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Abstract: We show that the classical Hamilton equations of motion can be derived from the energy
conservation condition. A similar argument is shown to carry to the quantum formulation of
Hamiltonian dynamics. Hence, showing a striking similarity between the quantum formulation and
the classical formulation. Furthermore, it is shown that the fundamental commutator can be derived
from the Heisenberg equations of motion and the quantum Hamilton equations of motion. Also, that
the Heisenberg equations of motion can be derived from the Schrödinger equation for the quantum
state, which is the fundamental postulate. These results are shown to have important bearing for
deriving the quantum Maxwell’s equations.
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1. Introduction

In quantum theory, a classical observable, which is modeled by a real scalar variable, is replaced
by a quantum operator, which is analogous to an infinite-dimensional matrix operator. A quantum
operator that represents an observable endows the observable with probabilistic properties such as a
mean and a variance (or fluctuation from its mean as it is measured by the standard deviation from
its mean).

In order to associate an operator with a mean, a quantum system is described by a quantum state
or a state vector |Ψ〉. For instance, given an operator p̂ and a quantum state described by the state
vector |Ψ〉, the mean of the operator is its expectation value given by p̄ = 〈Ψ| p̂|Ψ〉 in Dirac’s notation.
This is entirely analogous to the linear algebra notation p̄ = Ψ† · p · Ψ. This associates a real scalar
number p̄ with a Hermitian operator p̂ in the given quantum state Ψ. The fluctuation from its mean or
its standard deviation is given by σp =

(
〈Ψ| p̂2|Ψ〉 − p̄2)1/2.

For example, classically, a particle is described with a position variable q and a momentum
variable p. In quantum theory, the position variable is replaced by a position operator q̂, and the
momentum variable is replaced by a momentum operator p̂. In the quantum world, the position
operator q̂ and the momentum operator p̂ do not commute or p̂q̂ 6= q̂ p̂. The fundamental postulate of
quantum mechanics is the canonical commutator that [1–4]:

[q̂, p̂] = q̂ p̂− p̂q̂ = ih̄ Î (1)
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where the square bracket represents the definition of a commutator. Sometimes, this is called Dirac’s
fundamental postulate [1]. Many properties of quantum physics, such as the uncertainty principle,
can be derived from this postulate. Moreover, one can derive the representation of the momentum
operator p̂ in terms of the coordinate operator q̂. Hence, the fundamental postulate is important for
quantum theory as well as the quantization of electromagnetic fields where the quantum fluctuation of
electromagnetic fields is important.

In this note, we shall show that the fundamental commutator can be derived from the Heisenberg
equations of motion, and the quantum Hamilton equations. Heisenberg equations can be derived
from the quantum state equation, and quantum Hamilton equations can be derived from energy
conservation argument. The fundamental postulate of quantum theory is the quantum state equation,
which was first proposed by Schrödinger, based on the energy conservation argument.

Furthermore, it can be shown that quantum Hamilton equations can be derived from the
Heisenberg equations of motion after invoking the fundamental commutator [3]. The quantum
Hamilton equations are very similar in form to the classical Hamilton equations. As such, there is
usually a clear analogy and a mathematical homomorphism between the classical and quantum theories
of many systems, such as electromagnetic fields. This streamlines the derivation of many quantum
equations of motion. It also explains why the equations of motion for quantum electromagnetics
resemble those of classical electromagnetics [5].

Using this mathematical homomorphism, one can derive the quantum Maxwell equations without
using mode decomposition (or Fourier decomposition), a procedure followed in most textbooks [6–8].
Maxwell’s equations can be quantized directly in the coordinate space. Moreover, it is easy to add
impressed sources to Maxwell’s equations and quantize them, as has been shown in [5].

For a set of discrete oscillators coupled to each other, the canonical commutator of (1) (see [6]) is:[
q̂i, p̂j

]
= ih̄ Îδij. (2)

In the continuum limit, when the variables q̂i and p̂i become fields Φ̂(r′, t) and Π̂s(r, t),
respectively, then the commutator becomes [5]:[

Φ̂(r′, t), Π̂s(r, t)
]
= ih̄δ(r− r′) Î (3)

or the Kronecker delta function becomes a Dirac delta function in the continuum limit. It can be shown
that these commutators induce derivatives with respect to operators and give rise to the quantum
Hamilton equations. Using the above, the quantum Maxwell equations can be derived [5].

2. Classical Hamiltonian of an Oscillator

A general classical oscillator, including the anharmonic oscillator, has a Hamiltonian given by:

H =
1

2m
p2 + V(q) (4)

where p and q are functions of time t. Its multi-variable differential can be written as:

δH =
∂H
∂p

δp +
∂H
∂q

δq. (5)

The above implies that:
dH
dt

=
∂H
∂p

dp
dt

+
∂H
∂q

dq
dt

. (6)

In order for the above to be zero for energy conservation, then:

dp
dt

= −C
∂H
∂q

,
dq
dt

= C
∂H
∂p

. (7)
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The above are the infinitely many possible energy conserving equations of motion for this problem.
They are similar to the Hamilton equations determined up to a factor C. The reason is that the clock is
not defined in a kinematic system, and all of these systems moving with different clocks will satisfy
energy conservation. However, we can fix the clock by invoking the definition of velocity in terms of
momentum, namely that:

dq
dt

=
p
m

(8)

i.e., the connection between velocity and momentum, which can be derived from the first equation of
(7) with (4). For this, we need to pick C = 1.

The above can be generalized to the case when C = C(t), viz., it is time dependent. This is
physically equivalent to a time varying clock. Again, we can use (8) to calibrate our clock. When
C = C(t), (7) is mathematically equivalent to the case when the general energy conserving solution is
such that:

∂H
∂p

dp
dt

= f (t), and
∂H
∂q

dq
dt

= − f (t) (9)

which is another way to express an energy conserving solution.
Furthermore, (7) can be rewritten as:

1
C(t)

dp
dt

= −∂H
∂q

,
1

C(t)
dq
dt

= C
∂H
∂p

. (10)

Then, the time stretching technique, similar to the coordinate stretching technique [9–13], can be
used to rewrite the above as:

dp
dt′

= −∂H
∂q

,
dq
dt′

=
∂H
∂p

. (11)

where t′ =
∫ t

0 C(t′′)dt′′. To agree with laboratory experiments, the time stretching variable C(t) = 1.

3. Quantum Hamiltonian

In the quantum world, p and q, the canonical conjugate variables, are elevated to be quantum
operators. Hence, (4) becomes:

Ĥ =
1

2m
p̂2 + V̂(q̂). (12)

Since functions of an operator argument are operators themselves, V̂ and Ĥ are now quantum
operators. This Hamiltonian operator acts on a state vector |ψ〉 in the manner of the Schrödinger
equation, viz.,

Ĥ|ψ〉 = ih̄∂t|ψ〉 (13)

where |ψ〉 is a vector that indicates the state of the quantum system with the normalization condition,
i.e., 〈ψ|ψ〉 = 1. Equation (13) is a fundamental postulate of quantum theory. It cannot be derived, but
it is based on the postulate of Schrödinger (Later, this equation for the quantum state was used for
quantum Hamiltonians for different quantum systems, e.g., the Dirac equation for relativistic electrons.
It has also been used for the quantum Maxwell equations [5]. In order not to confuse this with the
Schrödinger equation for wave functions in an atom, for instance, we will call this Schrödinger’s
quantum state equation.). In addition, for energy conservation, Ĥ, which represents the total energy of
the system, is time independent, and |ψ〉 solves: (13) is of the form

|ψ(t)〉 = e−i Ĥ
h̄ t|ψ0〉 (14)
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where |ψ(t = 0)〉 = |ψ0〉.
The requirement of a quantum system is that the expectation value of the quantum operators,

which are the quantum representation of an observable or canonical dynamic variable, be equal to
their classical analog. For instance, the expectation value of the Hamiltonian operator Ĥ is:

H = 〈ψ(t)|Ĥ|ψ(t)〉. (15)

With (14) substituted into (15), it indeed can be shown that H is independent of time.
In other words,

H = 〈ψ0|ei Ĥ
h̄ tĤe−i Ĥ

h̄ t|ψ0〉 = constant. (16)

In the above, Ĥ commutes with a function of Ĥ, namely e−i Ĥ
h̄ t, and hence, the above time

dependence cancels, yielding a constant of time implying energy conservation. So far, nothing has been
said of the commutators in quantum theory. Therefore, the assumption that Ĥ is time independent is
consistent with energy conservation.

One can show further that given an operator ôs in the Schrödinger picture, it has the expectation
value given by:

ō(t) = 〈ψ(t)|ôs|ψ(t)〉 = 〈ψ0|ei Ĥ
h̄ t ôse−i Ĥ

h̄ t|ψ0〉
= 〈ψ0|ôh(t)|ψ0〉 (17)

where the operator in the Heisenberg picture emerges [4],

ôh(t) = ei Ĥ
h̄ t ôse−i Ĥ

h̄ t (18)

and ôs in the Schrödinger picture is time independent. In the following, we will eliminate the subscript
h. When an operator is a function of time, it is understood to be in the Heisenberg picture. Moreover, it
can be shown that the equation of motion for ô in the Heisenberg picture takes the form of:

dô(t)
dt

= − i
h̄
[
ô(t), Ĥ

]
(19)

where
[
Â, B̂

]
= ÂB̂− B̂Â is the commutator. The above is the Heisenberg equation of motion.

Given the fundamental commutator relation, [q̂, p̂] = ih̄ Î, it can be shown that [3–5]:

[q̂, p̂] = ih̄ Î =⇒ [ p̂, q̂n] = −inq̂n−1h̄ = −ih̄
(

∂q̂n

∂q̂

)
, (20)

=⇒ [q̂, p̂n] = inp̂n−1h̄ = ih̄
(

∂ p̂n

∂ p̂

)
. (21)

The above introduces the concept of a derivative with respect to to an operator, namely that
∂ôn

∂ô = nôn−1. We will digress to discuss this in more detail.
It is to be noted that the above is derived by induction, or recursion: Given that:[

p̂, q̂n−1
]
= −inq̂n−2h̄ (22)

and the commutator [q̂, p̂] = ih̄ Î, it can be shown that:

[ p̂, q̂n] = −inq̂n−1h̄. (23)

The reverse of the above procedure is also true.
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3.1. A Word on the Derivative with Respect to the Operator

In the above, the derivative of an operator with respect to to an operator has meaning only when
the operator is acting on its eigenstate (eigenvector). Then, the operator can be treated as a scalar
number, which is the eigenvalue associated with the particular eigenvector. Assume that a quantum
state is expanded in terms of a set of eigenvectors, which is given by:

|ψ〉 = ∑
i

di|qi〉 (24)

where |qi〉 are the eigenvectors of q̂, then it follows that:

∂q̂ q̂n|ψ〉 = ∂q̂n

∂q̂
|ψ〉 = ∑

i

∂qn
i

∂qi
di|qi〉 = ∑

i
nqn−1

i di|qi〉

= nq̂n−1|ψ〉 (25)

where ∂q̂ is an alternative way of denoting the derivative with respect to an operator, and here,
∂q̂ q̂n = nq̂n−1. The above implies that in evaluating ∂q̂ q̂n, we will let this operator q̂n act on the state
vector expanded in terms of |qi〉, the eigenvectors of q̂, and then take the derivative with respect to the
eigenvalue qi in the preceding equation. Hence, ∂q̂ q̂n only produces another operator nq̂n−1.

The above is in agreement with a perturbation expansion or the first variation of q̂, so that:

(q̂ + δq̂)n. (26)

It expands to only first order to:
q̂n + nq̂n−1δq̂ (27)

only if
[q̂, δq̂] = 0 (28)

or they commute and share the same set of eigenvectors. In other words, the same set of eigenvectors
diagonalizes q̂ and δq̂ simultaneously. That δq̂ and q̂ share the same set of eigenvectors is in fact implied
in the derivation of (25). The commutator in (28) is important in allowing a simple definition of the
derivative with respect to an operator.

4. Quantum Hamilton Equations from Heisenberg Equations

In general, if P(p) and Q(q) are polynomial functions, then from: (20) and (21)

[
p̂, Q̂(q̂)

]
= −ih̄

∂Q̂(q̂)
∂q̂

, (29)

[
q̂, P̂( p̂)

]
= ih̄

∂P̂( p̂)
∂ p̂

. (30)

To get the quantum Hamilton equations, we consider a particular class of Hamiltonians as follows.

Sum Separable Hamiltonians

In this case,
H(p, q) = P(p) + Q(q) (31)

where P and Q are polynomial functions, or that:

P(p) = ∑
n

an pn, Q(q) = ∑
m

bmqm. (32)
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The above can be elevated to P̂ and Q̂ after elevating the canonical variables p and q to quantum
operators. Then, a generic form of the quantum Hamiltonian, in index or Einstein notation, is:

Ĥ = an p̂n + bm q̂m. (33)

Then, it is quite easy to show that the Heisenberg equations imply the quantum Hamilton
equations, namely that:

dp̂
dt

= − i
h̄
[ p̂, Ĥ] = −∂Ĥ

∂q̂
, (34)

dq̂
dt

= − i
h̄
[q̂, Ĥ] =

∂Ĥ
∂ p̂

. (35)

In other words, the fundamental commutator and Heisenberg equations imply the quantum
Hamilton equations as,

dq̂
dt

=
∂Ĥ( p̂, q̂)

∂ p̂
,

dp̂
dt

= −∂Ĥ( p̂, q̂)
∂q̂

. (36)

It is to be noted that since the derivations in (20) and (21) can be reversed, then one can start with
the quantum Hamilton equations and derive the Heisenberg equations of motion in (34) and (35).

5. Quantum Hamilton Equations and Energy Conservation

In the above, we have shown that quantum Hamilton equations can be derived from the
Heisenberg equations with the fundamental commutator as given in (1). It will be curious to see if the
quantum Hamilton equations can be derived from energy conservation argument alone. Again, we
look at sum separable Hamiltonians.

5.1. Sum Separable Hamiltonian

For sum separable Hamiltonians, one assumes that a Hamiltonian is of the form:

Ĥ( p̂, q̂) = P̂( p̂) + Q̂(q̂). (37)

Then, a generic form of the Hamiltonian in index notation is:

Ĥ = an p̂n + bm q̂m. (38)

By taking the first variation, assuming the following commutators:

[ p̂, δ p̂] = 0,

[q̂, δq̂] = 0, (39)

it is quite easy to show that:

δĤ =
∂Ĥ
∂ p̂

δ p̂ +
∂Ĥ
∂q̂

δq̂ (40)

or that:
dĤ
dt

=
∂Ĥ
∂ p̂

dp̂
dt

+
∂Ĥ
∂q̂

dq̂
dt

. (41)

In the above, there are derivatives with respect to the quantum operators p̂ and q̂. These derivatives
are defined as in Section 3.1. Hence, Equation (36), the quantum Hamilton equations, can be substituted
into the above equation. Then, it is easily shown that dĤ

dt = 0, implying energy conservation.
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Since the above Hamilton Equations (36) have been derived from the Heisenberg equations and
fundamental commutator and they are consistent with energy conservation, or in short,

[q̂, p̂] = ih̄ Î plus Heisenberg equations

=⇒ energy conservation (42)

5.2. Quantum Hamilton Equations from Energy Conservation

It is interesting to ask the converse: Does energy conservation imply the quantum Hamilton
equations? Before doing so, we shall elaborate more on (40) and (41). We can also write down the
expression for (40) more explicitly using (37), namely:

δĤ = nan p̂n−1δ p̂ + mbm q̂m−1δq̂. (43)

It is to be noted that the commutators (39) do not restrict the variations of δ p̂ and δq̂ in (43). To see
this, one can take the second term on the right-hand side of the above and let it operate on (24). Then,
the new state vector:

|Φ〉 = mbm q̂m−1δq̂|Ψ〉 = mbm ∑
i

qm−1
i δqidi|qi〉. (44)

Because δqi is arbitrary and |qi〉 is complete, this new state vector |Φ〉 can be made to point in
any “arbitrary” direction in Hilbert space. A similar thought experiment can be done on the first term
of (43). In other words, the commutators (39) do not diminish the degree of freedom in the variation
of (43). Moreover, due to the commutators (39), the order of δ p̂ and δq̂ is unimportant in the above,
and the commutators give rise to the very simple equation given by (41). Therefore, using (41), a set of
simple possible solutions for an energy conserving system is:

Energy Conservation =⇒ dp̂
dt

= −C
∂Ĥ
∂q̂

,
dq̂
dt

= C
∂Ĥ
∂ p̂

. (45)

They are similar to the Hamilton equations within a multiplicative constant C. There are infinitely
many possibilities, because the clock is not calibrated. However, just as the classical case as shown
in (7), we can apply the above to a simple oscillator and use a simple case that dq̂

dt = p̂
m to calibrate

our clock to give C = 1. As a result, the quantum Hamilton equations can also be derived from
energy conservation.

The above, as before, can be generalized to the case when C = C(t), which is more general than
the above. Again, the same physical interpretation applies in this case, as in the classical case. We have
a time varying clock that can be calibrated to a time invariant clock, meanwhile, in agreement with the
clock in the real world.

6. Fundamental Commutator from Energy Conservation

The Heisenberg equations of motion are also energy conserving as they are derived from the
quantum state Equation (13). Hence, both the Hamilton equations and Heisenberg equations of motion
can be derived without invoking the fundamental commutator, but merely from energy conservation
alone. Next, we shall show that the fundamental commutator can actually be derived from the
quantum Hamilton equations and Heisenberg equations of motion.

We can start with one of the quantum Hamilton equations that follows from energy conservation
argument after calibrating the clock. This is:

dq̂
dt

= ∂ p̂Ĥ. (46)
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Next, we look at the Heisenberg equations of motion, one of which is:

dq̂
dt

= A
[
q̂, Ĥ

]
(47)

where we define A = −i/h̄. From (46) and (47), it follows that

∂ p̂Ĥ = A
[
q̂, Ĥ

]
. (48)

By writing the Hamiltonian as a polynomial, then from the above, taking the m-th term of the
polynomial, it is quite easy to show that

∂ p̂ p̂m = mp̂m−1 = A [q̂, p̂m] , m = 1, . . . . (49)

By setting m = 1 in the above, then

1 = A[q̂, p̂]→ [q, p] = ih̄ (50)

which is the fundamental commutator. Therefore preceding argument shows that the fundamental
commutator can be derived from, or is consistent with, quantum Hamilton equations and Heisenberg
equations of motion, which are energy conserving equations.

One of the fundamental postulates of quantum theory is (13), which cannot be derived. It is the
equation of motion for the quantum state. It was first proposed by Schrodinger, and later used to
describe all quantum systems, include Dirac’s equation for relativistic electrons.

The fundamental commutator is important for energy conservation, and it can be generalized to
the quantization of electromagnetic fields [5]. However, it is intimately related to energy conservation.

7. Conclusions

1. The fundamental commutator can be derived from Heisenberg equations of motion and the
quantum Hamilton equations.

2. The quantum Hamilton equations can be derived by energy conservation argument after the
calibration of the clock.

3. The quantum Hamilton equations can also be derived from Heisenberg equations of motion,
together with the fundamental commutator. Also, the quantum Hamilton equations thus derived
are shown to be energy conserving.

4. The important fundamental postulate of quantum theory is that first put forth by Schrödinger,
for the quantum state Equation (13). One can derive the Heisenberg equations of motion from
the quantum state equation.
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