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Abstract: The usual Poisson bracket {A, B} can be identified with the so-called Moyal bracket
{A, B}M for larger classes of symbols than was previously thought, provided that one uses the
Born–Jordan quantization rule instead of the better known Weyl correspondence. We apply our
results to a generalized version of Ehrenfest’s theorem on the time evolution of averages of operators.
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1. Introduction

A famous theorem from quantum statistical mechanics says that the evolution of the quantum
averages with respect to a state ρ̂ of a quantum observable Â under a Hamiltonian evolution obeys the
generalized Ehrenfest equation (Messiah [1])

d
dt
〈Â〉 = 1

ih̄
〈[Â, Ĥ]〉. (1)

If we were able to write the commutator as a quantization of the Poisson bracket {A, H} of the
classical observables corresponding to Â and Ĥ by the Weyl correspondence, then we could rewrite
Equation (1) as

d
dt
〈Â〉 =

∫
{A, H}(x, p)ρ(x, p, t)dpdx (2)

where ρ(x, p, t) is the Wigner distribution of the state ρ̂ at time t. This equality is, however, not true
in general. In fact, it follows from a classical “no-go” result of Groenewold and van Hove that the
Dirac correspondence

{A, H} ←→ 1
ih̄
〈[Â, Ĥ]〉 (3)

does not hold unless A and H are quadratic polynomials in the x, p variables; Equation (2) has to be
replaced with

d
dt
〈Â〉 =

∫
{A, H}M(x, p)ρ(x, p, t)dpdx (4)

where {A, H}M is the so-called “Moyal bracket”. It was only recently recognized [2,3] that the Dirac
correspondence, Equation (3), however, holds for a large class of observables provided that we use
the Born–Jordan (BJ) quantization scheme instead of the usual Weyl quantization (this was already

Quantum Rep. 2019, 1, 71–81; doi:10.3390/quantum1010008 www.mdpi.com/journal/quantumrep

http://www.mdpi.com/journal/quantumrep
http://www.mdpi.com
http://www.mdpi.com/2624-960X/1/1/8?type=check_update&version=1
http://dx.doi.org/10.3390/quantum1010008
http://www.mdpi.com/journal/quantumrep


Quantum Rep. 2019, 1 72

noticed but not fully developed by Kauffmann [4] a few years ago). For instance (see Proposition 4
below), for all integers m, n ≥ 0 we have the exact correspondence

{xm, pn} BJ←→ 1
ih̄
[x̂m, p̂n]. (5)

Equation (5) is characteristic of BJ quantization as shown in [3]. We emphasize that this fact is
not related in any way to Groenewold’s and van Hove’s result because the latter does not preclude
quantizations satisfying Equation (5).

The main result we will prove in this paper is the following (Proposition 6): Let ρ(z, t) be the
Wigner distribution at time t and let Â be a quantum observable obtained by any quantization
procedure from a classical observable (symbol) of the type A(x, p) = S(x) + V(p) with S and V
smooth functions of polynomial growth. Then the time-evolution of the quantum average 〈Â〉qu,t

obeys the equation
d
dt
〈Â〉qu,t =

∫
{A, H}(z)ρ(z, t)d2nz. (6)

We also mention that Bonet-Luz and Tronci have studied, in [5], Ehrenfest expectation values
from a dynamical and geometric point of view focusing on Gaussian states. It would certainly be
interesting to develop these techniques using the results in the present paper.

2. The Moyal Star Product

Let Â and B̂ be two operators with respective Weyl symbols A and B: Â = OpW(A) and
B̂ = OpW(B). Assuming that the product Ĉ = ÂB̂ exists we have Ĉ = OpW(C) with

C(z) =
(

1
4πh̄

)2n ∫∫
e

i
2h̄ σ(z′ ,z′′)A(z + 1

2 z′)B(z− 1
2 z′′)d2nz′d2nz′′; (7)

this is “Weyl’s product rule”. It is customary in quantum mechanical texts to say that the Weyl symbol
c is the “Moyal product” [6] (or “star-product”) of A and B and to write c = A ?h̄ B. The Moyal bracket
of two symbols A and B is defined (when it exists) by

{A, B}M =
1
ih̄
(A ?h̄ B− B ?h̄ A) (8)

which is the quantum analogue of the usual Poisson bracket

{A, B} = ∑
|α|=1

∂α
x A∂α

pB− ∂α
p A∂α

xB.

The properties of the Moyal product are well documented; we begin with Folland ([7], §39),
who studies the case where the symbols A and B belong to the Hörmander class Sm

ρ,δ(R
2n) with ρ > δ.

We will use here more precise results creditable to Voros [8,9] and Estrada et al. [10]. Before we state
them let us introduce the following symbol classes:

• OM(R2n) is the space of all C∞ functions A : R2n −→ C such that for every α ∈ Nn there exist
Cα > 0 and mα ∈ R such that |∂α

z A(z)| ≤ Cα(1 + |z|)mα ;
• OC(R2n) is the space of all C∞ functions A : R2n −→ C such that there exists m ∈ R such that for

every α ∈ Nn there exist Cα > 0 such that |∂α
z A(z)| ≤ Cα(1 + |z|)m;

• Γm
ρ (R2n) is the Shubin class [11]: A ∈ Γm

ρ (R2n) (ρ ≥ 0) if |∂α
z A(z)| ≤ Cα(1 + |z|)m−ρ|α|; it is

sometimes called the “GLS symbol class” in the older literature.

We have the inclusions

S(R2n) ⊂ Γm
ρ (R2n) ⊂ OC(R2n) ⊂ OM(R2n) ⊂ S ′(R2n). (9)
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For α = (α1, ..., αn) ∈ Nn, we write ∂α
z = ∂α1

z1 · · · ∂
α2n
z2n and set

∂̂α
z = (−1)|α|(∂α1

zn+1 · · · ∂
αn
z2n

)(∂
αn+1
z1 · · · ∂α2n

zn ).

With this notation we have (Estrada et al. [10]):

Proposition 1. Let A ∈ OM(R2n) and B ∈ OC(R2n) (or vice versa). For every z = (z1, ..., z2n) ∈ R2n and
N ∈ N we have the pointwise asymptotic expansion

(A ?h̄ B)(z) =
|α|=N

∑
|α|=0

(
ih̄
2

)|α| 1
α!

∂α
z A(z)∂̂α

z B(z) + O(h̄N+1) (10)

for h̄→ 0. The Moyal bracket has the expansion

{A, B}M =
|α|=N

∑
|α|=1

(
ih̄
2

)|α| 1
α!

[
∂α

z A(z)∂̂α
z B(z)− ∂α

z B(z)∂̂α
z A(z)

]
+ O(h̄N+1) (11)

In more general cases (when, say, A ∈ S(R2n) and B ∈ S ′(R2n)) the expansions above hold in the
distributional sense, that is 〈A ?h̄ B, c〉 = 〈SN , c〉+O(h̄N+1) for every c ∈ S(R2n) where SN is the sum
in the right-hand side of Equation (10). If h̄ = 0, we have A ?0 B = AB, the ordinary product of the
symbols A and B. Expansion to the second order yields the formulas

(A ?h̄ B)(z) = A(z)B(z) +
ih̄
2
{A, B}(z) + O(h̄2) (12)

{A, B}M(z) = {A, B}(z) + O(h̄2). (13)

Moreover, if A or B is a polynomial, the sum in Equation (10) is finite, and is exactly equal to
A ?h̄ B.

3. Born–Jordan Quantization

Consider first the case of monomials xr ps (we are working with n = 1 here). We denote by x̂ and
p̂ any operators on S(Rn) satisfying the commutation relation [x̂, p̂] = ih̄. In the Weyl case we have

OpW(xr ps) =
1
2r

r

∑
k=0

(
r
k

)
x̂k p̂s x̂r−k.

The following is a particular case, taking τ = 1
2 , of Shubin’s [11] τ-odering:

Opτ(xr ps) =
r

∑
k=0

(
r
k

)
τk(1− τ)r−k x̂k p̂s x̂r−k.

Integrating both sides of this equality from 0 to 1 with respect to the parameter τ, we get, using the
properties of the beta function,

OpBJ(xr ps) =
1

r + 1

r

∑
k=0

x̂k p̂s x̂r−k, (14)

which is Born and Jordan’s quantization rule [12] for monomials.
Suppose now A is an arbitrary symbol, we assume that A ∈ S(R2n) so we can avoid discussing

convergence problems at this point. The Weyl operator Â = OpW(A) is explicitly given by

Â =
(

1
2πh̄

)n ∫
FA(z0)M̂(z0)d2nz0 (15)
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where F is the Fourier transform and M̂(z0) is the operator defined, for z0 = (x0, p0), by

M̂(x0, p0) = e
i
h̄ (x0 x̂+p0 p̂). (16)

One verifies by a direct calculation (Cohen [13]) that the action of this operator on ψ ∈ S(Rn) is
explicitly given by

M̂(x0, p0)ψ(x) = e
i
h̄ (x0x+ 1

2 x0 p0)ψ(x + p0). (17)

Introducing the τ-parametrized operators (τ ∈ R)

M̂τ(x0, p0) = e
i

2h̄ (2τ−1)p0x0 M̂(x0, p0), (18)

the Shubin τ-operator Âτ = Opτ(A) [11,14] is defined by

Âτ =
(

1
2πh̄

)n ∫
FA(z0)M̂τ(z0)d2nz0 (19)

(remark that Â1/2 = OpW(A)). Averaging, as in the monomial case, over τ ∈ [0, 1], we define the
Born–Jordan operator Â = OpBJ(A) by

Â = OpBJ(A) =
∫ 1

0
Âτdτ. (20)

Observing that ∫ 1

0
e

i
2h̄ (2τ−1)pxdτ = sinc

( px
2h̄

)
= Φ(z)

where sinc t = (sin t)/t if t 6= 0 and sinc 0 = 1, this definition becomes, in view of Equation (19),

OpBJ(A) =
(

1
2πh̄

)n ∫
FA(z)Φ(z)M̂(z)d2nz.

Proposition 2. We have F−1Φ ∈ S(R2n) and

OpBJ(A) = (2πh̄)−n OpW(A ∗ F−1Φ) (21)

Proof. We recall the convolution formulas

F(A ∗ B) = (2πh̄)n(FA)(FB) , F(AB) = (2πh̄)−n(FA ∗ FB). (22)

We have Φ ∈ C0(R2n)∩ L∞(R2n), hence FΦ and F−1Φ exist in the sense of tempered distributions.
Equation (21) follows from the first formula, Equation (22): We have

(FA)Φ = (FA)F(F−1Φ) = (2πh̄)−nF(A ∗ F−1Φ)

and hence
OpBJ(A) =

(
1

2πh̄

)2n ∫
F(A ∗ F−1Φ)(z)M̂(z)d2nz.

Let ψ ∈ S(Rn) ⊂ L2(Rn) be normalized: ||ψ||L2 = 1. Let A ∈ OM(R2n) and Â = Op(A) the
operator associated to A by some quantization procedure (see next section). The number

〈Â〉 =
∫

Âψ(x)ψ(x)dnx
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is by definition the average (or expectation value) of Â (in the “state ψ”). It turns out that 〈Â〉 can be
calculated in the phase space formalism using both Weyl quantization and Born–Jordan quantization.
We denote by Wψ the Wigner transform of ψ:

Wψ(x, p) =
(

1
2πh̄

)n ∫
e−

i
h̄ pyψ(x + 1

2 y)ψ(x− 1
2 y)dny. (23)

Proposition 3. We have

〈OpW(A)〉 =
∫

A(z)Wψ(z)d2nz (24)

〈OpBJ(A)〉 =
∫

A(z)WΦψ(z)d2nz (25)

where WΦψ is the quasi-distribution defined by

WΦψ = (2πh̄)−nWψ ∗ F−1Φ. (26)

Proof. Equation (24) is well-known (it is sometimes called the fundamental relation between Weyl
pseudodifferential calculus and the Wigner formalism, see [13–16]). Equation (25) follows using
Equation (21) (cf. [14] Ch. 10, p. 152): We have, using Equation (24),

〈OpBJ(A)〉 = (2πh̄)−n〈OpW(A ∗ F−1Φ)〉

= (2πh̄)−n
∫
(A ∗ F−1Φ)(z)Wψ(z)d2nz,

that is, using the Plancherel formula and Equation (22) and recalling that Wψ is real,

〈OpBJ(A)〉 = (2πh̄)−n
∫

F(A ∗ F−1Φ)(z)FWψ(z)d2nz

=
∫

FA(z)F(F−1Φ)(z)FWψ(z)d2nz

= (2πh̄)−n
∫

FA(z)(F−1Φ ∗Wψ)(z)d2nz

which is Equation (25).

That WΦψ is a quasi-distribution [13,17] is clear: (i) WΦψ is real because Wψ is real and so
is F−1Φ (since Φ(−z) = Φ(z)); (ii) WΦψ is normalized Wψ ∈ L1(Rn) and ||Wψ||L1 = 1; then,
using Equation (22), ∫

WΦψ(z)d2nz = (2πh̄)−n
∫
(Wψ ∗ F−1Φ)(z)d2nz

= F(Wψ ∗ F−1Φ)(0)

= (2πh̄)nFWψ(0)Φ(0) = 1,

since (2πh̄)nFWψ(0) = ||Wψ||L1 = 1 and Φ(0) = 1; (iii) WΦψ satisfies the marginal conditions if
ψ, Fψ ∈ L2(Rn) ∩ L1(Rn):∫

WΦψ(z)dn p = |ψ(x)|2 ,
∫

WΦψ(z)dnx = |Fψ(p)|2 (27)

(see [14,17]). The quasi-distribution WΦψ is a particular case of the so-called Cohen class [13,14,17,18],
whose elements are characterized by Galilean invariance.
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4. The Dirac Correspondence

Let us call “quantization rule” any pseudo-differential calculus

Op : S ′(R2n) −→ L(S(Rn),S ′(Rn)).

having the following properties:

(Q1) We have [Op(xj), Op(pk)] = ih̄δjk for 1 ≤ j, k ≤ n;
(Q2) Op(1) = Id (the identity operator on Rn);
(Q3) When A is real, Op(A) is a symmetric operator defined on S(Rn);
(Q4) For U, T ∈ S ′(Rn), we have Op(U ⊗ Id)ψ = Uψ and Op(Id ⊗ T)ψ = F−1(TFψ).

We will write (Q4) as Op(U ⊗ Id) = U(x̂) and Op(Id ⊗ T) = T( p̂). Both Weyl and Born–Jordan
quantization satisfy these axioms.

The set of Axioms (Q1)–(Q4) is by no means the only possibility for defining a “quantization”;
neither are these axioms minimal. Other definitions abound in the literature: See Twareque Ali and
Englis [19] for a detailed discussion of the compatibility of various sets of quantization axioms.

In [20], the physicist Dirac suggested that to the Poisson bracket {A, B} should correspond, under
quantization, the commutator [Â, B̂] = ÂB̂− B̂Â (up to a constant). A celebrated “no-go” result, due to
Groenewold [21] and improved by van Hove [22,23], however, implies that there exists no quantization
Op such that the correspondence

Op({A, B}) = 1
ih̄
[Op(A), Op(B)] (28)

holds for general symbols A and B. They showed, in fact, that Equation (28) cannot hold if A and B
are polynomials in xj, pk of degree ≥ 2. In fact, let P(2n) be the Poisson algebra of all polynomials
on R2n. Then there exists no quantization Op satisfying Equation (28) outside the particular case of
the maximal sub-algebra P2(2n) of polynomials of degree at most 2. We refer to Gotay et al. [24] for
a comprehensive analysis of obstruction results in quantization. Charles and Chernoff (see [25,26])
have, moreover, proven that there exists no quantization satisfying Equation (28) and such that
Op(xj) = xj, Op(pj) = −ih̄∂/∂xj (and hence, a fortiori, Axiom (Q4)). It has, however, been shown
in [2,3] that the Dirac correspondence holds for a vast class of symbols when one uses the Born–Jordan
quantization. Let us begin with an elementary result which already contains the main idea:

Proposition 4. Let r and s be integers ≥ 0. We have [x̂j
r, p̂k

s] = 0 for j 6= k and

[x̂j
r, p̂j

s] = ih̄ OpBJ({xr
j , ps

j}). (29)

Proof. The case j 6= k is trivial. Assume j = k. One easily proves by induction on r and s and by
repeated use of the relations [x̂j, p̂j] = ih̄ that

[x̂j
r+1, p̂j

s+1] = (s + 1)ih̄
r

∑
k=0

x̂j
r−k p̂j

s x̂j
k. (30)

Equation (14), defining the Born–Jordan quantization of xj,r ps
j can hence be rewritten

OpBJ(xr
j ps

j ) =
1

ih̄(r + 1)(s + 1)
[x̂j

r+1, p̂j
s+1]. (31)

On the other hand, we have

{xr+1
j , ps+1

j } = (r + 1)(s + 1)xr
j ps

j , (32)
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hence Equation (29).

More generally, Proposition 5 was proven in [2,3].

Proposition 5. Let the symbols A, B ∈ OM(R2n) be of the type

A(x, p) = S(p) + U(x) , B(x, p) = T(p) + V(x) (33)

and set Â = S( p̂) + U(x̂), Â = T( p̂) + V(x̂). We have

OpBJ({A, B}) = 1
ih̄
[Â, B̂]. (34)

Note that the condition A, B ∈ OM(R2n) holds when f and g belong to the space OM(Rn) of all
C∞ functions on Rn such that |∂α

x f (x)| ≤ Cα(1 + |x|)mα ; this is in particular the case when A and B are
physical Hamiltonians of the type “kinetic energy 1

2 p2 plus potential U(x)” as soon as the derivatives
∂α

xU(x) are polynomially bounded. In addition, note that the Weyl and Born–Jordan quantizations
of symbols of the type A = S + U are identical since we have in both cases Ŝ = S( p̂) and Û = U(x̂);
the distinction between both quantizations only appears when one passes to the commutator of two
such Hamiltonians, since we have

[Ŝ + Û, T̂ + V̂] = [Ŝ, V̂] + [Û, T̂]

and, by Proposition 5,

OpBJ({S, V}) = 1
ih̄
[Ŝ, V̂] , OpBJ({U, T}) = 1

ih̄
[Û, T̂].

5. Ehrenfest’s Theorem: Schrödinger Picture

Let A ∈ OM(R2n) be real; interpreting A as a “classical observable”, its average (or expectation
value) with respect to a probability density ρ0 on R2n is, when defined,

〈A〉cl =
∫

A(z)ρ0(z)d2nz. (35)

The time evolution of 〈A〉cl under the action of a Hamiltonian flow ( f H
t ) is given by

〈A〉cl,t =
∫

A(z)ρ(z, t)d2nz (36)

where ρ(z, t) is a solution of Liouville’s equation

∂ρ

∂t
= {H, ρ} , ρ(·, 0) = ρ0. (37)

It satisfies the equation (Royer [27])

d
dt
〈A〉cl,t =

∫
{A, H}(z)ρ(z, t)d2nz = 〈{A, H}〉cl,t. (38)

In the quantum case one proceeds as follows: Let Â = OpW(A) be obtained from A by Weyl
quantization, and ρ̂0 be a density operator (i.e., a nonnegative operator with trace one); by definition

〈Â〉Wqu =
∫

A(z)ρ0(z)d2nz (39)
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where ρ0 is the Wigner distribution of ρ̂0, that is ρ̂0 = (2πh̄)n OpW(ρ0). Replacing Liouville’s
Equation (37) with the Wigner equation

∂ρ

∂t
= {H, ρ}M , ρ(·, 0) = ρ0 (40)

we have the analogue of the classical Equation (36)

〈Â〉Wqu,t =
∫

A(z)ρ(z, t)d2nz. (41)

One shows (Royer [27], Messiah [1], V-19) that ρ̂ satisfies von Neumann’s equation

∂ρ̂

∂t
=

1
ih̄
[Ĥ, ρ̂] , ρ̂(0) = ρ̂0 (42)

and that the time evolution of the quantum average 〈Â〉qu is given by

d
dt
〈Â〉Wqu,t =

1
ih̄
〈[Â, Ĥ]〉qu,t.

Now comes the crucial point. We have, in view of Equation (7),

d
dt
〈Â〉Wqu,t =

∫
{A, H}M(z)ρ(z, t)d2nz,

where {A, H}M is the Moyal bracket of A and H. However, in the Born–Jordan case we have a stronger
result. Let us define the distribution

ρΦ = (2πh̄)−nρ ∗ F−1Φ, (43)

where F is the Fourier transform on R2n. Since a density operator is a convex sum of orthogonal
projections on normalized vectors ψj ∈ L2(Rn), we can always write

ρ = ∑
j

αjWψj , αj > 0 , ∑
j

αj = 1,

hence, recalling Equation (26) of WΦψ

ρΦ = ∑
j

αjWΦψj , αj > 0 , ∑
j

αj = 1.

It follows that the function ρΦ is real and normalized to one, as is ρ.

Proposition 6. Let H and A both be of the type of Equation (33), that is H = Id ⊗ T + U ⊗ Id and A =

Id ⊗ S + V ⊗ Id, where S, T, U, V are smooth polynomially bounded functions. The average

〈Â〉BJ
qu,t =

∫
A(z)ρΦ(z, t)d2nz

satisfies the time-evolution equation

d
dt
〈Â〉BJ

qu,t =
∫
{A, H}(z)ρΦ(z, t)d2nz (44)

provided that {A, H}ρ ∈ L1(R2n).
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Proof. This immediately follows from Equation (34) in Proposition 5 together with Equation (25) in
Proposition 3.

It immediately follows that the average of the moments are given, in the case n = 1, by the relations

d
dt
〈x̂k〉qu,t = k

∫
xk−1∂pH(z)ρΦ(z, t)d2nz (45)

d
dt
〈 p̂k〉qu,t = −k

∫
pk−1∂x H(z)ρΦ(z, t)d2nz (46)

for every k ∈ N. Let us illustrate this on a simple example; consider the quartic oscillator Hamiltonian

H =
1
2

p2 + λx4.

Choose first A = xk (k ≥ 1); we have {A, H} = kxk−1 p, hence Equation (44) yields

d
dt
〈x̂k〉qu,t = k〈x̂k−1 p̂〉qu,t

and this result is in perfect accord with the prediction obtained by Weyl theory since we have here

{A, H}M = kxk−1 p = {A, H}.

Choose now A = pk. Then {A, H} = −4λkx3 pk−1 and hence

d
dt
〈 p̂k〉qu,t = −4λk〈x̂3 p̂k−1〉qu,t.

This relation is different from that predicted by Weyl theory; in the latter we have

{A, H}M = −4λkx3 pk−1 + lower order terms 6= {A, H}.

6. Ehrenfest’s Theorem: Heisenberg Picture

The approach to Ehrenfest’s theorem becomes much simpler if one uses the Heisenberg picture.
In the latter the state is fixed, but the quantum observables vary in time. Defining Â(t) = (ÛH

t )∗ ÂÛH
t

where ÛH
t = e−iĤt/h̄ is the evolution operator determined by the Hamiltonian operator Ĥ, we have

d
dt

Â(t) = − 1
ih̄
[Ĥ, Â(t)].

Taking the average with respect to an arbitrary state ρ̂ we get

〈 d
dt

Â(t)〉qu = − 1
ih̄
〈[Ĥ, Â(t)]〉qu.

Assuming again that Â = S( p̂) + U(x̂), Â = T( p̂) + V(x̂) the commutator [Ĥ, Â(t)] is the
Born–Jordan quantization of the Poisson bracket {H, A} so that we have

d
dt

OpBJ(A(t)) = − 1
ih̄

OpBJ({H, A}).

7. Comments and Discussion

Expectation values are the objects in quantum physics that can be compared with the results
of measurements [28] (this should be contrasted with the fact that the state function ψ (or ρ) is
not directly observable). It would perhaps be possible to test the physical validity of our results
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experimentally; one could consider for this purpose the Hamiltonians which occur in the study
of spreading of a wavepacket passing through a nonlinear optical medium (“Kerr medium” [28] );
such Hamiltonians are no longer of the classical type 1

2 p2 + U but contain quartic terms p4 + x4; our
results thus immediately apply to them. There is also a strong obvious relation between the Moyal
bracket and deformation quantization in flat space [29,30]; in [31–33] we have hinted at this relation
using the notion of Bopp calculus, introduced by one of us in [34]. It would certainly be useful to
develop these results from the point of view of the results presented here.
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