnery et al. [202], ISO 2041 [13] and a report by NASA [94].

The higher derivatives are less familiar, and different terminologies have been used by different
groups. The term “jounce” is sometimes used to describe the fourth derivative of position, and in
some Japanese articles it is referred to as “jerk-dot” [148,173,175].

In this work, we will use the more common terms “snap”, “crackle” and “pop” for the 4th–6th
derivatives (named after pictorial characters on Kellogs’ Corn Flakes packages from the thirties). For the
7th–10th derivatives, the terms “lock”, “drop”, “shock” and “put” have been proposed informally,
although we have been unable to find them in the literature.

2. Method

Articles in the period from 2015 to 2020 with the term “jerk” mentioned in the title were looked
up in an electronic database (Scholar.google.com), excluding citations and patents. There were
550 results. The initial 550 articles was refined by excluding 129 based on title, non-English language
and duplication. Of the remaining 421 articles, 147 articles were excluded in a more detailed subsequent
assessment that included a review of the abstracts and conclusions, and their source, i.e., low-quality
journals/conferences. Of the remaining 274 remaining articles, 139 articles that referred to jerk in
the context of chaotic systems and nonlinear dynamics were excluded. Terms signaling this context
include jerk system, hyper-jerk system, chaotic jerk-system, jerk attractors, jerk circuit, jerk dynamics,
jerk map, jerk function, jerk oscillators and jerk equations, and traffic jerk model (n = 17) articles that

Scholar.google.com
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used jerk in the context of weightlifting were removed, since this refers to a weightlifting technique
rather than the jerk itself.

In addition to the articles emerging from this database search, the authors were aware of 84 articles
before 2015, as well as articles where jerk was not mentioned in the title. These articles have been
included in the review. The inclusion-exclusion criteria flow chart is given in Figure 1.
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Figure 1. Systematic review ‘inclusion-exclusion criteria’ flow chart.

After reviewing the collected literature (n = 202) and those articles that the author were aware of,
the applications of jerk were categorised into 20 categories.

Categorisation of Jerk Applications

The 21 jerk categories chosen with their respective references were:

1. Jerk in advanced manufacturing [27–90];
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2. Jerk in amusement rides [1–7,14];
3. Jerk in cosmology and space technology [91–94];
4. Jerk in criteria for discomfort [1,4,5,9,10,12,19,25,95–131];
5. Jerk in equation of motion [132–136];
6. Jerk in global positioning systems (GPS) [137,138];
7. Jerk in human tolerance [202,203];
8. Jerk in kinesiology [139–147];
9. Jerk in measurement [148–151];

10. Jerk in motion analysis [152,153];
11. Jerk in ornithology [154];
12. Jerk in racing [155–160];
13. Jerk in sea-keeping [8–10,122,126,204];
14. Jerk in seismic analysis [134,161–170];
15. Jerk in shock response spectrum [8,205];
16. Jerk in sport science [1,171,172];
17. Jerk in standards [13–19]
18. Jerk in structural health monitoring [173–176];
19. Jerk in technical pain [177];
20. Jerk in unmanned aerial vehicle (UAV) [11,178–186]; and
21. Jerk in vehicles (ride comfort [12,15,17,19,25,45,95,98–106,108,109,111–113,115,118–121,

123–125,127–131], anti-jerk controller design [95,98–102,109,111,119,120,130], autonomous
vehicles [12,16,114,123,187,188], and other [111,187,189–195].

The next section presents brief summaries of the papers in the different categories.

3. Results and Discussion

3.1. Jerk in Advanced Manufacturing

Jerk in advanced manufacturing can be categorised into jerk in industrial robots [27–63],
machining [64–78], motors [79–83], and 3D printers [84–90].

3.1.1. Jerk in Industrial Robots

Jerk is mainly used to generate smooth trajectories in industrial robots (also referred to as
manipulators) [27–63]. It is outside the scope and purpose of this paper to explain the jerk-controller.
Details (author, source, SJR ranking and the title) of the Q1 articles are tabulated in Table 1.

As mentioned above, all of the cited reference used jerk as a limit for generating or controlling a
smooth motion.

3.1.2. Jerk in 3D Printers

In recent years, jerk has been used in 3D printers [84–90]. One important consideration in 3D
printing is that the term jerk, in the majority of 3D firmware, is defined in terms of the maximum
“instantaneous” velocity change without consideration of the time required [84,90].

Inconsistent terminology causes confusion and needs to be addressed in the future.
Notwithstanding, in an article on 3D printing by Hernandez [86], the actual jerk was considered
(see Table 2).

3.1.3. Jerk in Machining

Jerk is recently used in generating smooth trajectories in machining [64–78]. Details of Q1 articles
are tabulated in Table 3.
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Table 1. Jerk in industrial robots.

Author Source SJR Title

Lang (2015) [42] IEEE Robotics
Automation Letters

Q1 Path-accurate online trajectory generation for jerk-limited industrial robots
real-time trajectory generation for industrial robot which complies with standards
of smooth motion in robotic arms.

Chen (2015) [85] IET Control Theory
Applications

Q1 Minimum jerk norm scheme applied to obstacle avoidance of redundant robot
arm with jerk bounded and feedback control.

Chen (2015) [29] Automatica Q1 Composite jerk feed-forward and disturbance observer for robust tracking of
flexible systems.

Bianco
(2017) [28]

Robotics
Computer-Integrated
Manufacturing

Q1 A scaling algorithm for the generation of jerk-limited trajectories in the operational
space.

Besset
(2017) [27]

Control Engineering
Practice

Q1 Constraints and limits on velocity, acceleration, and jerk FIR filter-based online
jerk-constrained trajectory generation.

Kaserer
(2018) [41]

IEEE Robotics
Automation Letters

Q1 Nearly optimal path following with jerk and torque rate limits using dynamic
programming.

Kaserer
(2018) [40]

IEEE Transactions on
Robotics

Q1 Online robot–object synchronization with geometric constraints and limits on
velocity, acceleration, and jerk.

Huang
(2018) [38]

Mechanism Machine
Theory

Q1 Optimal time-jerk trajectory planning for industrial robots.

Rojas (2019) [52] IEEE Robotics
Automation Letters

Q1 A variational approach to minimum-jerk trajectories for psychological safety in
collaborative assembly stations.

Palleschi
(2019) [49]

IEEE Robotics
Automation Letters

Q1 Time-optimal path tracking for jerk controlled robots.

Dai (2020) [33] IEEE Transactions on
Automation Science and
Engineering

Q1 Planning jerk-optimized trajectory with discrete time constraints for redundant
robots.
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Table 2. Jerk in 3D printers.

Author Source SJR Purpose and Finding Comments

Hernandez
(2015) [86]

International Journal of
Aviation, Aeronautics,
Aerospace

Q4 To analyse factors which affect the dimensional precision of consumer 3D printing.
The jerk was believed to play an insignificant role in printing quality but it was
observed that a single instant of apparent error due to jerk could be accounted for,
and should be considered by changing the the way infill was applied.

The maximum jerk is an input parameter
that can be set by the user to control the
dimensional precision of 3D print and
have a cleaner print as a result.

Table 3. Jerk in machining.

Author Source SJR Purpose and Findings Comments

Zhang
(2019) [78]

Computer-Aided
Design

Q1 Generating a smooth curve, mainly at junctions, in computer numerical control
(CNC) machining is a challenge. In this work, a new algorithm, which is claimed
to have a jerk-smooth trajectory controller, is proposed.

Jerk as a measure to generate smooth and
accurate trajectories.

Schroedter
(2018) [74]

Mechatronics Q1 A flatness-based feed forward control method using jerk-limited trajectories, which
is based on a mechatronic micro mirror model, is proposed to reduce undesired
oscillations in micro-scanners.

Jerk as a measure to generate smooth and
accurate trajectories.

Dumanli
(2018) [68]

Precision Engineering Q1 Obtaining a smooth surface manufactured in a timely manner is a challenge in
different industries, and, therefore, different smooth-trajectory controllers have
been developed. In this study, a novel jerk value decision-making process is
proposed for the parts-machining process.

Jerk as a measure to generate smooth and
accurate trajectories.

Alzaydi
(2019) [65]

Mechanical Systems
Signal Processing

Q1 Current machine tool controllers cannot fully benefit from the speed of the drilling
laser as they are not equipped with a proper trajectory function. In this work, a
time-optimal and minimum jerk trajectory generator is designed and implemented
on a gas turbine combustion chamber. The results showed 6% time-reduction as
well as reduced oscillation due to controlled jerk.

Jerk as a measure to generate smooth and
accurate trajectories.

Hashemian
(2020) [69]

Computer-Aided
Design

Q1 A novel jerk-minimised trajectory controller for multi-axis flank CNC machining
is developed in this work.

Jerk as a measure to generate smooth and
accurate trajectories.

Zhang et al.
(2018) [64]

The International
Journal of Advanced
Manufacturing
Technology

N/A Corner smooth machining in high speed machining causes issues in advanced
manufacturing. Current solution is based on the jerk-limited acceleration profile
from the perspective of kinematics that generate continuous acceleration transition
profiles. They offer the same approach but for a higher derivative of jerk (jounce).

They used Jerk onset (jounce) for
smoothing algorithm for the corner
motion in high speed machining.
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3.1.4. Jerk in Motors

Jerk is also used in motors mostly a as a measure to control/generate smooth trajectories [79–83]
(Table 4).

3.2. Jerk in Amusement Rides

Jerk is rarely mentioned in textbooks but is quite an important physical parameter, as we quite
often experience it in daily life. One important aspect of jerk is that jerk is an element in the comfort
and safety of amusement rides, as well as reducing the need for equipment maintenance (Table 5).

3.3. Jerk in Cosmology and Space Technology

Jerk is used in cosmology as well as space technology. Details of articles which were eligible based
on the inclusion criteria of the current work are given in Table 6.

3.4. Jerk in Criteria for Discomfort

Ride comfort is an important parameter in amusement rides [1,4,5], sea-keeping [9,10,122,126]
and traditional land-based vehicles [12,25,45,95,98–106,108,109,111–113,115,118–121,123–125,127–131].
There are still discussions ongoing regarding the significance of jerk regarding ride comfort for vehicles,
and jerk is probably a better measure for driving comfort than acceleration, as pointed out by van
Santen [128] and confirmed, e.g., in the study by Grant and Haycock [107]. Jerk monitoring also
offers insurance companies a way to follow up the behaviour of drivers, as a basis for car insurance
pricing [195].

The Dutch institutes TNO and MARIN have initiated a joint project to study the impact of jerk
on the comfort of passengers in a master thesis conducted by Werkman [10]. Details of this work are
given in Section 3.4.2 of this paper.

Förstberg [104] investigated ride comfort and motion sickness in trains. The results indicated
that “it is motion dose from horizontal jerk or horizontal acceleration as well as roll acceleration or roll
velocity that is the primary causes of provocation.” Unfortunately, Förstberg passed away shortly after
presenting his thesis.

Svensson and Ericsson [123] referred to concrete jerk values from American Association of State
Highway and Transportation Official Standards (AASHTO; 2001) [206] in their master thesis. A value
of lateral jerk ranging from 0.03 to 0.09 g/s has been used for highway design. Jia [25] claims that the
jerk should be below 0.2 g/s in trains for passenger comfort. Martin and Litwhiler [118] investigated
acceleration and jerk profiles in the metro-rail system in Washington DC and found jerk peaks of
around 1.3 g/s.

Minimising the discomfort experienced during a journey between two points with the fixed travel
time was studied by Anderson et al. [96]. They proposed jerk as a discomfort criteria. Their work
was then revisited by Antonelli and Klotz [97] and Lemos [116] one and three years later, respectively.
The jerk is proposed as a discomfort criteria. Antonelli and Klotz (2017) [97] and Lemos (2019) [116],
commented on this work and mentioned that the integral of the square of acceleration and the integral
of square of jerk should be considered as criteria for discomfort.

3.4.1. Jerk in Ride Comfort: Amusement Rides

Jerk is used as a ride comfort measure in amusement rides [1,4,5]. Details of studies mentioning
jerk as a ride comfort parameter in amusement rides are given in Section 3.2, Table 5.

3.4.2. Jerk in Ride Comfort: Sea-Keeping

Jerk is used a ride comfort measure in sea-keeping [9,10,122,126]. Details of these studies are
given in below Table 7.
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Table 4. Jerk in motors.

Author Source SJR Purpose and Findings Comments

Masoudi
(2016) [82]

IET Electric Power
Applications

Q1 Although the linear switched reluctance motors (LSRMs) have
many benefits such as being low cost, and having a comparatively
high force-to-mass ratio and no need for mechanical rotary
to linear motion, as converters, they have limited application
because of their force ripple. To control this force ripple, a new
control model based on a minimum jerk model is proposed, which
can be used in elevator applications.

A controller based on a
minimum jerk model for
LSRM motors.

Jinhui
(2017) [80]

Mechatronics Q1 A minimum jerk trajectory controller to enhance the smoothness
and stability of a rotor motor is developed in this work.

Jerk as a measure to generate
smooth trajectories.

Table 5. Jerk in amusement rides.

Author Source SJR Purpose and Findings Comments

Pendrill
(2005) [2]

Physics Education Q3 Although textbook loops are often circular, real roller coaster loops are not.
This paper looks into the mathematical description of various possible
loop shapes, as well as their riding properties.

Jerk is mentioned indirectly, in the
context of using clothoid curves for
roller coaster loops.

Eager et al.
(2016) [1]

European Journal of
Physics

Q2 The concept of jerk is discussed using trampoline and amusement rides
(roller coasters). The effect of jerk on human body is also discussed.
The importance of jerk in amusement rides (roller coasters): safety
(avoiding whiplash); ride comfort; when the safety of the passenger
is not an issue, reducing the maintenance cost due to snap.

Jerk is important and is experienced
in daily life, yet is not well-explained
and understood.

Sicat et al.
(2018) [4]

Proceedings for the
Annual Occupational
Ergonomics and
Safety Conference

N/A The design and validation protocol for wearable sensor technology used
to collect acceleration and g-force exposure of a zip line rider is studied
in this work.

They have briefly mentioned the
importance of jerk (referred to it as
rate of change of acceleration) in
the ride comfort and safety of the
passengers. Refers to Eager et al. [1].
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Table 5. Cont.

Author Source SJR Purpose and Findings Comments

Väisänen
(2018) [5]

Master thesis N/A A literature review to present general guidelines and principles of what
is included in the design and engineering of roller coasters and other
guest functions attached to them.

They have briefly mentioned jerk
as a limit which may become
standardized in future, since
it affects the ride comfort and
experience.

Pendrill et al.
(2019) [6]

Physics Education Q3 Assessed the first-year university understanding of the vertical motion on
a roller coaster loop. It was found that students have partial conceptions
about force and motion and contradictions in their responses and do not
have a good understanding of abrupt changes in jerk.

The importance of including jerk in
physics textbooks.

Pendrill et al.
(2020) [7]

Physics Education Q3 The effect of acceleration, jerk, snap and vibration on the ride comfort
experience and safety of roller coaster rides is analysed in this work, via
authentic data from a dive coaster as an example.

Jerk and snap are considered as ride
comfort criteria in amusement rides.

Table 6. Jerk in Cosmology and space technology.

Author Source SJR Purpose and Finding Comments

Visser (2004) [91] Classical Quantum
Gravity

N/A To obtain a higher accuracy of jerk and snap parameters in cosmological Equations
of States (EOS). It is found that although other parameters are known to high
accuracy, the jerk and snap are still poorly estimated. This fact would cause direct
observational constraints on cosmological EOS if not properly addressed.

The importance of the jerk and snap
in cosmological EOS and how the lack
of proper information has limited the
researchers of the field.

Hur-Diaz et al.
(2008) [92]

NASA technical report N/A In an article entitled “Three axis control of the Hubble Space Telescope using two
reaction wheels and magnetic torquer bars for science observations”, jerk has been
used as a measure in maneuver planning.

They considered maximum jerk as they
investigated possibilities for three-axis
control if two of the four reaction wheels
should fail .

STD, NASA .
(2011) [94]

NASA technical report N/A Human-system standard. “The system shall limit crew exposure to acceleration
rates of change larger than 500 g/s during any sustained (>0.5 s ) acceleration
event.”

‘Acceleration onset’ or ‘acceleration rate
of change’ is mentioned, but not jerk
explicitly.

Ramon (2016) [93] Master thesis N/A The touchdown dynamics of a lander was simulated. Jerk was a parameter
in designing a honeycomb damper, which aimed to dampen the impact forces
associated with touchdown dynamics of the lander.

Considered jerk in the analysis of
touchdown dynamics of a lander in a
masters’ project.
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Table 7. Jerk as a criteria for discomfort: sea-keeping.

Author Source SJR Purpose and Findings Comments

Tomi
(1961) [126]

The Japan Society
of Naval Architects
and Ocean
Engineering

N/A Ride comfort of passengers on ships were studied. The influence
of jerk on the rolling motion was discovered.

One of the first references
considered jerk in ride comfort
in sea-keeping. Jerk is referred
to as the time derivative of
acceleration.

Shigehiro et al.
(2002) [122]

Fisheries science Q3 The new evaluation method of passenger comfort is expressed by
vertical and lateral accelerations and exposure duration represents
the relationship between ship motions and seasickness. It is
confirmed that the correlation coefficient between the results of
the new method and the questionnaires given to the trainees show
fairly similar results.

Jerk is not directly mentioned.
Only the work conducted
by Tomi [126] was briefly
mentioned.

Sosa & Ooms
(2016) [9]

Report N/A The role of the roll stabiliser in the ride comfort in the yacht
industry is analysed. Jerk is mentioned as a ride comfort parameter
but was not included in the ride comfort rating used in this study.
Since it is seen in the literature that jerk is an important parameter
in this respect, further research in including jerk in the yacht ride
comfort rating is critical.

Points to the need for more
studies of the effect of jerk in the
yacht industry.

Werkman
(2019) [10]

Master thesis N/A To study the impact of jerk on comfort of passengers in sea-keeping. Points to the need for more
studies of the effect of
jerk. Importance of jerk in
sea-keeping and ride comfort in
general.
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3.4.3. Jerk in Ride Comfort: Vehicles

Jerk has been used as a measure of ride comfort in vehicle engineering [9,10,122,126] and vehicle
land-based traditional [12,25,45,95,98–106,108,109,111–113,115,118–121,123–125,127–131]. Details of
studies in Q1–Q4 journals are given in Table 8.

3.5. Jerk in Equation of Motion (EOM)

Jerk is proposed to be used in the EOM, and details of studies explored this can be found in
Table 9. The idea has been discussed earlier but, to date, no concrete examples where someone claims
that adding higher-order derivatives might explain the discrepancies between theory and observations,
have been seen.

3.6. Jerk in GPS Applications

The following articles discussed use of jerk in Global Positioning Systems (GPS), mainly those
types that should perform in harsh dynamic conditions such as satellite launch vehicles (Table 10).

3.7. Jerk in Human Tolerance

Details of works studying human tolerance to jerk are given in Table 11.

3.8. Jerk In Kinesiology

Jerk has been used in different kinesiologies in different fields of clinical studies in sport science.
Below, those works which studied jerk in kinesiology for different applications [139–147] have been
captured (Table 12).

Recently, jerk has gained interest in non-clinical trials. For instance, in a recent study by
Zhang [145–147], jerk was used as a measure to detect fatigue in workers.

3.9. Jerk in Measurement

Jerk is normally measured indirectly by calculating the derivative of acceleration, which is
measured by accelerometers. Below, those studies that developed a device to measure jerk are
tabulated (Table 13).

3.10. Jerk in Motion Analysis

In motion analysis application, jerk is used as s measure in machine learning classifiers [152,153]
(Table 14).

3.11. Jerk in Ornithology

Ornithology is a branch of zoology which deals with birds. jerk has been used in one of the recent
studies in this area, details of which are given in Table 15.

3.12. Jerk in Greyhound Racing

One of the interesting applications (refer to Table 16) of jerk is in high-speed sprint racing, such
as greyhound racing. Recent articles on racing greyhounds, mainly the one in Nature’s Scientific
Report [160], clearly show its importance.

3.13. Jerk in Sea-Keeping

Jerk in sea-keeping is considered in both passengers’ ride comfort and analysing shock spectrum
in high-speed crafts [8–10,122,126,204] (Table 17).
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Table 8. Jerk as a criteria for discomfort: vehicles.

Author Source SJR Purpose and Findings Comments

Deshmuck et al.
(2016) [103]

International Journal
of Passenger
Cars-Mechanical
Systems

Q3 The frequency characteristics of vehicle motion are studied to derive the
inherent jerk. A new method is proposed, which, unlike the conventional
method that uses the peak of jerk as a performance index, can differentiate
the perceivable frequencies from the test data and quantify the actual
jerk.

A new method to obtain inherent
jerk was proposed.

Liu et al.
(2016) [117]

Journal of
Dynamic Systems,
Measurement,
Control

Q1 A new low-jerk suspension control system by mixing skyhook
(SH), acceleration-driven-damper (ADD) is proposed in this work.
The characteristics of the SH-ADD suspension system are compared both
numerically and experimentally with other suspension control system.

Jerk is as a measure in designing
suspension systems.

Sharma et al.
(2016) [121]

Perspectives in
Science

Q2 Since the ride comfort of the passengers on vehicles is of paramount
importance, a mechanical model of a train subjected to external loads
(rolling and longitudinal wheel resistance, and gravity) is considered.
The jerk value are measured and analysed.

Jerk is considered as a criterion of
discomfort in this work.

Huang et al.
(2018) [109]

International Journal
of Adaptive Control
Signal Processing

Q1 An anti-jerk controller for electromechanical clutch engagement was
developed in this work.

Jerk as a limiting factor in designing
controllers in vehicles. Details of
these controllers are beyond the
scope of this work.

Zeng et al.
(2018) [109]

Energies Q2 An anti-jerk controller based on a data-driven vehicle dynamics model is
proposed for a power-split electrical vehicle in this work.

Jerk as a limiting factor in designing
controllers in vehicles. Details of
these controllers are beyond the
scope of this work.

Batra et al.
(2018) [101]

Journal of
Computational
Nonlinear Dynamics

Q2 An anti-jerk controller based on road tests is proposed for an electric
vehicle in this work.

Jerk as a limiting factor in designing
controllers in vehicles. Details of
these controllers are beyond the
scope of this work.

Bae et al.
(2019) [12]

journal of Electronics Q3 To provide a comfortable driving experience, while not sabotaging the
passengers’ safety, on a self-driving shuttle bus. A time-optimal velocity
planning method to guarantee a comfort criteria was developed. A better
performance and comfortable passenger ride in a self-driving shuttle bus
is experienced.

This is also aligned with the
application of jerk in ride comfort
and its potential to be considered in
autonomous cars.
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Table 8. Cont.

Author Source SJR Purpose and Findings Comments

Yamaguchi et al.
(2019) [130]

IEEJ Journal
of Industry
Applications

Q2 A backlash based controller to reduce the jerk, while clutch is engaged in a
hybrid car, is designed and numerically compared with other controllers.
In this method, the magnitude of the shock is quantitatively evaluated
against jerk to minimise the discomfort felt by the passengers.

Jerk as a measure to control
the backlash caused by clutch
engagement in hybrid cars.

Khorram et al.
(2020) [112]

Theoretical Issues in
Ergonomics Science

Q2 Longitudinal jerk and acceleration were considered as a measure of safety
of the bus rapid transit buses. The results of this study can be used to
predict dangerous driving style before severe accidents occur.

Longitudinal jerk can be used as
a measure to identify dangerous
driving styles.

Scamarcio et al.
(2020) [120]

IEEE Transactions on
Vehicular Technology

Q1 In this study, different types of jerk controller are compared with each
other in terms of ride comfort and increased component life.

Jerk as a limiting factor in designing
controllers in vehicles. Details of
these controllers are beyond the
scope of this work.

Tawadros et al.
(2020) [124]

Proceedings of
the Institution
of Mechanical
Engineers, Part
D: Journal of
Automobile
Engineering

Q2 Since jerk is a criteria for discomfort, it was measured both experimentally
and numerically (simulation) for a vehicle through a low-cost Bluetooth
sensor among other variables such as acceleration.

Jerk as measure of discomfort in
vehicles dynamics.
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Table 9. Jerk in EOM.

Author Source SJR Purpose and Findings Comments

Muszynska
& Bently
(1990) [132,133]

Journal of Sound
Vibration & NASA
technical report

Q1 Developing fluid force models in rotor/bearing/seal systems
and a fluid handling machine. Their results suggested that the
fluid force contains terms of orders higher than two. Specifically,
a third-order term (jerk) should be included.

Jerk, as a higher order term, is
seen in the EOM of fluid model.

Inaudi et al.
(1993) [134]

Earthquake
engineering
structural
dynamics

Q1 An optimum hybrid isolation system to protect sensitive
equipment from earthquake was designed, and the EOM of the
ground motion obtained. Jerk was a parameter in the ground
motion EOM.

Jerk was mentioned in the model
of ground motion, which was
numerically modeled.

Funakoshi et al.
(2012) [135]

ASME 2012 5th
Annual Dynamic
Systems and
Control Conference
joint with the JSME
2012 11th Motion
and Vibration
Conference

N/A A modeling method and a control system design procedure for
a flexible rotor with many elastic modes using active magnetic
bearings is presented. A local jerk feedback control system and
stability analysis is developed by using root locus.

It has been proposed to include
“jerk feedback” for rotors
suspended in active magnetic
bearings. In that case, jerk will
occur in the EOM.

Eager (2018)
[136]

Proceedings of
ACOUSTICS

N/A A novel way of measuring jerk, snap and crackle using
accelerometers (while jumping on trampoline). The EOM of this
dynamic is obtained where jerk appears in the EOM.

Jerk has appeared in the
obtained EOM of jumping on a
trampoline.
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Table 10. Jerk in GPS application.

Author Source SJR Purpose and Findings Comments

Kwon et al.
(2006) [137]

Proceedings of the
Korean Institute
of Navigation
and Port Research
Conference

N/A GPS used in satellite launch vehicles should perform under a
severe dynamic environment. Therefore, in this work, preliminary
test results of a GPS receiver in such simulated high acceleration
and jerk conditions are analysed.

Jerk as a test parameter in testing
GPS used in satellite launch
vehicles.

Kwon et al.
(2008) [138]

Proceedings of
the 17th World
Congress The
International
Federation of
Automatic Control

N/A Comparative performance analyses of GPS receivers under
high-dynamic conditions. They used jerk as one of the parameters
of high-dynamic condition. The thresholds of GPS receiver
performance under severe dynamic condition were found to
be 12.54 m/s for maximum velocity, 16.07 g for maximum
acceleration, and 202.14 g/s for maximum jerk. The jerk level is
extremely high compared to the levels of velocity or acceleration.

Jerk as a test parameter in testing
GPS used in satellite launch
vehicles.

Table 11. Jerk in human tolerance.

Author Source SJR Purpose and Findings Comments

McKenney
(1970) [203]

Report N/A A literature review to study the human tolerance to abrupt
acceleration. Just as the slope of a velocity-time trace furnishes
acceleration, so the slope, or tangent, of an acceleration-time pulse
will yield rates of change in acceleration. They have studied
higher rates of onset, meaning jerk, snap, etc., and mentioned in
chapter 4 of the work that change of rate of acceleration is also
called jerk.

A method to calculate jerk as
the slope of the acceleration-time
pulse plots was proposed.

Whinnery et al.
(2013) [202]

Extreme
physiology
medicine

Q4 They referred to jerk as acceleration onset. This concussion curve
provides a temporal prediction of when the concussion might
occur. Jerk was referred to as acceleration onset rate.

The jerk loss of concussion curve
was studied.
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Table 12. Jerk in kinesiology.

Author Source SJR Purpose and Findings Comments

Fazio et al. (2013) [139] Neurological Sciences Q2 To evaluate the accelerometric parameters of human gait patterns in different
neurological conditions with pathological gait impairment compared to healthy
subjects. The acceleration and jerk data were used to compare different groups.
Analyses of the basic accelerometric parameters associated with a jerk analysis
could assist in differentiating between the population groups.

The use of P-value is currently heavily
debated, see, e.g., The ASA Statement
([207]) on P-values. However, this work
draws attention to using jerk in gait
analysis.

Lapinski (2013) [140] PhD thesis N/A In this PhD thesis titled A platform for high-speed bio-mechanical analysis using
wearable wireless sensors, it is shown that jerk was a good monitor of a baseball
pitcher’s likelihood of tearing a tendon, while other parameters such as peak
acceleration could not show this.

Jerk has the potential to monitor different
injury scenarios or dynamics which other
parameters such as peak acceleration are
unable to detect.

Aguirre (2016) [141] Master thesis N/A To evaluate the usage of measurement devices (accelerometer) in clinical setting,
and to validate the recorded what kinematic parameters can be accurately
measured by them. Measurement devices are a reliable tool in capturing the
kinematic parameters such as movement time, maximum acceleration, mean
acceleration, mean acceleration variability, and maximum jerk, and therefore
should be considered in clinical setting as a low-cost technology compared with
the more expensive motion-capturing technologies.

Expensive motion-capturing
technologies can be replaced by
measurement devices in clinical settings.

Zhang et al.
(2019) [142]

Automation in
Construction

Q1 In more recent times Zhang et al. [142] used jerk as an indicator of physical exertion
and fatigue within the construction industry. They monitored the activity of a
bricklayer using an inertial measurement device device that allowed jerk to be
calculated.

Jerk as a measure to detect fatigue.

Washington et al.
(2020) [143]

Journal of Sports
Sciences

Q1 To determine the influence of pelvis and torso angular jerk on the hand velocity,
which is a hitting performance indicator in female softball. Although the results
did not show a significant relationship between pelvis and torso angular jerk and
hand velocity, more research could be conducted on the “timing” of minimal jerk
through the acceleration phase to predict the angular hand velocity.

Jerk, both its magnitude and duration,
should be studied more in sport science.
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Table 13. Jerk in measurement.

Author Source SJR Purpose and Findings Comments

Masuda et al.
(2002) [148]

The Proceedings
of the Symposium
on Evaluation and
Diagnosis

N/A A jerk-dot sensor, which measures the second derivative of the acceleration,
is developed. Its capability of detecting the local damage in the structural
members is investigated through low-cycle fatigue tests, which prove its significant
sensitivity to the abnormal responses due to the development of macroscopic
damages. Further fracture tests are carried out to obtain the correlation between
the measured jerk-dot and the crack length, which suggests that this sensor could
provide an early alert before the crack grows to the fatal stage.

Comment by Iyama & Wakui on this
paper [175]: “Although they found
that the high-frequency components
accompanying crack initiation by jerk
or jerk-dot can be used for detection,
only a qualitative relation was shown.
The determination of threshold values for
damage detection thus remains difficult.”

Orsagh et al.
(2002) [149]

Patent N/A A method and apparatus for measurement of the derivative of acceleration with
respect to time (jerk) and the use of demodulation to analyze the jerk signal.
The sensor used to measure jerk consists of a piezoelectric transducer coupled
with an amplifier that produces a voltage or current signal that is proportional to
jerk. In applications including rolling element bearing diagnostics, demodulation
is used to measure changes in the jerk signal over time.

A patent containing information of a
sensor to measure jerk.

Xueshan et al.
(2008) [150]

Proceedings of the 14th
World Conference on
Earthquake Engineering

N/A The principles and specifications of a new sensor for measuring jerk are given.
Derivative of acceleration is the first-order differentiation of acceleration.

JW-3D tri-axial Jerk sensor.
The specifications of the jerk sensor
are provided. Xueshan Patents [150]
exist for jerk-meter, but it is not known
to what extent they are used in practice.

Manabe et al.
(2018) [151]

2018 International
Conference on
Advanced Mechatronic
Systems

N/A A horizontal jerk sensor was produced by rebuilding a feedback circuit of a
commercially available velocity sensor. It was then applied to a linear slider for
mechanical impedance control.

A jerk sensor is rebuilt using a
commercial velocity sensor.
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Table 14. Jerk in motion analysis.

Author Source SJR Purpose and Findings Comments

Thompson
(2012) [152]

Jyväskylä studies in
humanities

N/A Motion capture techniques were used to study music cognition,
in which Jerk is used a measure in machine learning classifiers.

Jerk is considered in the
embodied music cognition
research.

Jongejan
(2017) [153]

Proceedings of
the 4th European
and 7th Nordic
Symposium
on Multimodal
Communication

N/A Jerk is used a a measure for support vector machine classifier,
used for classifying head movements, along with other measures
of velocity and acceleration.

Jerk as a measure for machine
learning classifiers in motion
analysis application.

Table 15. Jerk in ornithology.

Author Source SJR Purpose and Finding Comments

Sharker et al.
(2019) [154]

Bio-inspiration
biometrics

Q1 To see why plunge diver birds can dive into water with high
speed while surface bird divers cannot and to see if there is a
correlation between this fact and physical geometry, mainly of
the beak. Since real experiments could not be conducted, they
used a 3D-printed model of three types of diving birds with
an embedded accelerometer. Surface diving birds have high
non-dimensional jerk (J∗ = (∆a∆t)[m/(ρgvA)]), which is higher
than the recommended safe jerk limit (for humans/no data for
birds).

The impact acceleration of
the bird models were not
distinguishable while the jerk
value was quite different. This
draws attention to the fact that
some dynamical behaviour
scenarios cannot be fully
captured by acceleration and
jerk should be considered in
such scenarios.
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Table 16. Jerk in greyhound racing.

Author Source SJR Purpose and Finding Comments

Hossain et al.
(2016) [155]

Report N/A The jerk was calculated from race track survey plans to identify
thresholds for a safe turn in racing greyhounds.

Jerk is studied as a safety
threshold in greyhound racing
track bend design.

Hayati et al.
(2017) [156]

ASME 2017
International
Design Engineering
Technical
Conferences

N/A High-jerk turning, which is caused by an inappropriate bend and
camber of race tracks, was given among the potential risk factors
causing injuries in racing greyhounds.

Jerk is briefly mentioned in turn
transitions.

Hayati et al.
(2017) [157]

9th Australasian
Congress on
Applied Mechanics

N/A High rates of injuries in racing greyhounds and the potential risk
factors were discussed. Turns with inappropriate transitions with
high jerks were mentioned as an important risk factor.

Jerk is briefly mentioned as a risk
factor in the greyhound racing
industry.

Hayati et al.
(2018) [158]

ASME 2018
International
Mechanical
Engineering
Congress and
Exposition

N/A High-jerk turning, which is caused by an inappropriate bend and
camber of race tracks, was given among the potential risk factors
causing injuries in racing greyhounds.

Jerk is briefly mentioned in turn
transitions.

Mahdavi et al.
(2018) [159]

ASME 2018
International
Mechanical
Engineering
Congress and
Exposition

N/A High-jerk turning, which is caused by an inappropriate bend and
camber of race tracks, was given among the potential risk factors
causing injuries in racing greyhounds.

Jerk is briefly mentioned in turn
transitions.

Hossain et al.
(2020) [160]

Scientific Reports Q1 Designing a racing greyhound ideal trajectory path to minimise
the injuries. This ideal trajectory path is based on minimum jerk
rate.

Confirms the significance of jerk
in racing.
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Table 17. Jerk in sea-keeping.

Author Source SJR Purpose and Findings Comments

Tomi (1961) [126] The Japan Society of
Naval Architects and
Ocean Engineering

N/A Ride comfort of passengers on ships was studied. The influence of jerk on the
rolling motion was discovered.

One of the first references considered
jerk in ride comfort in sea-keeping. Jerk
is referred to as the time derivative of
acceleration.

Shigehiro et al.
(2002) [122]

Fisheries science Q3 The new evaluation method of passenger comfort is expressed by vertical and
lateral accelerations, and exposure duration represents the relationship between
ship motions and seasickness. It is confirmed that the correlation coefficient
between the results of the new method and the questionnaires given to the trainees
show fairly similar results.

Jerk is not directly mentioned. Only
the work conducted by Tomi [126] was
briefly mentioned.

Railey et al.
(2016) [8]

Report N/A The aim of this work was to provide a universal guidance for the measurement
and analysis of recorded acceleration data in high-speed crafts for different
organisation. Four visual observations to conclude that acceptable low-pass
filtering of an acceleration record has been achieved were proposed (i.e., no
over-filtering). One of the proposed observations was that the rate of acceleration
application (i.e., jerk) of the filtered record is approximately the same as the
unfiltered record.

The value of jerk was used to assess the
accountability of filter acceleration data
using a low pass filter.

Sosa & Ooms
(2016) [9]

Report N/A The role of roll stabiliser in the ride comfort in the yacht industry is analysed. Jerk
is mentioned as a ride comfort parameter but was not included in the ride comfort
rating used in this study. Since it is seen in the literature that jerk is an important
parameter in this respected, further research in including jerk in the yacht ride
comfort rating is critical.

Points at the need for more studies of the
effect of jerk in yacht industry.

Coats & Riley
(2018) [204]

Naval Surface Warfare
Center technical report

N/A The preliminary guidance for laboratory testing of marine shock isolation seats
is given in this report. Jerk was among those parameters considered in the shock
severity analysis.

The importance of jerk in the shock
severity analysis in high-speed craft.

Werkman (2019) [10] Master thesis N/A To study the impact of jerk on comfort of passengers in sea-keeping. Points at the need for more studies of the
effect of jerk. Importance of jerk in sea
keeping and ride comfort in general.
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3.14. Jerk in Seismic Analysis

Seismic analysis is a subset of structural analysis and is the calculation of the response of a building
structure to earthquakes. It is part of the process of structural design, earthquake engineering or
structural assessment and retrofit in regions where earthquakes are prevalent [134,161–170] (Table 18).

3.15. Jerk in Shock Response Spectrum

Equipment that is delivered to naval ships needs to be shockproof. The basic philosophy is
that the equipment should withstand the same explosions as the ship itself (it would be unfortunate
if the ship survived the blast, while it were impossible to operate since all equipment has been
destroyed). Preferably, the shock-proofness of the equipment should be verified both theoretically
and experimentally.

There are essentially three methods for theoretical verification, including:

• Static calculation, where you assume inertia forces of the mass times g in various directions;
• Calculation with shock response spectrum;
• Integration in the time domain.

Static calculations are easiest to carry out. In these calculations, neither the shape of the time history of
the shock (e.g., blast or earthquake) nor the dynamic properties of the equipment under consideration
(e.g., resonance frequencies) are taken into account. This means that you should normally have a
considerable safety margin.

The shock response spectrum was invented by the Flemish-American engineer Maurice Anthony
Binot (1905–1985). The basic idea is to draw a diagram that shows the maximum acceleration and
relative displacement for a number of single-mass oscillators with various eigen frequencies for a
certain shock time history. Normally, a simplified curve is drawn that might be an envelope for several
time histories. This curve can be used to calculate the maximum amplitude for each eigenmode of
the real equipment, and finally the contributions of each eigenmode can be added. There are different
ways to add the contributions from the eigenmodes depending on how cautious you are. The very
conservative approach is that you assume that, at some point in time, all the contributions of the
eigenmodes are pointing in the same direction. This curve can not be used for testing, so a new time
history curve has to be synthesised as input to that activity. It is out of the scope of this article to
discuss details of this method, but it is interesting to point out that in these calculations jerk, etc., are
implicitly taken into account.

The most straightforward method to carry out shock calculations is by integration in the time
domain. Since the calculations are based on the time history, the derivatives of the acceleration are
implicitly taken into account. The time history can, of course, directly be used as input to the test
activity and comparison between calculations and measurements should be straightforward. The main
drawback of this method is that it consumes a lot of computer power.

Studies that studied jerk in shock responses are listed in Table 19.

3.16. Jerk in Sport Science

Sport science is a general term which can include the science behind designing running shoes
and studying the impact attenuation properties of greyhound’s surface. Those articles that passed the
inclusion criteria of this work are tabulated in Table 20.

3.17. Jerk in Structural Health Monitoring

Vibration monitoring is another challenging area, e.g., it would be beneficial to be able to be able
to identify the wear on gearboxes of wind power stations in due time. However, the application of
higher-order derivatives of acceleration for damage detection requires further investigation. Using
jerk as one parameter to be monitored has been suggested, e.g., by Zhang et al. (2012) [174] (Table 21).
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Table 18. Jerk in seismic analysis.

Author Source SJR Purpose and Findings Comments

Malushte
(1987) [161]

Master thesis N/A To predict the seismic design response spectra using ground
characteristics. A single-degrees-of-freedom (SDOF) is used to study
the ground motion characteristics, such as as peak displacement, velocity,
acceleration and root mean square acceleration. The average value of
the ratio of the maximum jerk to the maximum ground acceleration and
maximum ground velocity to the maximum ground displacement are
given. These values are required when the prediction of the relative
velocity spectra from the pseudo velocity spectra is of interest.

Jerk is briefly mentioned in this
work.

Inaudi et al.
(1993) [134]

Earthquake
engineering
structural dynamics

Q1 An optimum hybrid isolation system to protect sensitive equipment from
earthquake was designed and the EOM of the ground motion obtained.
Jerk was a parameter in the ground motion EOM.

Jerk was mentioned in the model
of of ground motion, which was
numerically modeled.

Bertero et al.
(2002) [162]

Earthquake
engineering
structural dynamics

Q1 Different objectives were given for this work but one of the main objective
was to review the understanding of performance-based-seismic-design
(PBSD), the requirements for a reliable PBSD, and finally to study why
some designs fail to satisfy those requirement. Jerk was mentioned as
a useful parameter which should be taken into consideration for such
designs, mainly in the case of frequent minor earthquake ground motions.

Jerk is mentioned as a useful
parameter for reliable PBSD design,
mainly in the case of frequent minor
earthquake ground motion.

Geoffrey et al.
(2003) [163]

Earthquake
engineering
structural dynamics

Q1 To regulate the total structural jerk to manage the structural energy and
enhancing the performance of civil structures undergoing large seismic
events. This new method used in this work is preferred over conventional
methods. Their proposed jerk regulation control method is shown to have
better performance than typical structural control methods for near-field
seismic events where the response is dominated by a large impulse.

Importance of jerk in seismic control
of a civil structure which has benefits
over the conventional method.

Tong et al.
(2005) [164]

Earthquake
Engineering
and Engineering
Vibration

Q2 The importance of jerk in seismic motion analysis is not extensively
studied. Therefore, they studied the basic characteristics of time
derivatives of acceleration (TdoA) on records from the 1999 Chi-Chi,
earthquake (Mw 7.6) and one of its aftershocks (Mw 6.2).

Highlighted the importance of jerk
(referred to it as TDoA) is seismic
motion analysis.
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Table 18. Cont.

Author Source SJR Purpose and Findings Comments

He et al.
(2015) [165]

Shock and Vibration Q2 Jerk and its response spectra can improve the recognition of
non-stationary ground motion. Therefore, in this work, the jerk response
spectra for elastic and in-elastic system are characterised.

It is mentioned that though jerk is an
important characteristic of ground
motion, it is not thoroughly studied
in seismic motion analysis.

Chakraborty
and
Ray-Chaudhuri
(2017) [166]

Journal of
Engineering
Mechanics

Q2 To study the energy transfer to a high-frequency mode of a building due
to a sudden change in stiffness at its base during seismic excitation. Jerk
was used to excite the structure.

Jerk is used for exciting the structure
due to the fact that it is one of the
characteristics of ground motion.

Sofronie et al.
(2017) [170]

Journal of Geological
Resource Engineering
with Computers

N/A The concept of jerk is extended in seismic engineering. Jerk in the context of seismic analysis
is discussed.

Taushanov
(2018) [167]

Journal of
Engineering
Mechanics

N/A Excessive “jerky motion” affects comfort in building and bridges, and
therefore attempts to reduce this phenomenon should be taken into
consideration in engineering design. A jerk response spectra is given,
which should be considered in seismic analysis of a structure.

Jerk spectra features is studied for
elastic and in-elastic systems.

Papandreou
and
Papagianno-
poulos
(2019) [168]

Soil Dynamics
Earthquake
Engineering

Q1 To extract/study the general feature of jerk spectera for different seismic
motion scenarios. They used this method for in-elastic SDOF systems.
An empirical formula that provides jerk estimate for in-elastic SDOF
system is proposed for the first time in the literature (by the Bilinear,
the Ramberg-Osgood and the Takeda hysteresis rules).

This shows the importance of jerk in
earthquake engineering.

Yaseen et al.
(2020 [169]

Soil Dynamics
Earthquake
Engineering

N/A The performance of jerk and its higher derivatives (referred to as relevant
derived parameters) to address the ground motion intensity in masonry
building was studied.

Jerk was used as an intensity
measure in Seismic analysis of
masonry buildings.
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Table 19. Jerk in shock response spectrum.

Author Source SJR Purpose and Findings Comments

Railey et al.
(2016) [8]

Report N/A The aim of this work was to provide a universal guidance for measurement
and analysis of recorded acceleration data in high-speed crafts for different
organisation. Four visual observations to conclude that acceptable low-pass
filtering of an acceleration record has been achieved were proposed (i.e., no
over-filtering). One of the proposed observations was that the jerk of the filtered
record is approximately the same as the unfiltered record.

The value of jerk was used to assess the
accountability of filter acceleration data
using a low pass filter.

Riley et al.
(2018) [205]

Report N/A This report characterizes the shock severity in the response domain, so that the
effects of shock pulse shape, peak amplitude, jerk, and pulse duration can be taken
into account for systems across a broad range of natural frequencies.

It is mentioned that it might be useful to
include jerk in shock investigations.

Table 20. Jerk in sport science.

Author Source SJR Purpose and Findings Comments

Savage [171] Report N/A Although different types are running shoes have been designed, they seemed not
to be based on the current science on injury prevention. Different types of shoe
design and injury mechanisms were discussed in this report. It is mentioned that
the importance of jerk should be considered in reducing the impact injuries while
running.

It might be worthwhile to study the
impact of jerk in designing running
shoes.

Eager et al.
(2016) [1]

European Journal of
Physics

Q2 The concept of jerk is discussed using trampoline and amusement rides (roller
coasters). The effect of jerk on the human body is also discussed. The importance
of jerk in amusement rides (roller coasters) for safety (avoiding whiplash), ride
comfort, and when the safety of the passenger is not an issue reducing the
maintenance cost due to snap.

Jerk is important and is experienced in
daily life, yet it is not well-explained and
understood.

Hayati et al.
(2019) [172]

World Engineers
Convention 2019

N/A A modified Clegg hammer was used to assess the safety of greyhound’s race
track sand and grass surfaces. The maximum acceleration, the impact duration,
the energy loss and the maximum jerk, were considered as dynamic parameters
that determine the safety of the race track surface.

Jerk is considered as a dynamic
parameter to assess the safety of the
greyhound race track surfaces.
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Table 21. Jerk in structural health monitoring.

Author Source SJR Purpose and Findings Comments

Sone
(2004) [173]

Journal of
Transactions of
Nippon Kikai
Gakkai Ronbunshu
C Hen

N/A A statistical and data mining approach are applied on
time-domain jerk data in wind turbine gearboxes to detect
damage/failure. The appoach seemed promising in health
monitoring and is suggested to be expanded to the other parts of
the turbine as well.

Jerkdot should be another
name for jounce/snap and is
mentioned in this work. This
work contains a description of
a “jounce meter”. It is not clear
to what extent they are used in
practice.

Zhang et al.
(2012) [174]

IEEE transactions
on energy
conversion

Q1 Fault analysis and health monitoring of the wind turbine gearbox
were the interests of this work. A statistical and data mining
approach are applied on time-domain jerk data in wind turbine
gearboxes to detect damage/failure.

The approach seemed promising
in health monitoring and is
suggested to be expanded to the
other parts of the turbine as well.

Iyama et al.
(2019) [175]

Japan Architectural
Review

N/A To extend the nonlinear behaviour detection by determining the
mathematical model relation between the snap, stiffness change,
and the velocity of the vibration system. It is discussed that there
is lack of proper understanding of jerk and its higher derivative
in the field.

Higher derivatives of jerk,
mainly snap, can be used to
detect nonlinearity in structural
health monitoring methods.

Sumathy et al.
(2019) [176]

Cogent
Engineering

Q2 Fault diagnosis of wind turbine gear was investigated in this
work. They proposed a novel method of analysing the stability
of Interacting Multiple Model (IMM) algorithm for a linear
system (the details of this methodare out of scope of this review
article.) They mentioned that analysing jerk data coming from the
vibration of acceleration data via the IMM Kalman filter is a novel
endeavor to the best of their knowledge.

Jerk can be used in health
monitoring of dynamical system.



Vibration 2020, 3 396

3.18. Jerk in Technical Pain

Jerk was used to expand the understanding of researcher of sensed pain via a pain sensor where
jerk was used as a biometric measure (Table 22).

3.19. Jerk in UAV

Jerk, and even higher derivatives of it (aka jounce/snap), have been recently used in designing,
testing and controlling UAVs [11,178–186] (Table 23).

3.20. Jerk in Vehicles-Land Based Traditional

Jerk in vehicles is mainly used for measuring the ride comfort [12,25,45,95,98–106,108,109,111–113,
115,118–121,123–125,127–131]. It is also used as a controller design, referred to as an anti-jerk controller
design [95,98–102,109,111,119,120,130]. Jerk is also used in autonomous vehicles [12,114,123,187,188],
which is explained in the below sections.

3.20.1. Jerk in Vehicles: Ride Comfort

One of the main applications of jerk in vehicles is as criteria for discomfort. Details of these studies
were given in Table 7.

3.20.2. Jerk in Vehicles: Autonomous Vehicles

Jerk in autonomous driving is used to evaluate the comfortable ride and safety of the
passengers [12,114,123,187,188] (Table 24).
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Table 22. Jerk in technical pain.

Author Source SJR Purpose and Findings Comments

Ostermeyer et al.
(2008) [177]

Applied Mechanics
and Materials

N/A The concept of technical pain, which is based on the analysis of
mesoscopic systems, was introduced in this work. The system
was modeled as damped oscillators and the heat transferred by
an impact. Pain was defined as an integral over the square of
jerk. They developed a pain sensor and used it to analyse the pain
caused by different types of signals.

Jerk used to obtain a measure
of pain and used in the
development of a pain sensor.

Table 23. Jerk in UAV.

Author Source SJR Purpose and Finding Comments

Luukkonen
(2011) [181]

Independent research
project in applied
mathematics

N/A To model and control the quadcopter. It is found that high snap values
will contribute to high control input values, and therefore the jounces
have to be considered closely when generating the accelerations.

Jounce/snap is considered in
modelling and controlling the
quadcopter. Not only jerk, but also
snap (jounce), may be relevant in
the design and control of the drone.

Rakgowa et al.
(2015) [183]

EEE International
Symposium on
Robotics and
Intelligent Sensors

N/A A minimum-jerk trajectory controllers was developed for a quadrotor
during high-acceleration dynamics, e.g., lift-off.

Jerk as a measure to generate
trajectories in UAVs.

Phang et al.
(2015) [182]

Mechatronics Q1 In an UAV calligraphy project, having a smooth trajectory control was
desired. Accordingly, jerk was used as a limiting parameter to generate
smooth trajectories.

Jerk as a measure to generate
trajectories in UAVs.

Fiori et al.
(2016) [178]

The 10th
International
Conference on
Circuits, Systems,
Signals and
Telecommunications

N/A Use of jerk (referred to as lurch index) to assess the drone’s attitude
fluency maneuverability. It is found that the geometric lurch index is
fairly sensitive to the fluency of attitude maneuvering.

Uses the term “lurch index”.
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Table 23. Cont.

Author Source SJR Purpose and Finding Comments

Nemes & Mester
(2016) [11]

The 4th International
Scientific Conference
on Advances
in Mechanical,
Engineering

N/A Jerk is used as a parameter in controlling a drone. It is discussed that
an abrupt jerk induces vibrations and, in the case of vehicles, it would
negatively affect the ride comfort.

Use of jerk in controlling a drone.

Silva et al.
(2018) [185]

Unmanned Systems Q2 Controlling drones in a high-wind scenario and during thrust was a
challenge in this study. Accordingly, a jerk-minimum trajectory controller
was developed to optimise the motion.

Jerk as a limiting parameter in
trajectory controllers.

Guye (2018) [179] Masters thesis N/A An Indoor multi-rotor test-bed for experimentation on autonomous
guidance strategies is developed. It is found that the jerk would minimize
the product of the control inputs, which are the major force that consume
the power energy of the drone. Consequently, minimizing these control
inputs will also reduce the power consumption. As a result, minimising
the jerk results in minimising the power consumption.

Use of jerk in designing a test bed
for a drone. Since jerk minimisation
minimises the energy consumption,
it should be considered in drone
designs and controlling.

Rousseau et al.
(2018) [184]

European Control
Conference

N/A Minimum jerk trajectories and piece-wise polynomial trajectories are
used for cinematographic flight plans of a quadcopter.

Jerk as a measure to generate
trajectories.

Tal & Karaman
(2018) [186]

2018 IEEE Conference
on Decision and
Control

N/A Tracking of aggressive (high-speed and high-acceleration) quadrotor
trajectories. The main contribution of this work is a trajectory tracking
control design that achieves accurate tracking aggressive maneuvers
without depending on modeling or estimation of aerodynamic drag
parameters. The design exploits the differential flatness of the quadcopter
dynamics to generate feed-forward control terms based on the reference
trajectory and its derivatives up to the fourth order: velocity, acceleration,
jerk, and snap.

Use of jerk in controlling a drone.
Not only jerk, but also snap (jounce),
may be relevant in the design and
controlling of the drone.

Lai et al.
(2019) [180]

Frontiers of
Information
Technology
& Electronic
Engineering

Q2 To have a safe flying corridor, jerk limit ted trajectories were used in
real-time scenarios.

Jerk as a limiting parameter in
trajectory controllers.
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Table 24. Jerk in autonomous vehicles.

Author Source SJR Purpose and Findings Comments

Bae et al.
(2019) [12]

journal of
Electronics

Q3 To provide a comfortable driving experience, while not sabotaging
the passengers’ safety on a self-driving shuttle bus, a time-optimal
velocity planning method to guarantee a comfort criteria was
developed. A better performance and comfortable passenger ride
in the self-driving shuttle bus is experienced.

This is also aligned with the
application of jerk in ride
comfort and its potential to be
considered in autonomous cars.

Krüger
(2019) [114]

Master thesis N/A To implement and evaluate a motion planner to find a rough speed
profile in autonomous cars. The value of jerk was considered as
passengers’ ride comfort and safety measures.

Points at the importance of
low-jerk trajectories to guarantee
passenger’s safety and ride
comfort.
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4. Conclusions

The purpose of this work was to show the importance of jerk in the context of science and
engineering, by conducting a thorough systematic review of recent academic articles (2015–2020)
where the term ‘jerk’ was mentioned in the title. The quality of papers was assessed based on Scientific
Journal Rankings (SJR)—Scimago index, from the quartiles Q1 to Q4, where Q1 is occupied by the
top 25% of journals, Q2 by the top 25% to 50%, and so on. The articles were then categorised based
on the application of jerk in twenty categories. The result of this systematic review showed that,
although jerk is overlooked in secondary and higher education, jerk is ubiquitous. Road, rail and sea
all have examples of a jerk, from crack initiation to ride comfort. Traditional printing and 3D-printing
control systems all contain examples of a jerk. This review has provided a solid foundation for future
research on the importance of jerk in different fields. It has identified research gaps which will assist
researchers in creating a concise road map toward a more comprehensive study on jerk. The authors
also emphasize that jerk is still essentially overlooked in secondary and higher education. This review
provides support for teachers and textbook authors who may wish to include examples of jerk in their
lessons and textbooks.

Jerk is all around as if we care to listen, feel, open our eyes and observe—from greyhound tracks
to roller coasters.
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