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Abstract: In this paper, we consider a non-standard dynamical inverse problem for the wave equation
on a metric tree graph. We assume that the so-called delta-prime matching conditions are satisfied at
the internal vertices of the graph. Another specific feature of our investigation is that we use only
one boundary actuator and one boundary sensor, all other observations being internal. Using the
Neumann-to-Dirichlet map (acting from one boundary vertex to one boundary and all internal
vertices) we recover the topology and geometry of the graph together with the coefficients of
the equations.
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1. Introduction

This paper concerns inverse problems for differential equations on quantum graphs.
Under quantum graphs or differential equation networks (DENs) we understand differential operators
on geometric graphs coupled by certain vertex matching conditions. Network-like structures play
a fundamental role in many problems of science and engineering. The range for the applications of
DENs is enormous. Here is a list of a few.

–Structural Health Monitoring. DENs, classically, arise in the study of stability, health, and oscillations
of flexible structures that are made of strings, beams, cables, and struts. Analysis of these networks
involve DENs associated with heat, wave, or beam equations whose parameters inform the state of the
structure, see, e.g., [1].

–Water, Electricity, Gas, and Traffic Networks. An important example of DENs is the Saint-Venant
system of equations, which model hydraulic networks for water supply and irrigation, see, e.g., [2].
Other important examples of DENs include the telegrapher equation for modeling electric networks,
see, e.g., [3], the isothermal Euler equations for describing the gas flow through pipelines, see, e.g., [4],
and the Aw-Rascle equations for describing road traffic dynamics, see e.g., [5].

–Nanoelectronics and Quantum Computing. Mesoscopic quasi-one-dimensional structures such
as quantum, atomic, and molecular wires are the subject of extensive experimental and theoretical
studies, see, e.g., [6], the collection of papers in [7–9]. The simplest model describing conduction
in quantum wires is the Schrödinger operator on a planar graph. For similar models appear in
nanoelectronics, high-temperature superconductors, quantum computing, and studies of quantum
chaos, see, e.g., [10–12].

–Material Science. DENs arise in analyzing hierarchical materials like ceramic and metallic foams,
percolation networks, carbon and graphene nano-tubes, and graphene ribbons, see, e.g., [13–15].
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–Biology. Challenging problems involving ordinary and partial differential equations on
graphs arise in signal propagation in dendritic trees, particle dispersal in respiratory systems,
species persistence, and biochemical diffusion in delta river systems, see, e.g., [16–18].

Quantum graph theory gives rise to numerous challenging problems related to many areas of
mathematics from combinatoric graph theory to PDE and spectral theories. A number of surveys
and collections of papers on quantum graphs appeared in previous years; we refer to the monograph
by Berkolaiko and Kuchment, [19], for a complete reference list. The inverse theory of network-like
structures is an important part of a rapidly developing area of applied mathematics—analysis on
graphs. It is tremendously important for all aforementioned applications. In this paper, we solve a
non-standard dynamical inverse problem for the wave equation on a metric tree graph.

Let Ω = {V, E} be a finite compact and connected metric tree (i.e., graph without cycles), where V
is a set of vertices and E is a set of edges. We recall that a graph is called a metric graph if every edge
ej ∈ E, j = 1, . . . , N, is identified with an interval (a2j−1, a2j) of the real line with a positive length lj.
We denote the boundary vertices (i.e., vertices of degree one) by Γ = {γ0, ..., γm}, and interior vertices
(whose degree is at least 2) by {vm+1, ...., vN}. The vertices can be regarded as equivalence classes of
the edge end points aj. For each vertex vk, denote its degree by Υk. We write j ∈ J(v) if ej ∈ E(v),
where E(v) is the set of edges incident to v.

The graph Ω determines naturally the Hilbert space of square integrable functionsH = L2(Ω).
We define its subspaceH1 as the space of functions y on Ω such that y|e ∈ H1(e) for every e ∈ E and
y|Γ\{γ0} = 0, and let H−1 be the dual space to H1. When convenient, we denote the restriction of a
function w on Ω to ej by wj. For any vertex vk and function w(x) on the graph, we denote by ∂wj(vk)

the derivative of wj at vk in the direction pointing away from the vertex.
Our system is described by the following initial boundary value problem (IBVP) with so-called

delta-prime compatibility conditions at each internal vertex vk:

utt − uxx + qu = 0, (x, t) ∈ (Ω \V)× [0, T], (1)

u|t=0 = ut|t=0 = 0, x ∈ Ω, (2)

∂ui(vk, t) = ∂uj(vk, t), i, j ∈ J(vk), vk ∈ V \ Γ, t ∈ [0, T], (3)

∑
j∈J(vk)

uj(vk, t) = 0, vk ∈ V \ Γ, t ∈ [0, T], (4)

∂u
∂x

(γ0, t) = f (t), t ∈ [0, T], (5)

u(γk, t) = 0, k = 1, . . . , m, t ∈ [0, T]. (6)

Here, T is arbitrary positive number, qj ∈ C([a2j−1, a2j]) for all j, and f ∈ L2(0, T). The physical
interpretation of conditions (3) and (4), and some other matching conditions was discussed in [20].

The well-posedness of this system is discussed in Section 2; it will be proved that
u ∈ C([0, T];H1) ∩ C1([0, T];H). In what follows, we refer to γ0 as the root of Ω and f as the control.

We now pose our inverse problem. Assume an observer knows the boundary condition (5),
and that (6) holds at the other boundary vertices, and that the graph is a tree. The unknowns are the
number of boundary vertices and interior vertices, the adjacency relations for this tree, i.e., for each
pair of vertices, whether or not there is an edge joining them, the lengths {`j}, and the function q.
We wish to determine these quantities with a set of measurements that we describe now. We can
suppose vN is the interior vertex adjacent to γ0 with e1 the edge joining the two, see Figure 1. Our first
measurement is then the following measurement at γ0:(

R0,1 f
)
(t) := u f

1(γ0, t). (7)

We show that from operator R0,1 one can recover `1 and the degree ΥN of vN . Then by a well
known argument, see [21], one can then determine q1.
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Figure 1. A metric tree.

Having established these quantities, in our second step, we propose to place sensors on the edges
incident to vN , and using these measurements together with R0,1 to determine the data associated to
these edges. Note that the one control remains at γ0. The goal is to repeat these steps until all data
associated to the graph have been determined. To define the interior measurements we require more
notation. For each interior vertex vk we list the incident edges by {ek,j : j = 1, ..., Υk}. Here ek,1 is
chosen to be the edge lying on the unique path from γ0 to vk, and the remaining edges are labeled
randomly, see Figure 2. Then the sensors measure(

Rk,j f
)
(t) := u f

j (vk, t), k = m + 1, ..., N, j = 2, ..., Υk − 1. (8)

We show that we do not need sensors at ek,1, ek,Υk
. Thus the total number of sensors is 1 +

∑N
j=m+1(Υj − 2). It is easy to check that this number is equal to |Γ| − 1. We denote by RT the (|Γ| −

1)-tuple (R0,1, RN,2, RN,3, ....) acting on L2(0, T).

γ0
ek,1

ek,4

ek,3

ek,2

vk

Figure 2. Sensors at vertex vk marked by arrows.

2. Results

Let ` be equal to the maximum distance between γ0 and any other boundary vertex. Our main
result is the following

Theorem 1. Assume qj ∈ C([a2j−1, a2j]) for all j. Suppose T > 2`. Then from RT one can determine the
number of interior and boundary vertices, the adjacency relations of the tree, q, and the lengths of the edges.

3. Discussion

We now compare this result to others in the literature. We are unaware of any works treating the
inverse problem on general tree graphs with delta-prime conditions on the internal vertices. The most
common conditions for internal vertices are continuity together with Kirchhoff–Neumann condition:
∑j∈J(vk)

∂uj(vk, t) = 0 and all references in this paragraph assume these conditions. In [21], the authors
assume that controls and measurements take place at all boundary vertices but one. The authors use an
iterative method called “leaf peeling”, where the response operator on Ω is used first to determine the
data on the edges adjacent to the boundary, and then to determine the response operator associated to
a proper subgraph. In [21], the leaf peeling argument includes spectral methods that require knowing
RT for all T. In [22], the methods of [21] are extended to the case where masses are placed at internal
vertices, see also [23]; however these methods still require knowledge of RT for all T. Also in [22], it is
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proven that that for a single string of length ` with N attached masses and T > 2`, RT
0,1 is sufficient to

solve the inverse problem. In particular, [23] uses a spectral variant of the boundary control method,
together with the relationship between the response operator and the connecting operator. In [24,25],
a dynamical leaf peeling argument is developed for a tree with no masses and with response operators
at all but one boundary points, allowing for the solution of the inverse problem for finite T sufficiently
large. An important ingredient in their leaf peeling is determining the response operators associated
with subtrees, called “reduced response operators”, from the response operator associated to the
original tree. In all of these papers, it is assumed that there are no interior measurements. In [26],
the iterative methods from [24,25,27] are adapted to a tree with masses placed at internal vertices,
with a single control at the roof and measurements there and at internal vertices. For other works on
quantum graphs, see [1,16,19,28–31].

A special feature of the present paper is that we use only one control together internal observations.
This may be useful in some physical settings where some or most boundary points are inaccessible.
Another potential advantage of the method presented here is that we recover all parameters of
the graphs, including its topology, from the (|Γ| − 1)-tuple response operator acting on L2(0, T).
In previous papers, the authors recovered the graph topology from a larger number of measurements:
the (|Γ| − 1)× (|Γ| − 1) matrix (boundary) response operator or, equivalently, from (|Γ| − 1)× (|Γ| − 1)
Titchmarsh–Weyl matrix function. In [32], the inverse problems on a star graph for the wave equation
with general self-adjoint matching conditions was solved by the (|Γ| − 1)× (|Γ| − 1) matrix boundary
response operator.

4. Materials and Methods

4.1. Preliminaries

In what follows, we use the notations

Fn = { f ∈ Hn(R) : f (t) = 0 if t ≤ 0}, (9)

whereHn(R) are the standard Sobolev spaces. We define the Heaviside function by H(t) = 1 for t > 0,
and H(t) = 0 for t < 0. Then, we define Hn ∈ Fn as the unique solution to

dn

dtn Hn = H;

at times we use H−1(t), resp. H−2(t) for δ(t), resp. δ′(t). Here δ(t) denotes the Dirac delta function
supported at t = 0. In this section and those that follow, we drop the superscript T from RT

when convenient.
Consider a star shaped graph with edges e1, ..., eN . For each j, we identify ej with the interval

(0, `j) and the central vertex with x = 0, see Figure 3.

x = 0

x = `2

x = `1

x = `3

Figure 3. Star with coordinate system: ej identified with [0, `j].
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Recall the notation qj = q|ej , and uj(∗, t) = u(∗, t)|ej . Thus, we consider the system

∂2u
∂t2 −

∂2u
∂x2 + qu = 0, x ∈ ej, j = 1, ..., N, t ∈ ×[0, T], (10)

u|t=0 = ut|t=0 = 0, (11)

∂ui(0, t) = ∂uj(0, t), i 6= j, t ∈ [0, T], (12)
N

∑
j=1

uj(0, t) = 0, t ∈ [0, T], (13)

∂u1(`1, t) = f (t), t ∈ [0, T], (14)

uj(`j, t) = 0, j = 2, ..., N, t ∈ [0, T]. (15)

Let u f solve (10)–(15), and set

gj(t) = u f
j (0, t), j = 1, ..., N. (16)

For (11), it is standard that the waves have unit speed of propagation on the interval, so gj(t) = 0
for t < `1 and all j. It will be useful first to consider the vibrating string on an interval.

4.2. Representation of Solution on an Interval and Reduced Response Operator

We adapt a representation of u f (x, t) developed in [27], where only Dirichlet control and boundary
conditions were considered. Fix j ∈ {1, ..., N}. We extend qj to (0, ∞) as follows: first evenly with
respect to x = `j, and then periodically. Thus qj(2k`j ± x) = qj(x) for all positive integers k.

Define wj to be the solution to the Goursat-type problem{
∂w2

∂s2 (x, s)− ∂w2

∂x2 (x, s) + qj(x)w(x, s) = 0, 0 < x < s < ∞,
wx(0, s) = 0, w(x, x) = − 1

2

∫ x
0 qj(η)dη, x > 0.

A proof of solvability of this problem can be found in [33].
Consider the IBVP on the interval (0, `j):

ũtt − ũxx + qj(x)ũ = 0, 0 < x < `j, t ∈ (0, T), (17)

ũ(x, 0) = ũt(x, 0) = 0, 0 < x < `j, (18)

∂ũ(0, t) = p(t), (19)

ũ(`j, t) = 0, t > 0. (20)

Let P(t) = −
∫ t

0 p(s)ds. Then, the solution to (17)–(20) on ej can be written as

ũp
j (x, t) = ∑

n≥0: 0≤2n`j+x≤t
(−1)n

(
P(t− 2n`j − x) +

∫ t

2n`j+x
wj(2n`j + x, s)P(t− s)ds

)

+ ∑
n≥1: 0≤2n`j−x≤t

(−1)n

(
P(t− 2n`j + x) +

∫ t

2n`j−x
wj(2n`j − x, s)P(t− s)ds

)
. (21)

In what follows, we only consider t ≤ T for some finite T, so all sums will be finite.
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Let us now change the condition (20) to ũx(`j, t) = 0. In this case, the solution becomes

ũp
j (x, t) = ∑

n≥0: 0≤2n`j+x≤t

(
P(t− 2n`j − x) +

∫ t

2n`j+x
wj(2n`j + x, s)P(t− s)ds

)

+ ∑
n≥1: 0≤2n`j−x≤t

(
P(t− 2n`j + x) +

∫ t

2n`j−x
wj(2n`j − x, s)P(t− s)ds

)
.

To represent the solution of the wave equation on the edge e1 in a star graph, we must account for
the control at x = `1. Thus it will also be useful to represent the solution of a wave equation on an
interval when the control is on the right end. Consider the IBVP:

vtt − vxx + q1(x)v = 0, 0 < x < `1, t > 0,

v(x, 0) = vt(x, 0) = 0, 0 < x < `1,

∂v(0, t) = 0,

∂v(`1, t) = f (t), t > 0. (22)

Set q̃1(x) = q1(`1 − x), and extend q̃1 to [0, ∞) by q̃1(2k`1 ± x) = q̃1(x). Define k1 to be the
solution to the Goursat-type problem{

∂k2

∂s2 (x, s)− ∂k2

∂x2 (x, s) + q̃1(x)k(x, s) = 0, 0 < x < s,
kx(0, s) = 0, k(x, x) = − 1

2

∫ x
0 q̃1(η)dη, x < `j.

Let F(t) = −
∫ t

0 f (s)ds. One can then verify that

v f (x, t) = F(t− `1 + x) +
∫ t

`1−x
k1(`1 − x, s)F(t− s) ds

+F(t− `1 − x) +
∫ t

`1+x
k1(`1 + x, s)F(t− s) ds

+F(t− 3`1 + x) +
∫ t

3`1−x
k1(3`1 − x, s)F(t− s) ds

+F(t− 3`1 − x) +
∫ t

3`1+x
k1(3`1 + x, s)F(t− s) ds

. . . (23)

Thus

v f (0, t) = 2
∞

∑
n=1

(
F(t− (2n− 1)`1) +

∫ t

(2n−1)`1

k1((2n− 1)`1, s)F(t− s)
)
. (24)

We now show that the system (10)–(15) is well-posed. Recall that F 1 was defined in (9),
and gj(t) = u f

j (0, t).

Theorem 2.
(a) If f ∈ L2(0, T), then there exists a unique solution u(x, t) solving the system (10)–(15), and mapping

t 7→ u f (x, t) is in C(0, T;H1) ∩ C1(0, T;H).
(b) For each j = 1, ..., N, the mapping f 7→ gj is a continuous mapping L2(0, T) 7→ F 1.

Proof. On [0, `j] with j ≥ 2, the wave will be generated by the “control” ∂(u f
j )(0, t), whereas on

[0, `1] the wave is generated by the two controls ∂(u f
1)(0, t), ∂(u f

1)(`1, t) = f (t). We assume first that
f ∈ C2

0(0, T).
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Let

p(t) := (u f
j )x(0, t), and P(t) = −

∫ t

0
p(s)ds. (25)

Here, p is independent of j by (12). We have that u f is given by

u f
1 = ũp

1 + v f , and for j ≥ 2, u f
j = ũp

j . (26)

Note that v f has already been explicitly determined in (23). Thus, by (21), we have an explicit
solution for u f if we can solve for p. We now prove the existence, uniqueness, and regularity of P.

By (21) and (26), we have for j ≥ 2,

gj(t) = P(t) +
∫ t

0
wj(0, s)P(t− s)ds

+2 ∑
n≥1

(−1)n(P(t− 2n`j) +
∫ t

2n`j

wj(2n`j, s)P(t− s)ds
)
. (27)

For j = 1, we have by (21), (24), and (26) that

g1(t) = P(t) +
∫ t

0
w1(0, s)P(t− s)ds

+ 2 ∑
n≥1

(−1)n(P(t− 2n`1) +
∫ t

2n`1

w1(2n`1, s)P(t− s)ds
)

+ 2 ∑
n≥1

(
F(t− (2n− 1)`1) +

∫ t

(2n−1)`1

k1((2n− 1)`1, s)F(t− s)
)
. (28)

We remark that at the moment, we have not yet solved for either P or gj for any j. Let

α = min{`j, j = 1, ..., N}.

We solve for P with an iterative argument using steps of length 2α. The iterations are necessary
because the upper limits in the sums in (27), (28) increase with time due to reflections of the wave at
the various vertices. In what follows, we label by G(t) various terms that we have already solved for,
which by (24), includes v f (0, t). For t ≤ `1 we have by unit wave speed that P(t) = 0. Suppose now
t ∈ [`1, `1 + 2α]. Then,

t− 2`j ≤ `1 + 2α− 2`j < `1,

and hence P(t− s) = 0 for s ≥ 2n`j, for all j with n ≥ 1. By (13), we have

N

∑
1

gj(t) = 0,

and hence from (27) and (28) we get

NP(t) +
∫ t

0
(

N

∑
j=1

wj(0, s))P(t− s)ds = G(t), t ∈ [`1, `1 + 2α]. (29)

It is easy to show that this is a Volterra equation of the second kind (VESK), and so admits a
unique solution P with ‖P‖L2(`1,`1+2α) ≤ ‖F‖L2(0,2α). Furthermore, by differentiating this equation we
get ‖p‖L2(`1,`1+2α) ≤ ‖ f ‖L2(0,2α).
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Having solved for P on [0, `1 + 2α], we now suppose t ∈ [`1 + 2α, `1 + 4α]. Thus for any j and
any n ≥ 1, we have t− 2n`j ≤ `1 + 2α, so all terms in (27), (28) involving P(t− s), with s ≤ 2n`j and
n ≥ 1 , are known. Thus by (27), (28), and ∑N

1 gj(t) = 0,

NP(t) +
∫ t

0
(

N

∑
j=1

wj(0, s))P(t− s)ds = G(T), t ∈ [`1 + 2α, `1 + 4α].

We can solve this VESK to determine uniquely P(t) for t ∈ [`1 + 2α, `1 + 4α], with the estimate
‖p‖L2(`1,`1+4α) ≤ ‖ f ‖L2(0,4α) holding. Iterating this process, we solve for the unique P(t) for t ∈ [0, T]
as desired. The case for f ∈ L2(0, T) is then obtained by continuity. Part (a) of the Theorem follows
easily from (21),(23), and (26). Part (b) of the theorem follows from Part (a) and (27) and (28).

Define
R1 f = u f

1(`1, t).

Proposition 1. For R1 one can determine q1, `1, and N.

Proof. Let f (t) = δ(t), so F(t) = −H(t). From (24) and (29) one has, for t < 3`1,

NP(t) +
∫ t

0
(

N

∑
j=1

wj(0, s))P(t− s)ds = 2H(t− `1) + 2
∫ t

`1

k1(`1, s)ds.

Thus, we have P(t) = 2
N H(t − `1) + cont, where cont denotes various continuous functions.

We have by (22)

u f
1(`1, t) = v f (`1, t) + ũ(`1, t)

= −H(t)−
∫ t

0
k1(0, s)ds +

2
N

H(t− 2`1) + cont.

Clearly, the discontinuity at t = 2`1 gives us `1 and N. That R2`1
0,1 determines q1 is proven

in [16].

Define the “reduced response operator” on ej, with j ≥ 2, by(
R̃0,j p

)
(t) = ũp

j (0, t)

associated to the IBVP (17)–(20). From (21), we immediately obtain

Lemma 1. For j = 2, ..., N, and any h ∈ C∞
0 (R+), we have

(
R̃0,jh

)
(t) =

∫ t

0
R̃0,j(s)h(t− s)ds,

with
R̃0,j(s) = −1− 2 ∑

n≥1
(−1)n H(s− 2n`j)− r̃0j(s), (30)

with r̃0j(0) = 0. If T is finite, the sums above are finite.

Proof. Using (25), it is easy to see that

P(t− 2n`j) =
∫ t

0
H(s− 2n`j)p(t− s)ds.

The lemma now follows easily from (21).
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In what follows, we refer to R̃0,j(s) as the “reduced response function”. For f (t) = δ(t), we denote
the solution to the system (10)–(15) as uδ. We also use the following.

Lemma 2. Let p(t) = (uδ
j )x(0, t). For j = 2, ..., N, we have

p(t) = ∑
m≥1

ψmδ(t− ζm) + θm H(t− ζm) + a(t). (31)

Here a ∈ F 1, and a(s) = 0 for s < ζ1, ζ1 = β1 = `1 and ψ1 6= 0.

This result holds from the proof of Theorem 2, the unit speed of wave propagation, and the
properties of wave reflections off x = `j, see [33]. The details are left to the reader.

The following result follows from (22), (25), and Lemma 2. The details of the proof are left to
the reader.

Corollary 1. Let gj(t) = uδ
j (0, t). For j = 2, ..., N, we have

gj(t) = ∑
k≥1

φk H(t− γk) + A(t). (32)

Here A ∈ F 1, and A(s) = 0 for s < γ1, γ1 = `1.

4.3. Solution of Inverse Problem

Here, we establish some notation. We recall the following notation: for vk we list the incident
edges by {ek,j : j = 1, ..., Υk}. Here, ek,1 is chosen to be the edge lying on the path from γ0 to vk, and the
remaining edges are labeled randomly.

Now let k0 be some fixed interior vertex, and let j0 satisfy 1 < j0 ≤ Υk0 . Denote by Ωj0
k0

the unique

subtree of Ω having vk0 as root with incident edge ek0,j0 , and by V j0
k0

the set of its vertices, see Figure 4.

vk0 ek0,j0

vk0

ek0,j0

(b)(a)

Figure 4. (a) Ω, (b) Subtree Ωj0
k0

.

We define an associated response operator as follows. Let Γj0
k0

= {vk0 , γN0 , ...., γN} be the boundary

vertices on Ωj0
k0

. Suppose ϕ = ϕb solves the IBVP

∂2 ϕ

∂t2 −
∂2 ϕ

∂x2 + qϕ = 0, x ∈ Ωj0
k0
\V j0

k0
, t ∈ ×[0, T], (33)

ϕ|t=0 = ϕt|t=0 = 0, (34)

∂ϕ(vk, t) = ∂ϕj(vk, t), j ∈ J(vk), vk ∈ V j0
k0
\ Γj0

k0
, t ∈ [0, T], (35)

∑
j∈J(vk)

ϕj(vk, t) = 0, vk ∈ V j0
k0
\ Γj0

k0
, t ∈ [0, T], (36)

∂ϕ(vk0 , t) = b(t), t ∈ [0, T], (37)

ϕ(γl , t) = 0, l = N0, ..., N, t ∈ [0, T]. (38)
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Then we define an associated reduced response operator

(R̃k0,j0 b)(t) = ϕb
j0(vk0 , t),

with associated response function R̃k0,j0(s).
Suppose we determined R̃k0,j0 . It would follow from Proposition 1 that one could recover the

following data: `j0 , qj0 , and Υk′ , where vk′ is the vertex adjacent to vk0 in Ωj0
k0

. In this section we will
present an iterative method to determine the operator R̃k0,j0 from the (|Γ| − 1)-tuple of operators,
RT , which we know by hypothesis for some T > 2`. An important ingredient is the following
generalization to a tree of Corollary 1.

Lemma 3. Let T > 0, and let RT
k,j be associated with (33)–(38), defined by (7) and (8). The response function

for RT
k,j has the form

Rk,j(s) = rk,j(s) + ∑
n≥1

φn H(s− γn).

Here, rk,j ∈ F 1, and the sequence {γn} is positive and strictly increasing. If T is finite then the sums
are finite.

Proof. The proof follows from the proof of Corollary 1, together with the transmission and reflection
properties of waves at interior vertices, and reflection properties at boundary vertices.

Fix T > 2`. The rest of this section shows how to recover R̃k0,j0 from RT .
Step 1
For the first step, let vk0 be the vertex adjacent to the root γ0, with associated edge labeled e1.

By Proposition 1, we can use RT
0,1 to recover Υk0 , `1, q1.

Step 2
Consider ek0,2. In Step 2, we show how to solve for R̃k0,2, see Figure 5.

vk0 ek0,2

ek0,3

ek0,4
vk0

ek0,2
γ0

e1

(a) (b)

Figure 5. (a) Ω. (b) Subtree Ω2
k0

, with e1 = ek0,1.

Since vk0 is the root of Ω2
k0

, the following equation is essentially a restatement of Lemma 1 to trees;
the details of its proof are left to the reader.

R̃k0,2(s) = r̃k0,2(s) + ∑
m≥0

αmH(s− ξm). (39)

Here, 0 = ξ0 < ξ1 < ..., and r̃k0,2(s) ∈ F 1. In what follows in Step 2, for readability, we rewrite
r̃k0,2 as r̃.
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Since we know `1 and q1, we can solve the wave equation on e1 with known boundary data.
We identify e1 as the interval (0, `1) with vk0 corresponding to x = 0. Then u f , restricted to e1, solves
the following Cauchy problem, where we view x as the “time” variable:

utt − uxx + q1u = 0, x ∈ (0, `1), t > 0,

∂u(`1, t) = f (t), t > 0,

u(`1, t) = (R0,1 f )(t), t > 0,

u(x, 0) = 0, x ∈ (0, `1).

Since the function R0,1(s) is known, we can thus uniquely determine u f (0, t) = u f (vk0 , t) and

∂u f
1(vk0 , t). Thus p(t) = ∂uδ

2(vk0 , t) is determined.
We now show how p and uδ

2(vk0 , t) can be used to determine R̃k0,2(s). The following equation
follows from the definition of the response operators for any f ∈ L2:

∫ t

0
R̃k0,2(s)p(t− s)ds = uδ

2(vk0 , t) =
∫ t

0
Rk0,2(s)δ(t− s)ds. (40)

In what follows, it is convenient to extend f (t) ∈ L2(0, T) as zero for t < 0. By Lemma 1 and by
an adaptation of Lemma 2 to general trees, we have the following expansions:

Rk0,2(s) = rk0,2(s) + ∑
n≥1

φnH(t− γn) rk0,2|s∈(0,β1)
= 0, β1 = `1, (41)

p(s) = a(s− `1) + ∑
l≥1

ψlδ(s− ζl) + θl H(s− ζl), ζ1 = ν1 = `1, ψ1 6= 0, . (42)

Here, rk0,2 ∈ F 1 and a(s) ∈ F 1, and {ξk} and {βn} are positive and increasing. Clearly
a(s), rk0,2(s), {ψm}, {θm}, {φn}, {γn}, can all be determined by R0,1 and Rk0,2, whereas for now r̃
and the sets {αm}, {ξm} are unknown. Inserting (39),(41) and (42) into (40), we get

rk0,2(t) + ∑
n

φn H(t− γn) =
∫ t

0
r̃(s)a(t− s− `1)ds + ∑

l
ψl r̃(t− ζl) +

∫ t

0
∑

l
θl H(t− s− ζl)r̃(s)ds

+∑
m

αm

∫ t

0
a(t− s− `1)H(s− ξm)ds + ∑

m,l
ψlαm H(t− ζl − ξm) + ∑

m,l
θlαm

∫ t

0
H(s− ξm)H(t− s− ζl)ds.

(43)

Here all sums have 1 as lower limit of summation.

Lemma 4. The sets {αm}, {ξm} can be determined by R0,1 and Rk0,2.

Proof. We mimic an iterative argument in [26]. Differentiating (43) and then matching the delta
singularities, we get

∑
n≥1

φnδ(t− γn) = ∑
m≥1

∑
l≥1

ψlαmδ(t− ζl − ξm). (44)

Since the sequences {γn}, {ζl}, {ξm} are all strictly increasing, clearly we have γ1 = ζ1 + ξ1, so
that φ1 = α1ψ1, and so ξ1 = γ1 − ζ1 and α1 = φ1/ψ1. We represent that the set {φ1, γ1}, {ζ1, ψ1}
determines the set {ξ1, α1} by

{φ1, γ1}, {ξ1, ψ1} =⇒ {ξ1, α1}.

We now match the term δ(t− γ2) with its counterpart on the right hand side of (44). There are
three possible cases.

Case 1: γ2 6= ζ2 + ξ1.
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In this case, we must have
ξ2 = γ2 − ζ1, α2 = φ2/ψ1.

Case 2a: γ2 = ζ2 + ξ1 and φ2 6= ψ2α1. Note that the last inequality can be verified by an observer
at this stage. Then γ2 = ζ1 + ξ2 and φ2 = ψ1α2 + ψ2α1. and hence

ξ2 = ζ1 − γ2, α2 = (φ2 − ψ2α1)/ψ1.

Case 2b: γ2 = ζ2 + ξ1 and φ2 = ψ2α1. Then γ2 6= ζ1 + ξ2. Note we have not yet solved for
{ξ2, α2}. In this case, we now repeat the matching coefficient argument just used with δ(t− γ3).

Again there are three cases:
Case 2bi: γ3 6= ζ3 + ξ1. Note all of these terms are known, so this inequality can be verified.

In this case, γ3 = ζ1 + ξ2, so ξ2 = γ3 − ζ1 and α2 = φ3/ψ1.
Case 2bii: γ3 = ζ3 + ξ1 and φ3 6= α1ψ3. Then γ3 = ζ1 + ξ2, and φ3 = α1ψ3 + α2ψ1. Thus ξ2 =

γ3 − ζ1 and α2 = (φ3 − α1ψ3)/ψ1.
Case 2biii: γ3 = ζ3 + ξ1 and φ3 = α1ψ3. Then γ3 < ζ1 + ξ2, and we need to continue our

procedure with γ4.
Repeating this procedure as necessary, say for a total of N2 times, we solve for {ξ2, α2}.

We represent this process as
{φk, γk}N2

k=1 =⇒ {ξk, αk}2
k=1.

We must have N2 finite by (44) and the finiteness of the graph.
Iterating this procedure, suppose for p ∈ N we have

{φk, γk}
Np
k=1 =⇒ {ξk, αk}

p
k=1.

Here Np is chosen to be minimal, and so γNp = ζ1 + ξp. We wish to solve for {ζp+1, φp+1}.
We can again distinguish three cases:
Case 1: γ(Np+1) 6= ζk + ξ j, ∀j ≤ p, ∀k. Note that we know {ξ j}

p
1 and {ζk}, so these inequalities

are verifiable. In this case, we must have γ(Np+1) = ζ1 + ξp+1 and ψ1αp+1 = φ(Np+1), so we have
determined αp+1, ξp+1 in this case.

Case 2: There exists an integer Q and pairs {ζin , ξ jn}
Q
n=1, with jn ≤ p, such that

γ(Np+1) = ζi1 + ξ j1 = ... = ζiQ + ξ jQ . (45)

Note that all the numbers {ζin , ξ jn} have been determined, so these equations can be all verified.
We can assume all pairs {ζin , ξ jn} satisfying (45) with jn ≤ p are listed. In this case, we have either

Case 2i: φ(Np+1) 6= αj1 ψi1 + ... + αjQ ψiQ . It follows then that γ(Np+1) = ζ1 + ξp+1, and

φ(Np+1) = αp+1ψ1 + φj1 ψi1 + ... + φjQ ψiQ .

We thus solve for ξp+1, αp+1.
Case 2ii: γ(Np+1) = φj1 ψi1 + ... + φjQ ψiQ . It follows then that α(Np+1) 6= ζ1 + ξp+1, and we have to

repeat this process with γ(Np+2).
Repeating the reasoning in Case 2ii as often as necessary, we eventually solve for {ξp+1, αp+1}.

Thus,
{φk, γk}

Np+1
k=1 =⇒ {ξk, αk}

p+1
k=1 .

Hence, we can solve for {ξp : p ≤ L}, {αp : p ≤ L} for any positive integer L given knowledge of
RT

0,1, RT
k0,2 for T = T(L) sufficiently large.
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It remains to solve for r̃. In what follows, we set R̃(s) = 0 for s < 0. We use G(t) to denote various
functions that we have already established to be determined by R0,1 and Rk0,2. Having already solved
for {ξn, αn}, we can eliminate from (43) the Heavyside functions to get, recalling ζ1 = `1,

G(t) = ∑
l≥1

ψl r̃(t− ζl) +
∫ t

0
r̃(s)

(
a(t− s− ζ1)) + ∑

l≥1
θl H(t− s− ζl)ds. (46)

We solve this with an iterative argument. Let α = minm{ζl+1 − ζl}. For t < ζ1 + α, we have for
l > 1 that t− ζl < 0 so r(t) = 0. Hence

G(t) = ψ1r̃(t− ζ1) +
∫ t

0

(
θ1H(t− s− ζ1) + a(t− s− ζ1)

)
r̃(s)ds, t < ζ1 + α. (47)

Letting r = t− ζ1, we get

G(r) = ψ1r̃(r) +
∫ r+ζ1

0

(
θ1H(r− s) + a(r− s)

)
r̃(s)ds,

= ψ1r̃(r) +
∫ r

0

(
θ1H(r− s) + a(r− s)

)
r̃(s)ds, r < α.

We solve this VESK to determine r̃(s), r < α. Now for t < ζ1 + 2α, we have for l > 1 that
t− ζl < α, and so those terms in (46) with t− ζl can be absorbed in G to again give

G(r) = ψ1r̃(r) +
∫ r

0

(
θ1H(r− s) + a(r− s)

)
r̃(s)ds, r < 2α.

We solve this VESK to determine r̃(s), r < 2α. Iterating this procedure, we solve for r̃(s) for any
finite s.

Step 3 Because Rk0,j are determined by assumption for j = 2, ..., Υk0 − 1, the functions u f
j (vk0 , t)

are determined. In Step 2, we showed u f
1(vk0 , t) is also determined. Hence by (4), u f

Υk0
(vk0 , t) is also

determined. We can now carry out the argument in Step 2 on the remaining edges ek0,3, ..., ek0,Υk0

incident on vk0 to determine R̃k0,j for all j.
Step 4 For each j = 2, ..., Υk0 , we use Proposition 1, to find the associated `j, qj together with the

valence of the vertex adjacent to vk0 . Careful reading of Steps 2 and 3 shows that we can use RT
0,1 and

RT
k0,j for any T > 2(`1 + `j).

Step 5 Let vk1 , ... be the vertices adjacent to vk0 , other than γ0. We now iterate Steps 2–4 for
the each of these vertices. Choose for instance vk1 . If it were a boundary vertex, this fact would be
determined in Step 4, and then this algorithm goes to the next vertex, which we, for convenience,
still label vk1 . We can thus assume vk1 is an interior vertex. Let us label an incident edge (other than
e2 := ek0,2) as e3 := ek1,3, see Figure 6.

vk0

e2

vk1

e3

Figure 6. For Step 5: a subtree of Ω2
k0

.

We wish to determine R̃k1,3. Mimicking Step 2, let uδ solve (1)–(6), let b(t) = ∂uδ
3(vk1 , t). We have

the following formula holding by the definition of response operators:

∫ t

0
R̃k1,3(s) b(t− s)ds =

∫ t

0
Rk1,3(s)δ(t− s)ds.

Of course Rk1,3(s) is assumed to be known. We determine b as follows. We have, from Step 2,
that p(t) = ∂uδ

1(vk0 , t) is known. We identify e2 as the interval (0, `2) with vk1 corresponding to x = 0.
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Then b(t) = ∂u f
2(vk1 , t) arises as a solution to the following Cauchy problem on e2, where we

view x as the “time” variable:

ytt − yxx + q2y = 0, x ∈ (0, `2), t > 0

yx(`2, t) = p(t), t > 0

y(`2, t) = (Rk0,2δ)(t), t > 0

y(x, 0) = 0, x ∈ (0, `2).

Since q2, `2, and Rk0,2 are all known, we can thus determine b(t) = yx(0, t).
The rest of the argument here is a straightforward adaptation of Steps 2–4 above. The details are

left to the reader.
Step 6 Arguing as in Step 5, we determine R̃k,j for all other vertices adjacent to vk0 and their

associated edges. The details are left to the reader.
Steps above 6 Clearly this procedure can be iterated until all edges of our finite graph have been

covered.

5. Conclusions

In this paper, we applied the ideas of the boundary control and leaf peeling methods to
solve an inverse problem on a tree featuring non-standard, delta-prime vertex conditions on the
interior. Our method required using only one boundary actuator and one boundary sensor, all other
observations being internal. Using the Neumann-to-Dirichlet map (acting from one boundary vertex to
one boundary and all internal vertices) we recovered the topology and geometry of the graph together
with the coefficients qj of the equations. It would be interesting to see a numerical implementation of
our method. It would also be interesting to adapt our methods to quantum graphs with cycles.
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