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Abstract: Spatial confinements induce localization or delocalization on the electron density in atoms and
molecules, and the hydrogen atom is not the exception to these results. In previous works, this system
has been confined by an infinite and a finite potential where the wave-function exhibits an exact solution,
and, consequently, their Shannon entropies deliver exact results. In this article, the Shannon entropy in
configuration space is examined for the hydrogen atom submitted to four different potentials: (a) infinite
potential; (b) Coulomb plus harmonic oscillator; (c) constant potential; and (d) dielectric continuum.
For all these potentials, the Schrödinger equation admitted an exact analytic solution, and therefore the
corresponding electron density has a closed-form. From the study of these confinements, we observed
that the Shannon entropy in configuration space is a good indicator of localization and delocalization
of the electron density for ground and excited states of the hydrogen atom confined under these
circumstances. In particular, the confinement imposed by a parabolic potential induced characteristics
that were not presented for other confinements; for example, the kinetic energy exhibited oscillations
when the confinement radius is varied and such oscillations coincided with oscillations showed by the
Shannon entropy in configuration space. This result indicates that, when the kinetic energy is increased,
the Shannon entropy is decreased and vice versa.
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1. Introduction

The confined atom model consists of the application of an external potential over an atom. Typically,
the external potential is radial, and the atom is centered in a sphere of radius r0 [1,2]. This model has been
used to mimic the environment where an atom is immersed [1,3–6] or to test the quality of theoretical
models that provide the electronic structure of atomic systems [7,8]. For example, the performance of
exchange-correlation functionals has been tested when an atom is submitted to extreme conditions [9,10]
or sophisticate methods have been tested over atoms with a few electrons to deliver accurate total energies
or electron densities [11,12]. From these applications, unexpected results have been found for some
atoms confined by different potentials. For example, if the external potential is infinite (impenetrable
walls [13–16]) on the sphere surface and the radius r0 is reduced, then there are crossings among some
orbital energies. In this sense, some results have shown that for small r0 the orbital 4s is higher than the 3d
in a potassium atom presenting the electronic s− d transition, which is observed experimentally [17,18].
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Another exciting result observed in confined atoms is the delocalization of the electron density for atoms
confined by an external potential with a finite value (penetrable walls) over the sphere that defines
the confinement. For this case, when r0 is reduced, and the highest occupied orbital energy is close to
the value imposed by the finite potential, the wave-function, or electron density, starts to be dispersed
over the whole space, i.e., these quantities are delocalized [19]. For many-electron atoms, by using the
Hartree–Fock approximation, Rodriguez-Bautista et al. [20] proposed to the Shannon entropy [21–23] in
the configuration space

Sρ = −
∫

ρ(r)ln (ρ(r)) dr, (1)

as indicator to measure the delocalization of the electron density when penetrable walls confine
many-electron atoms. They found that such a delocalization is evidenced if the Shannon entropy change

∆Sρ = Sρ(r0)− S( f ree)
ρ (2)

is used. In this case, Sρ(r0) corresponds to the Shannon entropy of a confined atom and S( f ree)
ρ is related to

the f ree atom. They found that for confinements where the electron density is localized ∆Sρ < 0 and if
the electron density is delocalized ∆Sρ > 0. For impenetrable confinement, Sen found that the Shannon
entropy for many-electron atoms decreases when the confinement radius acquires small values [24], which
is consistent with results reported by Mukherjee and Roy [25,26] for the hydrogen atom confined by
impenetrable walls. For this kind of confinement, there is no doubt about the localization of the electron
density since the electrons do not have possibilities to escape. Conclusions obtained for many-electron
atoms coincide with those obtained by Aquino et al. [27] for the hydrogen atom. In fact, many features
observed for many-electron atoms are recovered by the hydrogen atom. Thus, the aim of this article is
the study of the Shannon entropy in configuration space for the hydrogen atom confined by different
confinements, not only confinements imposed by a constant or an infinite potential since in this article we
deal confinements imposed by a dielectric continuum and by an isotropic harmonic potentials.

2. Methodology

In atomic units (h̄ = 1, me = 1, and e = 1), the Schrödinger equation associated to the hydrogen atom
has the expression (

−1
2
∇2 + υ(r)

)
ψ(r) = ξψ(r), (3)

with the potential defined as

υ(r) =

{
− Z

r r < r0

vc(r) r ≥ r0
. (4)

In this definition, Z represents the atomic number, r0 is the radius of the cavity or confinement radius,
and vc(r) is the confinement potential. In this article, we consider four confinements defined as

vc(r) =


∞ impenetrable walls
1
2 ω2r2 isotropic harmonic oscillator

U0 finite walls

− Z
εr dielectric continuum

(5)
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U0 represents a constant potential, ω is the angular frequency of the oscillator and ε is the relative
permittivity of the corresponding dielectric. From these expressions, it is clear that the wave-function can
be analyzed as the product ψ(r) = R(r)Ym

` (θ, φ) and consequently the radial differential equation is[
−1

2
∂2

∂r2 −
1
r

∂

∂r
+

`(`+ 1)
2r2 + υ(r)

]
R(r) = ξR(r). (6)

The solution of this equation for the potentials considered in this article was obtained in similar way
to the procedure designed by Ley-Koo and Rubistein [28]. Thus, the solution must be represented in two
parts: Rin and Rout. For the internal part where the potential is Coulombic, the radial wave-function Rin(r)
has the expression

Rin(r) = Ar`P(r), (7)

with P(r)

P(r) =
∞

∑
i=0

ciri, (8)

and

ci+2 = − 2(Zci+1 + ξci)

(i + 2)(i + 2`+ 3)
. (9)

Starting with

c1 = − Z
`+ 1

c0, and c0 = 1. (10)

For the external region, each potential has associated its own solution. Naturally, for the infinite
potential, the solution is Rout(r) = 0. The solution for the external region is represented as Rprb(r),
Rfnt(r) and Rdlc(r) for the isotropic harmonic potential, finite potential, and dielectric continuum potential,
respectively.

For the confinement imposed by an isotropic harmonic oscillator potential, the solution is

Rprb(r) = Br`e−
1
2 ωr2

f (r), (11)

where f (r) must satisfy the differential equation[
r

∂2

∂r2 + 2
(
`+ 1−ωr2

) ∂

∂r
+ [2ξ −ω(2`+ 3)]r

]
f (r) = 0. (12)

Details for this solution will be published elsewhere since in this article we are interested only in the
corresponding electron density.

Ley-Koo and Rubinstein [28] gave the solution for the constant potential U0, which is

Rfnt(r) = Br−`−1e−
√

2(U0−ξ)r f (r), (13)
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and the corresponding differential equation for f (r) is[
r

∂2

∂r2 − 2
(
`+

√
2(U0 − ξ)r

)
∂

∂r
+ 2`

√
2(U0 − ξ)

]
f (r) = 0. (14)

Finally, for the dielectric continuum potential Martínez-Sánchez et al. [29] found that

Rdlc(r) = Br`e−
√
−2ξr f (r), (15)

in this case, f (r) must satisfy[
r

∂2

∂r2 + 2
(
`+ 1−

√
−2ξr

) ∂

∂r
+ 2

(
Z
ε0
− (`+ 1)

√
−2ξ

)]
f (r) = 0. (16)

The following boundary conditions

Rin(r)
∣∣∣
r=r0

= Rout(r)
∣∣∣
r=r0

, (17)

and

∂Rin(r)
∂r

∣∣∣∣
r=r0

=
∂Rout(r)

∂r

∣∣∣∣
r=r0

, (18)

assure continuity in the wave-function and its first derivative. In addition, these conditions connect r0 and
ξ. In fact, this is the way to obtain ξ if r0 is fixed; conversely, r0 can be obtained from a fixed ξ.

We have delineated the way to solve the Schrödinger equation for the confined hydrogen atom.
From here, it is possible to obtain the electron density and the Shannon entropy in configuration space.
For this purpose, we do use the spherical average of the electron density,

ρ̄(r) =
1

4π

∫
dΩρ(r), (19)

in the same way as Gadre et al. studied the Shannon entropy in f ree many-electron atoms [30].

3. Results

3.1. Free Hydrogen Atom

In this article, ∆Sρ is the central quantity to analyze for the confined hydrogen atom. For this reason,

S(free)
ρ is discussed in first instance. According to Equation (19), the spherical average of the electron

density for the f ree hydrogen atom is

ρ̄f(r) =
1

4π
|RHa

n` (r)|
2, (20)

where RHa
n` (r) are hydrogen-like wave-functions. The Shannon entropy for this case is

S(free)
ρ = ln(4π)− 2

[
ln
(

A(Z)
n`

)
− Z

n
〈r〉n` + `

∫
ρ̄f(r)ln(r)dr +

1
2

∫
ρ̄f(r)ln

(
h(Z)

n` (r)
)

dr
]

. (21)
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where A(Z)
n` is a normalization constant, 〈r〉n` is the expected value of the position

〈r〉n` =
n2

Z

[
1 +

1
2

(
1− `(`+ 1)

n2

)]
, (22)

and

h(Z)
n` (r) =

[
L(2`+1)

n−`−1

(
2Zr

n

)]2
. (23)

L(2`+1)
n−`−1 are the associated Laguerre polynomials. The two integrals of Equation (21) have no closed-form

solution [31]. For impenetrable walls, Jiao et al. reported only the first integral since they studied the
hydrogen atom under this confinement [31]. There are two important features to mention for the evaluation
of these integrals:

1. The first integral vanishes for s orbitals (` = 0).
2. The second integral does not contribute to the final result for orbitals that satisfy the relationship

n− `− 1 = 0 (no nodes in the wave-function).

The ground state for the f ree hydrogen atom satisfies both conditions and therefore allows an exact
analytical expression for the Shannon entropy [32],

S(free)
ρ(1s) = 3 + ln

( π

Z3

)
. (24)

For other states, numerical techniques are necessary to evaluate Equation (21). The Shannon entropy in
configuration space for some states of a f ree hydrogen-like atom is presented in Figure 1. In this figure, it is
evident how S(free)

ρ decreases when the atomic number Z acquires high values; in fact, this property exhibits
negative values for Z ≥ π1/3e, which is obtained from Equation (24). Besides, we expect localization of
the electron density for high values of Z, in this sense the electron density is confined for high values of Z.
This result is supported by the Shannon entropy in Figure 1. Thus, the smaller is S(free)

ρ , the bigger is the
localization. From Figure 1, we conclude that this result is valid for ground and excited states. This figure
is interesting since, if we fix Z, for example Z = 1, then we observe that orbitals in the f ree hydrogen
atom exhibit different grade of localization because S(free)

ρ (3s) > S(free)
ρ (3p) > S(free)

ρ (3d) > S(free)
ρ (2s) >

S(free)
ρ (2p) > S(free)

ρ (1s). This conclusion is completely in accord with those plots presented for the radial
distribution function for the hydrogen atom in quantum mechanics books, where the orbital 2s is more
extended to the 2p. Furthermore, if we use ∆S(Z)

ρ = S(free)
ρ (Z)− S(free)

ρ (Z = 1), then this quantity always

is negative, which is associated to localization of the electron density. However, we found that this ∆S(Z)
ρ

exhibits the same rate as a function of Z. This means that all orbitals in the hydrogen atom give the same
response for the localization when the atomic number is increased.
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Figure 1. Shannon entropy for several states of a f ree hydrogen-like atom as a function of the atomic number.

3.2. Confined Hydrogen Atom

Now, we discuss ∆S for the four confinements as a function of the confinement radius using as
reference the Shannon entropy of the f ree hydrogen atom depicted in Figure 1 for Z =1. For this analysis,
the Shannon entropy depends on the confinement potential and the confinement radius r0. The change of
the Shannon entropy defined as ∆S(r0) = Sρ(r0)− S(free)

ρ is depicted in Figure 2 for the ground state of the
confined hydrogen atom. In this figure, ∆S(r0) is presented as a function of r0. If the f ree system is used
as reference, then, for moderate values of r0, all potentials localize to the electron density since ∆S < 0.
When r0 is small, ∆S > 0, except for impenetrable walls [33], and consequently ∆S shows a minimum
(except for impenetrable walls). The position of the corresponding minimum and its deepness depend on
the confinement potential. The ionization of the hydrogen atom is expected when this atom is confined by
a dielectric continuum and a constant potential since in these cases ∆S grows up rapidly. From this figure,
we observe such an electron detachment first for the dielectric continuum and after it for the constant
potential if we use the f ree atom as the starting point.

The analysis of the confinement imposed by a parabolic potential deserves its own space.
From Figure 2, it is clear that, in the limit r0 → 0, ∆S → 0.1121. This result corresponds to the ∆S
between the isotropic harmonic oscillator [32]

S(osc)
ρ = ln(π) +

1
2

[
ln
( π

ω3

)
+ 6ω

]
(25)

and the f ree hydrogen atom. This result suggests that the wave-function for the isotropic harmonic
oscillator is more extended than that obtained for the f ree hydrogen atom. To corroborate this suggestion,
in Figure 3, we compare the orbital 1s associated to the isotropic harmonic oscillator and the f ree hydrogen
atom. In this figure, we observe that in the asymptotic region the wave-function associated to the isotropic
harmonic oscillator goes to zero faster than that observed for the f ree hydrogen atom. However, the
maximum of the radial distribution function of the isotropic harmonic oscillator is displaced to values
of r bigger than that observed for the free hydrogen atom. This is a significant result since the Shannon
entropy in configuration space gives information of the delocalization of the electron density over the
whole domain, which is not restricted only for the asymptotic region.



Quantum Rep. 2019, 1 214

-5

-3

-1

 0

 1

 3

 5

 0  0.6  2  4  5.5

∆
S

r0 (au)

Figure 2. Change in the Shannon entropy of the ground state (1s) of the hydrogen atom confined by
impenetrable walls (dashed line), finite walls with U0 = 0.0 au (solid line), a dielectric continuum ε = 80
(dot-dot-dashed line) and a parabolic potential ω = 0.5 au (dot-dashed line).
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Figure 3. Radial distribution function for the ground state of the free hydrogen atom (solid line) and an
isotropic harmonic oscillator with ω = 0.5 au, (dot-dashed line).

For excited states, ∆S exhibits some interesting characteristics which are not present for the ground
state. For example, the ∆S associated to 2s and 2p is presented in Figure 4. From this figure we found
that, except for the parabolic potential, the behavior for ∆S is almost the same as that obtained for the
ground state. Naturally, these orbitals do not have the same extension and for that reason ∆S exhibit
some displacements in these states. However, for the parabolic potential this property presents different
number of minima and this number corresponds to the number of nodes in the wave-function plus 1.
We analyzed several states to corroborate this result. As an additional example, we present ∆S for the
4s state in Figure 5a. In this case, the wave-function has three nodes and consequently we expect four
minima in ∆S, which is verified in in this figure.
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line) and a parabolic potential ω = 0.5 au (dot-dashed line).
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Figure 5. (a) Shannon entropy and (b) kinetic (dot-dot-dashed line) and potential energy (solid line) for the
4s state of the hydrogen atom confined by a parabolic potential (ω = 0.5 au).
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Only for the ground state Sosc
ρ > S( f ree)

ρ , for other states ∆S < 0, which indicates that these states for
the isotropic harmonic oscillator are more localized than the corresponding states in the free hydrogen
atom. Besides, the position of each minimum for ∆S is also reported in Figure 5a. To explore possible
reasons for this behavior, we computed total energy and components of this property for each state.

The kinetic (K) and potential (V) energies are depicted in Figure 5b where we found two limits; one
of these limits corresponds to the free hydrogen atom (r0 → ∞) and the other to the isotropic harmonic
oscillator (r0 → 0). From this figure, we observe oscillations in both components of the energy, curiously
where the kinetic energy shows a maximum the potential energy exhibits a minimum and vice versa.
In the same plot, we report the position of each maximum found for the kinetic energy. If we compare
plots in Figure 5, it is evident that maxima of the kinetic energy coincide with minima of ∆S. Thus, if the
confinement imposed by the parabolic potential decreases the kinetic energy, then the Shannon entropy in
the configuration space will be increased.

4. Conclusions

In this article, we present the Shannon entropy in configuration space associated to the exact electron
density of the hydrogen atom confined by four different potentials. The Shannon entropy always decreased
when the confinement is imposed by impenetrable walls and the radius of the cavity is reduced. For this
case, there is a direct relationship between localization of the electron density and the Shannon entropy
in configuration space. Contrary to this behavior, confinements imposed by a dielectric continuum or a
constant potential are able to eject an electron for small confinement radii. For these cases, the Shannon
entropy grew up rapidly around the zone where the detachment is observed. Thus, large values of the
Shannon entropy in configuration space represent delocalization in the electron density. The parabolic
potential induced oscillation on the Shannon entropy in configuration space, which is related to oscillations
on the energy components. We found that the sites where the kinetic energy is maximum are in the same
position of the minima exhibited by the Shannon entropy.

Author Contributions: M.-A.M.-S., R.V. and J.G. contributed in the same way.

Funding: This research was funded by CONACYT, México, through the project FC-2016/2412 and the
scholarship 574390.

Acknowledgments: The authors thank the facilities provided by the Laboratorio de Supercómputo y Visualización en
Paralelo at the Universidad Autónoma Metropolitana-Iztapalapa.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Michels, A.; Boer, J.D.; Bijl, A. Remarks concerning molecular interaction and their influence on the polarisability.
Physica 1937, 4, 981. [CrossRef]

2. Sommerfeld, A.; Welker, H. Künstliche Grenzbedingungen beim Keplerproblem. Ann. Phys. 1938, 32, 56–65.
[CrossRef]

3. Jortner, J.; Coulson, C.A. Environmental effects on atomic energy levels. Mol. Phys. 1961, 24, 451–464. [CrossRef]
4. Gorecki, J.; Byers-Brown, W. Padded-box model for the effect of pressure on helium. J. Phys. B At. Mol. Opt. Phys.

1988, 21, 403–410. [CrossRef]
5. Connerade, J.P.; Dolmatov, V.K.; Lakshmi, P.A.; Manson, S.T. Electron structure of endohedrally confined atoms:

Atomic hydrogen in an attractive shell. J. Phys. B At. Mol. Opt. Phys. 1999, 32, L239–L245. [CrossRef]
6. Dolmatov, V. Photoionization of Atoms Encaged in Spherical Fullerenes. Adv. Quantum Chem. 2009, 58, 13–68.
7. Ivanov, S.; Burke, K.; Levy, M. Exact high-density limit of correlation potential for two-electron density. J. Chem.

Phys. 1999, 110, 10262–10268. [CrossRef]

http://dx.doi.org/10.1016/S0031-8914(37)80196-2
http://dx.doi.org/10.1002/andp.19384240109
http://dx.doi.org/10.1080/00268976100100611
http://dx.doi.org/10.1088/0953-4075/21/3/009
http://dx.doi.org/10.1088/0953-4075/32/10/101
http://dx.doi.org/10.1063/1.478959


Quantum Rep. 2019, 1 217

8. Ludeña, E.V. Exact analytic total energy functional for Hooke’s atom generated by local-scaling transformations.
Int. J. Quantum Chem. 2004, 99, 297–907. [CrossRef]

9. Martínez-Sánchez, M.A.; Rodriguez-Bautista, M.; Vargas, R.; Garza, J. Solution of the Kohn–Sham equations for
many-electron atoms confined by penetrable walls. Theor. Chem. Acc. 2016, 135, 207. [CrossRef]

10. Duarte-Alcaráz, F.A.; Martínez-Sánchez, M.A.; Rivera-Almazo, M.; Vargas, R.; Rosas-Burgos, R.A.; Garza, J.
Testing one-parameter hybrid exchange functionals in confined atomic systems. J. Phys. B At. Mol. Opt. Phys.
2019, 52, 135002. [CrossRef]

11. Sarsa, A.; Buendía, E.; Gálvez, F.J. Multi-configurational explicitly correlated wave functions for the study of
confined many electron atoms. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 145003. [CrossRef]

12. Gálvez, F.J.; Buendía, E.; Sarsa, A. Confinement effects on the electronic structure of M-shell atoms: A study with
explicitly correlated wave functions. Int. J. Quantum Chem. 2017, 117, e25421. [CrossRef]

13. Ludeña, E.V. SCF Hartree–Fock calculations of ground state wavefunctions of compressed atoms. J. Chem. Phys.
1978, 69, 1770. [CrossRef]

14. Connerade, J.P.; Dolmatov, V. Controlling orbital collapse from inside and outside a transition element. J. Phys. B
At. Mol. Opt. Phys. 1998, 31, 3557–3564. [CrossRef]

15. Connerade, J.P.; Dolmatov, V.; Lakshmi, P.A. The filling of shells in compressed atoms. J. Phys. B At. Mol.
Opt. Phys. 2000, 33, 251–264. [CrossRef]

16. Garza, J.; Vargas, R.; Vela, A. Numerical self-consistent-field method to solve the Kohn-Sham equations in
confined many-electron atoms. Phys. Rev. E 1998, 58, 3949–3954. [CrossRef]

17. Sen, K.D.; Garza, J.; Vargas, R.; Vela, A. Effective pressure induced electronic transition in spherically confined
alkali metal atoms. Proc. Indian Nat. Sci. Acad. 2004, 70A, 675.

18. Guerra, D.; Vargas, R.; Fuentealba, P.; Garza, J. Modeling pressure effects on the electronic properties of Ca, Sr,
and Ba by the confined atoms model. Adv. Quantum Chem. 2009, 58, 1.

19. Rodriguez-Bautista, M.; Díaz-García, C.; Navarrete-López, A.M.; Vargas, R.; Garza, J. Roothaan’s approach to
solve the Hartree-Fock equations for atoms confined by soft walls: Basis set with correct asymptotic behavior.
J. Chem. Phys. 2015, 143, 034103. [CrossRef]

20. Rodriguez-Bautista, M.; Vargas, R.; Aquino, N.; Garza, J. Electron-density delocalization in many-electron atoms
confined by penetrable walls: A Hartree–Fock study. Int. J. Quantum Chem. 2018, 118, 2018. [CrossRef]

21. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
22. Corso, H.H.; Laguna, H.G.; Sagar, R.P. Localization-delocalization phenomena in a cyclic box. J. Math. Chem.

2012, 50, 233–248. [CrossRef]
23. Corso, H.H.; Castaño, E.; Laguna, H.G.; Sagar, R.P. Measuring localization-delocalization phenomena in a

quantum corral. J. Math. Chem. 2013, 51, 179–193. [CrossRef]
24. Sen, K.D. Characteristic features of Shannon information entropy of confined atoms. J. Chem. Phys. 2005,

123, 074110. [CrossRef]
25. Mukherjee, N.; Roy, A.K. Information-entropic measures for non-zero l states of confined hydrogen-like ions.

Eur. Phys. J. D 2018, 72, 118. [CrossRef]
26. Mukherjee, N.; Roy, A.K. Information-entropic measures in free and confined hydrogen atom. Int. J. Quantum

Chem. 2018, 118, e25596. [CrossRef]
27. Aquino, N.; Campoy, G.; Montgomery, H.E. Highly Accurate Solutions for the Confined Hydrogen Atom. Int. J.

Quantum Chem. 2007, 107, 1548–1558. [CrossRef]
28. Ley-Koo, E.; Rubinstein, S. The hydrogen atom within spherical boxes with penetrable walls. J. Chem. Phys.

1979, 71, 351–357. [CrossRef]
29. Martínez-Sánchez, M.A.; Aquino, N.; Vargas, R.; Garza, J. Exact solution for the hydrogen atom confined by

a dielectric continuum and the correct basis set to study many-electron atoms under similar confinements.
Chem. Phys. Lett. 2017, 690, 14–19. [CrossRef]

30. Gadre, S.R.; Sears, S.B.; Chakravorty, S.J.; Bendale, R.D. Some novel characteristics of atomic information
entropies. Phys. Rev. A 1985, 32, 2602–2606. [CrossRef]

http://dx.doi.org/10.1002/qua.10858
http://dx.doi.org/10.1007/s00214-016-1968-8
http://dx.doi.org/10.1088/1361-6455/ab233b
http://dx.doi.org/10.1088/0953-4075/49/14/145003
http://dx.doi.org/10.1002/qua.25421
http://dx.doi.org/10.1063/1.436710
http://dx.doi.org/10.1088/0953-4075/31/16/009
http://dx.doi.org/10.1088/0953-4075/33/2/310
http://dx.doi.org/10.1103/PhysRevE.58.3949
http://dx.doi.org/10.1063/1.4926657
http://dx.doi.org/10.1002/qua.25571
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1007/s10910-011-9908-2
http://dx.doi.org/10.1007/s10910-012-0073-z
http://dx.doi.org/10.1063/1.2008212
http://dx.doi.org/10.1140/epjd/e2018-90104-1
http://dx.doi.org/10.1002/qua.25596
http://dx.doi.org/10.1002/qua.21313
http://dx.doi.org/10.1063/1.438077
http://dx.doi.org/10.1016/j.cplett.2017.10.035
http://dx.doi.org/10.1103/PhysRevA.32.2602


Quantum Rep. 2019, 1 218

31. Jiao, L.; Zan, L.; Zhang, Y.; Ho, Y. Benchmark values of Shannon entropy for spherically confined hydrogen atom.
Int. J. Quantum Chem. 2017, 117, e25375. [CrossRef]

32. Yáñez, R.J.; Van Assche, W.; Dehesa, J.S. Position and momentum information entropies of the D-dimensional
harmonic oscillator and hydrogen atom. Phys. Rev. A 1994, 50, 3065–3079. [CrossRef] [PubMed]

33. Aquino, N.; Flores-Riveros, A.; Rivas-Silva, J. Shannon and Fisher entropies for a hydrogen atom under soft
spherical confinement. Phys. Lett. A 2013, 377, 2062–2068. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/qua.25375
http://dx.doi.org/10.1103/PhysRevA.50.3065
http://www.ncbi.nlm.nih.gov/pubmed/9911247
http://dx.doi.org/10.1016/j.physleta.2013.05.048
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Results
	Free Hydrogen Atom
	Confined Hydrogen Atom

	Conclusions
	References

