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Abstract: We show that by using the quantum orthogonal functions invariant, we found a solution to
coupled time-dependent harmonic oscillators where all the time-dependent frequencies are arbitrary.
This system may be found in many applications such as nonlinear and quantum physics, biophysics,
molecular chemistry, and cosmology. We solve the time-dependent coupled harmonic oscillators by
transforming the Hamiltonian of the interaction using a set of unitary operators. In passing, we show
that N time-dependent and coupled oscillators have a generalized orthogonal functions invariant from
which we can write a Ermakov–Lewis invariant.
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1. Introduction

The harmonic oscillator is one of the most studied systems in physics. Because for any potential,
its minimums may always be approximated as quadratic functions, the harmonic oscillator is a cornerstone
of physics, in general and quantum mechanics in particular. Time-dependent harmonic oscillators arise in
quantum mechanical systems such as optical trapping of different objects like atoms and molecules [1,
2], living cells, including viruses and bacteria [3,4]. Extensions to coupled time-dependent harmonic
oscillators arise in several quantum mechanical problems, such as ion-laser interactions [1], quantized
fields propagating through dielectric media [5], shortcuts to adiabaticity [6,7], the Casimir effect [8,9], as a
toy model to study aspects of the final stages of black-hole evaporation [10], and their Schmidt modes in
the study of quantum entanglement [11].

The existence of invariants for time-dependent Hamiltonians in mechanical systems has attracted
considerable interest over the years [12]. Such constants of motion are of central importance in the study
of dynamical systems. A variety of methods to obtain invariants of systems with one degree of freedom
have been developed [13–15]. In particular, the time-dependent harmonic oscillator (TDHO) has received
much attention because of its applications in several areas of physics [16]. Among the many procedures
developed to obtain invariants, a derivation for the classical TDHO has been presented, which leads
directly to the orthogonal functions invariant or to the Lewis invariant [17]. More recently, invariant
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techniques have been put forward to study approximate solutions to time-dependent problems involving
trapped particles [18].

The extension of the theory of invariants to the quantum realm has evolved in at least two directions.
On the one hand, the one-dimensional time-independent Schrödinger equation is equivalent to the
TDHO equation. The translation between equations requires a constant shift of the potential V (x) with
the appropriate scaling for the initially time-dependent parameter Ω2(t) → 2m (E −V (x)) as well as
an exchange of temporal and spatial variables. The results obtained in the classical invariant theory
are thus applicable for spatially arbitrary time-independent potentials in stationary one-dimensional
quantum theory. Using these techniques, how to define coherent states associated to the TDHO [19] and
amplitude-phase invariants [20] has been shown. On the other hand, quantum mechanical expressions of
the classical invariant operators may be used to obtain exact solutions to the time-dependent Schrödinger
equation, such that the classical Hamiltonian is translated into a quantum Hamiltonian by considering the
canonical coordinate and momentum as time-independent operators obeying the commutator [q̂, p̂] = i
(we set h̄ = 1 throughout the manuscript). The quantum treatment then becomes a 1 + 1 dimensional
problem where the wave function depends on a spatial as well as temporal variable. Exact invariants have
been derived to tackle a limited class of potentials [21]. The most relevant cases are the quadratic spatial
dependence that leads to the quantum mechanical time-dependent harmonic oscillator (QM-TDHO) and
the linear potential [22].

The simple extension to two coupled time-dependent harmonic oscillators has been considered and
its solution presented by Macedo and Guedes for a very limited case of time-dependent functions [23].
Duncan and del Campo [7] solved the time- dependent coupled harmonic oscillator by considering the
time-dependent coefficients as being, effectively, time independent. The Ermakov–Lewis invariant has also
been proposed for systems of coupled harmonic oscillators [24].

The QM-TDHO has been solved under various scenarios, such as time-dependent mass [25,26] and
damping [27]. Several techniques have been used to solve the corresponding time-dependent Schrödinger
equation, such as the time–space re-scaling, transformation methods, and the time-dependent invariant
method [28]. The constant of motion that has been invoked in the latter procedure is the well-known Lewis
invariant [29]. Applications of invariant methods have been used in adiabatic regimes [30] for the control
of quantum noise [31] and the propagation of light in waveguide arrays [32–35].

The main purpose of the present contribution is to show a method to solve the Schrödinger equation
for a pair of position coupled time-dependent harmonic oscillators when all the time-dependent functions
involved are completely arbitrary, i.e., they are not related to each other. Although the main content of this
contribution is the solution of the coupled time-dependent harmonic oscillators, we take the opportunity
to translate the invariant recently introduced by Thylwe [24] for N classical coupled harmonic oscillators
to the quantum realm.

Summarily, to the best of our knowledge, we present here for the first time, the solution to the
problem of two coupled harmonic oscillators with completely arbitrary time-dependent parameters.
Former solutions were given only for time-dependent parameters that were related among themselves [23]
or were considered constant by using approximate adiabatic techniques [7].

In the following sections, through a series of unitary transformations, some of them time-dependent,
we manage to take the Hamiltonian for the two coupled harmonic oscillators to an integrable form. We do
so by generalizing some operator methods for the single time-dependent quantum harmonic oscillator
introduced in reference [36].
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2. Ermakov–Lewis Invariant for N Coupled Time-Dependent Harmonic Oscillators

Consider the system of differential equations for N time-dependent coupled classical oscillators

ü1 + Ω2
1(t)u1 = −η12(t)u2

ü2 + Ω2
2(t)u2 = −η12(t)u1 − η23(t)u3

ü3 + Ω2
3(t)u3 = −η23(t)u2 − η34(t)u4

...

üN + Ω2
N(t)uN = −ηN−1N(t)uN−1,

(1)

with the associated quantum Hamiltonian

ĤN(t) =
1
2

(
p̂2

1 + Ω2
1(t)x̂2

1

)
+

1
2

(
p̂2

2 + Ω2
2(t)x̂2

2

)
+ · · ·+ 1

2

(
p̂2

N + Ω2
N(t)x̂2

N

)
+ η12(t)x̂1 x̂2 + η23(t)x̂2 x̂3 + · · ·+ ηN−1N(t)x̂N−1 x̂N .

(2)

A single time-dependent harmonic oscillator has quantum orthogonal functions invariant [36],

Ĝ1 = u1(t) p̂1 − u̇1(t)x̂1, (3)

where u1(t) is the solution of the equation ü1 + Ω2
1(t)u1 = 0. This invariant may be generalized to N

coupled time-dependent harmonic oscillators,

ĜN = u1(t) p̂1 − u̇1(t)x̂1 + u2(t) p̂2 − u̇2(t)x̂2 + · · ·+ uN(t) p̂N − u̇N(t)x̂N , (4)

where the u’s satisfy (1), such that

∂ĜN
∂t

= u̇1(t) p̂1 − ü1(t)x̂1 + u̇2(t) p̂2 − ü2(t)x̂2 + · · ·+ u̇N(t) p̂N − üN(t)x̂N . (5)

On the other hand, the commutator between ĜN and ĤN , is

i[ĜN , ĤN ] = Ω2
1(t)u1 x̂1 + u̇1(t) p̂1 + η12u1 x̂2

+ Ω2
2(t)u2 x̂2 + u̇2(t) p̂2 + η12u2 x̂1 + η23u2 x̂3

...

+ Ω2
N(t)uN x̂N + u̇N(t) p̂N + ηN−1NuN x̂N−1,

(6)

and by subtracting the above equations, we obtain

dĜN
dt

=
∂ĜN

∂t
− i[ĜN , ĤN ] = −[Ω2

1(t)u1 + ü1]x̂1 − η12u1 x̂2

− [Ω2
2(t)u2 + ü2]x̂2 − η12u2 x̂1 − η23u2 x̂3

...

− [Ω2
N(t)uN + üN ]x̂N − ηN−1NuN x̂N−1.

(7)
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Rearranging the above expression:

dĜN
dt

=
∂ĜN

∂t
− i[ĜN , ĤN ] = −[Ω2

1(t)u1 + ü1 + η12(t)u2]x̂1

− [Ω2
2(t)u2 + ü2 + η12(t)u1 + η23(t)u3]x̂2

...

− [Ω2
N(t)uN + üN + ηN−1N(t)uN−1]x̂N ,

(8)

so that (1) gives zero shows that ĜN is indeed an invariant.
By writing, for a single harmonic oscillator, the amplitude u1 = ρ1 exp(−i

∫
dt/ρ2

1), where ρ1 obeys
the Ermakov equation [36]

ρ̈1 + Ω2
1(t)ρ1 =

1
ρ3

1
, (9)

the so-called Ermakov–Lewis invariant may be obtained from Ĝ1 as

Î1 = Ĝ1Ĝ†
1 =

1
2

(
x̂2

1
ρ2

1
+ (ρ1 p̂1 − ρ̇1 x̂1)

2

)
, (10)

so that we may write the Ermakov–Lewis invariant for the N coupled time-dependent harmonic oscillators
as

ÎN = ĜNĜ†
N . (11)

The Classical Invariant

Quantization procedures allow us to associate operators to observables. By doing the opposite
procedure, i.e., associating c-numbers to momentum and position operators, p̂→ v̇ and x̂ → v, respectively,
we may find the classical invariant from (4)

GN = u1(t)v̇1(t)− u̇1(t)v1(t) + u2(t)v̇2(t)− u̇2(t)v2(t) + · · ·+ uN(t)v̇N(t)− u̇N(t)vN(t), (12)

where the u’s and v’s are linearly independent solutions of (1).

3. Two Coupled Time-Dependent Harmonic Oscillators

We consider the time-dependent Hamiltonian for the interacting oscillators (we set the masses as
equal to one, because, as Macedo and Guedes showed [23], a simple transformation may be applied that
makes the assumption valid)

Ĥ(t) =
1
2

[
p̂2

x + p̂2
y + κx(t)x̂2 + κy(t)ŷ2

]
+ κ(t)(x̂− ŷ)2, (13)

with κ’s being the time-dependent spring parameters. By setting Ω2
x(t) = κx(t) + κ(t), Ω2

y(t) = κy(t) +
κ(t), and η(t) = −2κ(t), we end up with the x̂ŷ interaction Hamiltonian

Ĥ(t) =
1
2

[
p̂2

x + p̂2
y + Ω2

x(t)x̂2 + Ω2
y(t)ŷ

2
]
+ η(t)x̂ŷ. (14)

The classical equations of motion for the above Hamiltonian are

üx + Ω2
x(t)ux = −η(t)uy, üy + Ω2

y(t)uy = −η(t)ux, (15)
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where the quantum invariants of each coupled oscillator are [37]

Ĝx = (ux p̂x − x̂u̇x)−
∫

η(t)
(
ux ŷ− x̂uy

)
dt, (16)

and
Ĝy =

(
uy p̂y − ŷu̇y

)
−
∫

η(t)
(
uy x̂− ŷux

)
dt, (17)

since the total invariant must comply with

∂

∂t
(Ĝx + Ĝy)− i[Ĝx + Ĝy, Ĥ] = 0. (18)

We now consider the transformation [36]

T̂u = ei ln ux(t)
2 (x̂ p̂x+ p̂x x̂)e−i u̇x(t)

2ux(t)
x̂2

ei
ln uy(t)

2 (ŷ p̂y+ p̂y ŷ)e
−i

u̇y(t)
2uy(t)

ŷ2

(19)

that produces

T̂u x̂T̂†
u = ux x̂

T̂uŷT̂†
u = uyŷ

T̂u p̂x T̂†
u =

p̂x

ux
+ u̇x x̂,

T̂u p̂yT̂†
u =

p̂y

uy
+ u̇yŷ,

(20)

where u is the solution to the TDHO equation (15).
If we transform the wave function with the transformation above, i.e.,

|φu(t)〉 = T̂u|ψ(t)〉, (21)

the Schrödinger equation

i
∂|ψ(t)〉

∂t
= Ĥ(t)|ψ(t)〉 (22)

has to be rewritten. In order to do it, substitution in Equation (22) leads to

i
(

T̂†
u

∂|φu(t)〉
∂t

+
∂T̂†

u
∂t
|φu(t)〉

)
= Ĥ(t)T̂†

u |φu(t)〉. (23)

By noting that

∂T̂†
u

∂t
=

i
2

T̂†
u

[(
uxüx − u̇2

x

)
x̂2 − u̇x

ux
( p̂x x̂ + x̂ p̂x) +

(
uyüy − u̇2

y

)
ŷ2 −

u̇y

uy
( p̂yŷ + ŷ p̂y)

]
, (24)

or

i
∂|φu(t)〉

∂t
=

1
2

[
p̂2

x
u2

x
+
(

Ω2
xux + üx

)
ux x̂2 +

p̂2
y

u2
y
+
(

Ω2
yuy + üy

)
uyŷ2 + η(t)uxuy x̂ŷ

]
|φu(t)〉, (25)
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from (15), we may rewrite the Schrödinger equation as

i
∂|φu(t)〉

∂t
=

1
2

[
p̂2

x
u2

x
+

p̂2
y

u2
y
− η(t)uxuy (x̂− ŷ)2

]
|φu(t)〉. (26)

We now perform a second transformation, |φθ〉 = R̂θ |φu〉, with R̂θ = exp[iθ(x̂ p̂y − ŷ p̂x)]

i
∂|φθ〉

∂t
= Ĥθ(t)|φθ〉 (27)

such that the different operators are transformed according to

R̂θ x̂R̂†
θ = x̂ cos θ − ŷ sin θ,

R̂θ ŷR̂†
θ = ŷ cos θ + x̂ sin θ,

R̂θ p̂xR̂†
θ = p̂x cos θ − p̂y sin θ,

R̂θ p̂yR̂†
θ = p̂y cos θ + p̂x sin θ.

(28)

By setting θ = π/4 to arrive to the integrable equation

i
∂|φθ(t)〉

∂t
=

[
p̂2

x + p̂2
y

2µ(t)
+

p̂x p̂y

2ν(t)
+ λ(t)ŷ2

]
|φθ(t)〉, (29)

with

1
µ(t)

=
1

2u2
x
+

1
2u2

y
,

1
ν(t)

=
1

u2
y
− 1

u2
x

, λ(t) =
η(t)uxuy√

2
. (30)

Note that the Hamiltonian in Equation (29) shows that the operators involved in variable x̂ commute
as they are simple powers of p̂x, such that Equation (29) is readily solvable as this operator acts as
a c-number for the variable ŷ. Therefore, we have been able to split the Hamiltonian into two; a term that
is a free particle in x̂ (time-dependent) and a TDHO in x̂ with an extra term, damping, proportional to p̂x.

In order to convert the equation above to a more familiar form, we transform, with the unitary
operator D̂ = exp{iα(t) p̂y} exp{β(t)ŷ}, the above equation, namely |φD〉 = D̂ |φθ〉, and we obtain the
final and solvable form of the Hamiltonian

i
∂|φD(t)〉

∂t
=

[
p̂2

y

2µ(t)
+ λ(t)ŷ2 +

p̂2
x

2µ(t)
− β p̂x

2ν(t)
+ αβ̇ + λα2 +

β2

2µ

]
|φD(t)〉, (31)

where α and β are functions not only of time, but of the momentum operator p̂x, and obey the system of
differential equations

α̇ +
β

µ
− p̂x

2ν
= 0, β̇− 2λα = 0. (32)

We note that the Hamiltonian in Equation (31) has been separated in two parts: one of them is a
time-dependent harmonic oscillator that depends only on ŷ and p̂y (and powers of them) and therefore
there are Ermakov–Lewis methods to solve it; the other depends only on p̂x (and its powers) and therefore
is integrable [36]. In addition, within the framework of shortcuts to adiabaticity [6], Equation (32) provides
quick routes to obtain final results of slow adiabatic processes.
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Finally, it is worth mentioning how the different transformations act on wave functions. It is not
difficult to show that

R̂θφ (x, y) = φ

[
cos θx− sin θy

cos2 θ
, sin θx + cos θy

]
, (33)

where φ(x, y) is an arbitrary, but well behaved, function of x and y.
To study the action of the R̂θ operator over an arbitrary function F (x, y), we make

R̂θ = exp
[
iθ
(
x̂ p̂y − ŷ p̂x

)]
= T̂yŜxyT̂x, (34)

where

T̂y = exp
[
i tan θx̂ p̂y

]
,

Ŝxy = exp
{
−i ln [cos θ]

(
x̂ p̂x − ŷ p̂y

)}
T̂x = exp [−i tan θŷ p̂x] .

(35)

Note that the operator Ŝxy is a product of squeeze operators [38–42] in x and y. We can prove that as

T̂xF (x) = F [x− y tan θ] , T̂yG (y) = G [y + x tan θ] , (36)

and the action of the squeeze operators

exp (ir p̂x x̂) x = exp(2r)x, exp
(
ir p̂yŷ

)
y = exp(2r)y. (37)

4. Conclusions

We have shown that the quantum invariant for N-coupled time-dependent harmonic oscillators is
indeed constant for arbitrary restitutive oscillator time-dependent functions as well as the existence of
arbitrary time-dependent coupling between them. We have translated this result into its classical version.
In the case of the two oscillators, we have shown how to solve the Hamiltonian for arbitrary functions of
time, as formerly it had been solved only when the functions were related in specific ways [23]. We did it
by using the orthogonal functions invariant introduced in [36] which allowed us to split the Hamiltonian
in such a way that it was left to solve a single time-dependent harmonic oscillator, which is a well-known
problem [23,29].

The Ermakov–Lewis invariant for a single oscillator does not involve the time-dependent parameters
explicitly. This well-known fact is not fulfilled when each coupled oscillator is considered separately. The
quantum invariants Ĝx and Ĝy given by (16) and (17) involve the coupling variable η(t). However, the
Ermakov–Lewis invariant of the whole system, in this case, the two coupled oscillators, i.e., Ĝx + Ĝy,
no longer involves η(t). Therefore, the invariant of the complete system is again explicitly independent
of the time-varying parameters. This remark is also evinced for the N-coupled system. The invariant
for N-coupled oscillators (4), is the Ermakov invariant of the complete system, it is again explicitly
independent of any of the time-varying parameters.

We would like to stress that the key ingredient to our solution is the transformation given by Equation
(19) [36]. This mapping allowed us to eventually separate the coupled time-dependent Hamiltonian into
the form given in Equation (29). This expression is already integrable, as its Hamiltonian has the form
of a damped harmonic oscillator, because the operator p̂x and its powers behave as c-numbers in the
Hamiltonian of Equation (29).

To the best of our knowledge, this is the first time that the solution for the two coupled harmonic
oscillators Hamiltonian, with arbitrary time- dependent parameters, has been obtained.
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