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Abstract: We propose a dissipative scheme to prepare maximally entangled steady states in
cavity QED setup, consisting of two two-level atoms interacting with the two counter-propagating
whispering-gallery modes (WGMs) of a microtoroidal resonator. Using spontaneous emission and
cavity decay as the dissipative quantum dynamical source, we show that the steady state of this
system can be steered into a two-atom single state as well as into a two-mode single state. We
probed the compound system with weak field coupled to the system via a tapered fiber waveguide,
finding it is possible to determine whether the two atoms or two modes are driven to a maximally
entangled state. Through the transmission and reflection measurements, without disturbing the
atomic state, when the cavity modes are being driven, or without disturbing the cavity field state,
when a single atom being driven, one can get the information about the maximal entanglement. We
also investigated for both subsystem, two-atom and two-mode states, the entanglement generation
and under what conditions one can transfer entanglement from one subsystem to the other. Our
scheme can be selectively used to prepare both maximally entangled atomic state as well as maximally
entangled cavity-modes state, providing an efficient method for quantum information processing.
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1. Introduction

The preparation and control of entangled states via dissipative engineering have attracted great
interest in the last several years [1,2]. Different from the unitary evolution based schemes, these schemes
use decoherence as a powerful resource in the state preparation process without destroying the
quantum entanglement. In [3], the authors showed that the cavity decay plays an integral part in
preparing a maximally entangled state of two Λ atoms trapped in an optical cavity. Stannigel et al.
showed that the driven-dissipative preparation of entangled states can be obtained in cascaded
quantum-optical networks between individual nodes [4]. In [5], the authors used the energy relaxation
of the single superconducting qubit coupled to two spatially separated transmission line resonators for
generating a two-mode entangled state. In addition, the generation of a two-mode entangled states
has been investigated by quantum reservoir engineering [6]. Other schemes based on the waveguide
QED configuration are presented in [7–12].

On the other hand, the identification of a quantum state is usually achieved by quantum state
tomography [13]. However, this method directly performs a series of projective measurements on
many identical copies of the quantum state, inevitably disturbing the state of the system. To circumvent
this problem, quantum nondemolition measurements [14] are projected to prevent the back action of
the measurement on the detected observable. Recently, proposals to realize a quantum nondemolition
measurements of a superconducting flux qubit [15], pair of atomic samples [16] and nonclassical state
of a massive object [17] have been demonstrated. However, an interesting question is whether we
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can use an experimentally feasible method to detect an entangled state of two atoms or two modes,
selectively, in a single quantum system via quantum nondemolition measurements.

Here, we report a dissipative scheme to prepare maximally entangled steady states in cavity
QED setup, which consists of two two-level atoms interacting with the two counter-propagating
whispering-gallery modes (WGMs) of a microtoroidal resonator. The steady state of this system can
be steered into an entangled atomic state or into an entangled field state by the dissipative quantum
dynamical process. In this scheme, both atomic spontaneous emission and cavity decay are utilized as
a resource to engineer the targeted state. In addition, the dissipative steady-state production requires
neither precise time control nor initial state preparation. To probe these entangled states without
disturbing them, we performed transmission and reflection measurements through the incident weak
field of two ways: (i) driving the cavity mode; and (ii) driving a single atom. For this propose, both
the microtoroidal cavity and the atom were coupled to a tapered fiber waveguide and detectors. By
injecting and controlling a weak field into a tapered fiber, we could determine whether the two atoms
(driving the cavity mode) or two modes (driving a single atom) are in a maximally entangled state by
a single click on the detector, without disturbing the atomic state or cavity field state. Thus, one of
the detectors acted as a witness of the preparation of the entangled atomic state and the other of the
entangled field state. Note that our goal was not to find a way to simultaneously prepare two entangled
states, but to explore the possibility to get a maximally entangled state between two atoms or two
modes, under certain conditions. Compared with previous proposals, the present scheme indicates a
possibility of preparing an entangled atomic state as well as an entangled field state [18] as well as
using the dissipation as a powerful resource to engineer in those states [19]. We also investigated the
time evolution of the entanglement for both subsystem, i.e. two atoms and two modes, and under
what conditions one can transfer an entangled state of two qubits from one subsystem to the other.

2. Model

Our system consists of a pair of identical two-level atoms that interact with the evanescent fields
of a microtoroidal cavity, as shown in Figure 1. We denote the atoms by label i = 1, 2 with frequency
ωeg and the atomic ground and excited states by |g〉i and |e〉i, respectively. The cavity supports two
WGMs at frequency ωc and with annihilation (creation) operators â (â†) and b̂ (b̂†). These two modes
have an intrinsic loss rate κin and are coupled to each other with coupling strength J. Each atom is
coupled simultaneously with the two WGMs via evanescent field with a coherent coupling strength
described by gi. dipole–dipole interaction of strength Ω is also included. The Hamiltonian of the
whole system can be written in the form (in unit h̄) [20–22]:

H = ωeg(σ̂
+
1 σ̂−1 + σ̂+

2 σ̂−2 ) + ωc(â† â + b̂† b̂) + J(â† b̂ + âb̂†) + Ω(σ̂+
1 σ̂−2 + σ̂+

2 σ̂−1 )

(g∗1 â†σ̂−1 + g1 âσ̂†
1 ) + (g1b̂†σ̂−1 + g∗1 b̂σ̂†

1 ) + (g∗2 â†σ̂−2 + g2 âσ̂†
2 ) + (g2b̂†σ̂−2 + g∗2 b̂σ̂†

2 ) (1)

where σ̂+
i = |e〉i〈g| and σ̂−i = |g〉i〈e| are the raising and lowering operators of the atom i.

Introducing dissipation, the dynamics of the system is governed by the master equation [21,22]:

ρ̇(t) = −i[H, ρ(t)] + (γ/2)
2

∑
i=1
D[σ̂i

−]ρ(t) + κD[â]ρ(t) + κD[b̂]ρ(t), (2)

where γ is the spontaneous emission rate of the atoms, κ is the cavity decay rate and
D[O]ρ(t) ≡ 2Oρ(t)O† −O†Oρ(t)− ρ(t)O†O. The spectrum of the system, i.e., its allowed states,
are represented by the eigenvalues and eigenvectors of H, in the ideal case (note that, including system
dissipation, the eigenvectors with zero eigenvalues are still the same stationary entangled states present
in the ideal case, whereas the others two decay in time), are given by

E0
0 = 0; |E0

0〉 = |gg00〉
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1√

g2
1 + g2

2

(
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√

2
√
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1√
2

{ 1√
2
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g2
1 + g2

2

(g1|eg00〉+ g2|ge00〉)
}

Figure 1. Experimental scheme of the atom–cavity system. The cavity consists of two WGMs
coupled simultaneously to a pair of two-level atoms interacting via dipole–dipole interaction Ω.
In this case, both the cavity and the atom are coupled to a tapered optical fiber in an overcoupled
regime [21]. The modes of fiber are described by {âin, âout, b̂in, b̂out} coupled to the cavity and
{σ̂1,in, σ̂1,out, σ̂2,in, σ̂2,out} coupled to the atom, in terms of the input–output fields to a detectors.

Note that, for g1 = g2, the eigenvector correspondent to the eigenvalue E1
1 = 0 is a tensorial

product between the maximally entangled states of the atoms and the cavity in a vacuum state and
for E2

1 = 0 is a tensorial product between the atoms in ground state and a maximally entangled states
between the field modes,

|E1
1〉g1=g2 =

1√
2
(|eg〉 − |ge〉)⊗ |00〉 = |ψ−, V〉

|E2
1〉g1=g2 = |gg〉 ⊗ 1√

2
(|10〉 − |01〉) = |G, φ−〉

where |G〉 = |gg〉, |V〉 = |00〉, |ψ−〉 = 1√
2
(|eg〉 − |ge〉) and |φ−〉 = 1√

2
(|10〉 − |01〉). The energy-level

diagram of the atom–toroid system with the transitions and decay rates, via Fermi’s golden
rule (without spontaneous emission (γ = 0), collective decay rates of the modes are given by
Γc = κ/2 e Γ±c = κ, while, without cavity loss (κ = 0), the collective decay rates of the atoms are
given by Γa = γ/4 e Γ±a = γ/2) [23], and the probe fields (which are discussed further below) are
shown in Figure 2. In this study, we only considered the lowest energy of the system, since we were
interested in its steady state, which is a mixture of these states for any initial state of the system.
Thus, the steady state of the system is a mixture of the lower energy states of each subspace:

ρss = (1− Pspont − Pcav)|G, 00〉〈G, 00|+ Pspont|φ−, 00〉〈φ−, 00|+ Pcav|ψ−, 00〉〈ψ−, 00| (3)

where Pspont is the projection of the initial state of the atom in the state |ψ−〉 and Pcav is the projection
of the initial state of the fields in the state |φ−〉. Equation (3) can be obtained directly from Equation (2)
to t→ 0.
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Figure 2. Energy levels diagram of the atom-cavity system with collective decay rates and probe fields
where (blue) driving the cavity mode with strength ε and frequency ωL and (red) driving the single
atom with strength η and frequency ωP.

Following the method described in [18], to discriminate these states without disturbing them, we
must monitor the system using a weak probe field, keeping the system still with a single excitation. In
our case, we used two distinct procedures to monitor the atom–cavity system via probe field: (i) drive
the cavity mode to distinguish between the atomic states |G〉 and |ψ−〉, restricted to the time interval
κ/g2 � t < 1/γ [24]; and (ii) drive a single atom to distinguish between the states of the fields |V〉
and |φ−〉 in the time interval κt � 1 and g2t/γ � 1. In both cases, such discrimination of states
consisted in measuring the coefficients of transmission and reflection of the incident field, without
disturbing the atomic system (Case i) or the cavity modes (Case ii). In addition, using the formalism of
input–output theory [25], the output fields are given by

aout(t) = ain(t) +
√

2κexa(t) (4)

bout(t) = bin(t) +
√

2κexb(t) (5)

where the coherent amplitudes of the input fields are given by 〈ain〉 = iε√
2κex

and 〈bin〉 = 0 [22]. In this
way, the transmission and reflection coefficients of the modes are defined as

Tc =
〈a†

outaout〉ss

|ε|2/(2κex)
(6)

Rc =
〈b†

outbout〉ss

|ε|2/(2κex)
. (7)

Similarly, the transmission and reflection coefficients from the atoms are given by

Ta =
〈σ+

1,outσ
−
1,out〉ss

|η|2/(2γex)
(8)

Ra =
〈σ+

2,outσ
−
2,out〉ss

|η|2/(2γex)
. (9)

3. Monitoring the Atom–Cavity System by Driven the Cavity Mode

Our purpose in this section is to probe stationary atomic states, that is, to distinguish
an uncorrelated atomic state (|G〉) from a maximally entangled state (|ψ−〉) without disturbing them,
e.g., by performing a quantum nondemolition measurement. In this case, the mode a of the cavity
is driven by a probe field given by HL = ε(âeiωLt + â†e−iωLt), where ε and ωL are the strength and
the frequency of the probe field, respectively. In Figure 2, we can observe that, if the system is in the
state |ψ−, 00〉, the external field is capable of promoting the transition |ψ−, 00〉 → |ψ−, 10〉, resonantly.
Note that |ψ−〉 is a dark state and, in this case, the atoms do not “see” the cavity modes and this would
be the same as if imposing g ' 0, thus, obtaining Tc = 1 and Rc = 0. On the other hand, if the system
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is in the state |G, V〉, the external field leads to the transition |G, V〉 → |E±1 〉 having detuning (∆L)
between the frequencies of the probe and atom–field system given by ±2g, resulting in Tc = 0 and
Rc = 1, as explained below. This occurs because the two atoms are strongly coupled to the cavity, i.e.,
|g| � {κin, J, Ω, |∆L|, Γc}, resulting in an intracavity field redistribution between counter-propagating
modes a and b [21]. Thus, the radiated field is dynamically controlled by atomic polarization which
produces a destructive interference in the output field aout between the components ain and

√
2κex

resulting in a transmission Tc → 0, and, consequently, the incident field is fully reflected in the fiber via
the output field bout, resulting in Rc → 1 (note that Tc +Rc < 1 due to the losses in the system) [21,26].
Therefore, the transmission and reflection of the probe field applied to the cavity mode can be used
as witness of the atomic states, without disturbing them so that, Tc = 1 and Rc = 0 implies that
ρat

ss → |ψ−〉〈ψ−|, and Tc = 0 and Rc = 1 implies that ρat
ss → |G〉〈G|. In a compact way, the steady state

of the atomic system, tracing over the modes of the cavity, is given by:

Trc[ρss]→ ρat
ss = (1− Pspont)|G〉〈G|+ Pspont|ψ−〉〈ψ−|. (10)

Figure 3 shows the transmission and reflection of the cavity modes as a function of the detuning
(∆L = ωc −ωL) between the frequencies of the probe field and the atom–toroid system in overcoupled
regime, for {ε, κex, κin, Ω, J, Γc, g}/2π = {10, 20, 0.2, 0, 0, 5.2, 45}MHz. In Figure 3, the dashed line
correspond to the case where ρat

ss → |ψ−〉〈ψ−|, so that the incident field is fully transmitted (Tc = 1
and Rc = 0), equivalent to empty cavity type behavior (g = 0). On the other hand, when ρat

ss → |G〉〈G|
(solid line), it was observed that, near the resonance (∆L = 0), the strong coupling between the atoms
and the cavity modes, that is, g > κex, causes the incident field to be fully reflected (Tc = 0 and Rc = 1)
and, in this case, the atoms act as a “mirror” for the incident field.

Figure 3. Transmission (blue) and reflection (red) of the cavity modes as a function of the
detuning between the frequencies of the probe field and the atom–cavity system in overcoupled
regime κex � {κin, J} and ωc = ωa. The chosen parameters were {ε, κex, κin, Ω, J, Γc, g}/2π =

{10, 20, 0.2, 0, 0, 5.2, 45} MHz. The dashed line corresponds to ρat
ss → |ψ−〉〈ψ−| and the solid line

for ρat
ss → |G〉〈G|.

4. Monitoring the Atom–Cavity System by Driven the Single Atom

In this section, we probe the steady states of cavity modes, that is, differentiate an uncorrelated
state (|V〉) from an entangled state between two modes (|φ〉) by driving the single atom,
without disturbing the states of the cavity modes. In this setup, the incident field is given by
HP = η(σ−1 eiωPt + σ+

1 e−iωPt), where η and ωP are the strength and the frequency of the probe field,
respectively. Note that the external field was applied to atom 1, as shown in Figure 2. It was also
observed that the probe field is capable of promoting, resonantly, the transition |gg, φ−〉 → |eg, φ−〉.
Similar to the previous discussion, |φ−〉 is a dark state and, in this case, the cavity modes do not “see”
atoms and this would be the same as if imposing g ' 0, resulting in Ta = 1 and Ra = 0. However,
for |gg, V〉, the incident field is capable of promoting the transition, of resonance, |gg, V〉 → |E±〉
with detuning ±2g, resulting in Ta = 0 and Ra = 1. In this case, the incident field is fully reflected
due to destructive interference between the components σ−1,in and

√
2γexσ−1 resulting in Ta → 0.
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Therefore, the transmission and reflection of the probe field applied on atom 1 can be used as witness
of the state of the cavity modes without disturbing them, so that, Ta = 1 and Ra = 0 implies that
ρc

ss → |φ−〉〈φ−| and Ta = 0 and Ra = 1 implies that ρc
ss → |V〉〈V|. The steady state of the cavity

modes, tracing over the atomic states, is given by:

Trat[ρss]→ ρc
ss = (1− Pcav)|V〉〈V|+ Pcav|φ−〉〈φ−|. (11)

Figure 4 shows the transmission and reflection of the atoms as a function of the detuning between
the frequencies of the probe field and the atom–toroid system ∆P = ωa −ωP in an overcoupled regime,
for {η, γex, γin, Ω, J, Γa, g}/2π = {10, 40, 0.2, 0, 0, 5.2, 45}MHz.

Figure 4. Transmission (blue) and reflection (red) of the atoms as a function of the detuning between
the frequencies of the probe field and the atom–cavity system in an overcoupled regime γex � {γin, Ω}
and ωc = ωa. The chosen parameters were {γex, γin, Ω, J, Γc}/2π = {40, 0.2, 0, 0, 5.2} MHz. The
dashed line corresponds to ρc

ss → |φ−〉〈φ−| and the solid line for ρc
ss → |V〉〈V|.

In Figure 4, the dashed lines correspond to the case that ρc
ss → |φ−〉〈φ−|, where the probe field

is fully transmitted (Ta = 1 and Ra = 0), because, in this state, the cavity modes do not “see” atoms
(g = 0 ). However, when ρc

ss → |V〉〈V| (solid lines), it is noted that, around the resonance (∆P = 0),
the strong coupling between the modes and the atoms (g > γex) induces a complete reflection of the
incident field (Ta = 0 and Ra = 1).

5. Transfer of Entanglement between Two Atoms and Two Modes

In this section, we investigate the case when the system is initially prepared in an entangled
state and under what conditions it is possible to obtain the transfer of entanglement between the two
subsystems, e.g., from the two atoms to the two modes. In this case, we consider the following two
initial states: |φ(0)〉1 = 1√

2
(|eg〉+ |ge〉)⊗ |00〉 and |φ(0)〉2 = 1√

2
(|10〉+ |01〉)⊗ |gg〉. For this purpose,

we use negativity [27] as measure of the degree of entanglement between the two atoms (Na) and the
two-modes (Nc).

Figure 5 shows the time evolution of the negativity between the atoms (blue lines) and between
the fields (red lines) as a function of the scaled time gt for the initial states |φ(0)〉1 (left) and |φ(0)〉2
(right) with γ fixed and different values of κ. It was observed that, in both initial states, it is possible
to completely transfer the entanglement between the two subsystems when κ = γ = 0.01g (next to
the ideal case), as expected. For small values of gt and higher values of κ, the degradation of the
entanglement between atoms is more robust when compared to the entanglement between the modes.
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Figure 5. Time evolution of the negativity between the atoms (blue) and fields (red) as a function
of time scaled gt for the initial states: (left) |φ(0)〉1 = 1√

2
(|eg00〉 + |ge00〉) ; and (right) |φ(0)〉2 =

1√
2
(|gg10〉+ |gg01〉). The chosen parameters were γ = 0.01g and Ω = J = 0 for κ = 0.01g (solid line),

κ = 0.5g (dot-dashed line) and κ = 1.0g (dashed line).

6. Conclusions

In conclusion, using a dissipative atom-microtorid system, we have shown that it is possible to
prepare a selectively maximally entangled state between two atoms as well as a maximally entangled
state between two modes. In this case, the results were obtained by measuring the transmission and
reflection coefficients of a weak probe field applied to the atom–cavity system, so as not to disturb
the atomic state (drive the cavity mode) or the state of the cavity field (drive the single atom) by
performing a quantum nondemolition measurement. In addition, we have shown that it is possible to
transfer an entangled state of two qubits from the two atoms to the two modes under certain conditions.
Therefore, our results may contribute to a better understanding of the preparation and transfer of
entangled states that are of great interest to the quantum information processing.

Author Contributions: All authors contributed substantially to the research.

Funding: This research was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
grant number 140039/2016-3 (http://www.carloschargas.cnpq.br), Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior (CAPES) grant number 1247693/2013 (https://www.capes.gov.br), Fundação de Apoio a
Pesquisa do Estado de São Paulo (FAPESP) (http://www.fapesp.br) and Instituto Nacional de Ciência e Tecnologia
(INCT) (http://www.inct-iq@if.ufrj.br).

Acknowledgments: The authors would like to thank Mohinder Paul Sharma for the valuable comments and
careful English revision of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Horn, K.P.; Reiter, F.; Lin, Y.; Leibfried, D.; Koch, C.P. Quantum optimal control of the dissipative production
of a maximally entangled state. New J. Phys. 2018, 20, 123010. [CrossRef]

2. Jin, Z.; Su, S.L.; Zhu, A.D.; Wang, H.F.; Zhang, S. Dissipative preparation of distributed steady entanglement:
An approach of unilateral qubit driving. Opt. Express 2017, 25, 88–101. [CrossRef] [PubMed]

3. Kastoryano, M.J.; Reiter, F.; Sørensen, A.S. Dissipative Preparation of Entanglement in Optical Cavities.
Phys. Rev. Lett. 2011, 106, 090502. [CrossRef] [PubMed]

4. Stannigel, K.; Rabl, P.; Zoller, P. Driven-dissipative preparation of entangled states in cascaded
quantum-optical networks. New J. Phys. 2012, 14, 063014. [CrossRef]

5. Ma, S.L.; Li, Z.; Fang, A.P.; Li, P.B.; Gao, S.Y.; Li, F.L. Controllable generation of two-mode-entangled states
in two-resonator circuit QED with a single gap-tunable superconducting qubit. Phys. Rev. A 2014, 90, 062342.
[CrossRef]

6. Arenz, C.; Cormick, C.; Vitali, D.; Morigi, G. Generation of two-mode entangled states by quantum reservoir
engineering. J. Phys. B Atomic Mol. Opt. Phys. 2013, 46, 224001. [CrossRef]

7. Petiziol, F.; Dive, B.; Carretta, S.; Mannella, R.; Mintert, F.; Wimberger, S. Accelerating adiabatic protocols for
entangling two qubits in circuit QED. Phys. Rev. A 2019, 99, 042315. [CrossRef]

http ://www.carloschargas.cnpq.br
https://www.capes.gov.br
http://www.fapesp.br
http://www.inct-iq@if.ufrj.br
http://dx.doi.org/10.1088/1367-2630/aaf360
http://dx.doi.org/10.1364/OE.25.000088
http://www.ncbi.nlm.nih.gov/pubmed/28085813
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://www.ncbi.nlm.nih.gov/pubmed/21405608
http://dx.doi.org/10.1088/1367-2630/14/6/063014
http://dx.doi.org/10.1103/PhysRevA.90.062342
http://dx.doi.org/10.1088/0953-4075/46/22/224001
http://dx.doi.org/10.1103/PhysRevA.99.042315


Quantum Rep. 2019, 1 70

8. Mirza, I.M.; Schotland, J.C. Two-photon entanglement in multiqubit bidirectional-waveguide QED.
Phys. Rev. A 2016, 94, 012309. [CrossRef]

9. Macrì, V.; Nori, F.; Kockum, A.F. Simple preparation of Bell and Greenberger-Horne-Zeilinger states using
ultrastrong-coupling circuit QED. Phys. Rev. A 2018, 98, 062327. [CrossRef]

10. Mirza, I.M.; Schotland, J.C. Multiqubit entanglement in bidirectional-chiral-waveguide QED. Phys. Rev. A
2016, 94, 012302. [CrossRef]

11. Mirza, I.M. Controlling tripartite entanglement among optical cavities by reservoir engineering. J. Mod. Opt.
2015, 62, 1048–1060. [CrossRef]

12. Mirza, I.M. Bi- and uni-photon entanglement in two-way cascaded fiber-coupled atom–cavity systems.
Phys. Lett. A 2015, 379, 1643–1648. [CrossRef]

13. Cramer, M.; Plenio, M.B.; Flammia, S.T.; Somma, R.; Gross, D.; Bartlett, S.D.; Landon-Cardinal, O.; Poulin, D.;
Liu, Y.K. Efficient quantum state tomography. Nat. Commun. 2010, 1, 149. [CrossRef] [PubMed]

14. Grangier, P.; Levenson, J.A.; Poizat, J.P. Quantum non-demolition measurements in optics. Nature 1998,
396, 537. [CrossRef]

15. Takashima, K.; Nishida, M.; Matsuo, S.; Hatakenaka, N. Quantum Nondemolition Measurement of
a Superconducting Flux Qubit. AIP Conf. Proc. 2006, 850, 945–946. [CrossRef]

16. Di Lisi, A.; Mølmer, K. Entanglement of two atomic samples by quantum-nondemolition measurements.
Phys. Rev. A 2002, 66, 052303. [CrossRef]

17. Lecocq, F.; Clark, J.B.; Simmonds, R.W.; Aumentado, J.; Teufel, J.D. Quantum Nondemolition Measurement
of a Nonclassical State of a Massive Object. Phys. Rev. X 2015, 5, 041037. [CrossRef] [PubMed]

18. Rossatto, D.Z.; Villas-Boas, C.J. Method for preparing two-atom entangled states in circuit QED and probing
it via quantum nondemolition measurements. Phys. Rev. A 2013, 88, 042324. [CrossRef]

19. Li, P.B.; Gao, S.Y.; Li, F.L. Quantum-information transfer with nitrogen-vacancy centers coupled to
a whispering-gallery microresonator. Phys. Rev. A 2011, 83, 054306. [CrossRef]

20. Jin, J.S.; Yu, C.S.; Pei, P.; Song, H.S. Positive effect of scattering strength of a microtoroidal cavity on atomic
entanglement evolution. Phys. Rev. A 2010, 81, 042309. [CrossRef]

21. Dayan, B.; Parkins, A.; Aoki, T.; Ostby, E.; Vahala, K.; Kimble, H. A photon turnstile dynamically regulated
by one atom. Science 2008, 319, 1062–1065. [CrossRef] [PubMed]

22. Aoki, T.; Parkins, A.S.; Alton, D.J.; Regal, C.A.; Dayan, B.; Ostby, E.; Vahala, K.J.; Kimble, H.J. Efficient
Routing of Single Photons by One Atom and a Microtoroidal Cavity. Phys. Rev. Lett. 2009, 102, 083601.
[CrossRef] [PubMed]

23. Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Atom-Photon Interactions: Basic Processes and Applications;
Wiley-VCH: Weinheim, Germany, 1998; p. 678, ISBN 0-471-29336-9.

24. Bullough, R.K. Photon, quantum and collective, effects from rydberg atoms in cavities. Hyperfine Interact.
1987, 37, 71–108. [CrossRef]

25. Gardiner, C.W.; Collett, M.J. Input and output in damped quantum systems: Quantum stochastic differential
equations and the master equation. Phys. Rev. A 1985, 31, 3761–3774. [CrossRef]

26. Aghamalyan, D.; You, J.B.; Chu, H.S.; Png, C.E.; Krivitsky, L.; Kwek, L.C. Quantum transistor realized with
a single Λ-level atom coupled to the microtoroidal cavity. arXiv 2019, arXiv:1902.11052.

27. Vidal, G.; Werner, R.F. Computable measure of entanglement. Phys. Rev. A 2002, 65, 032314. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevA.94.012309
http://dx.doi.org/10.1103/PhysRevA.98.062327
http://dx.doi.org/10.1103/PhysRevA.94.012302
http://dx.doi.org/10.1080/09500340.2015.1044761
http://dx.doi.org/10.1016/j.physleta.2015.04.035
http://dx.doi.org/10.1038/ncomms1147
http://www.ncbi.nlm.nih.gov/pubmed/21266999
http://dx.doi.org/10.1038/25059
http://dx.doi.org/10.1063/1.2355016
http://dx.doi.org/10.1103/PhysRevA.66.052303
http://dx.doi.org/10.1103/PhysRevX.5.041037
http://www.ncbi.nlm.nih.gov/pubmed/27057422
http://dx.doi.org/10.1103/PhysRevA.88.042324
http://dx.doi.org/10.1103/PhysRevA.83.054306
http://dx.doi.org/10.1103/PhysRevA.81.042309
http://dx.doi.org/10.1126/science.1152261
http://www.ncbi.nlm.nih.gov/pubmed/18292335
http://dx.doi.org/10.1103/PhysRevLett.102.083601
http://www.ncbi.nlm.nih.gov/pubmed/19257737
http://dx.doi.org/10.1007/BF02395705
http://dx.doi.org/10.1103/PhysRevA.31.3761
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model
	Monitoring the Atom–Cavity System by Driven the Cavity Mode
	Monitoring the Atom–Cavity System by Driven the Single Atom
	Transfer of Entanglement between Two Atoms and Two Modes
	Conclusions
	References

