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Abstract: The probability representation of quantum mechanics where the system states are identified
with fair probability distributions is reviewed for systems with continuous variables (the example
of the oscillator) and discrete variables (the example of the qubit). The relation for the evolution of
the probability distributions which determine quantum states with the Feynman path integral is
found. The time-dependent phase of the wave function is related to the time-dependent probability
distribution which determines the density matrix. The formal classical-like random variables
associated with quantum observables for qubit systems are considered, and the connection of the
statistics of the quantum observables with the classical statistics of the random variables is discussed.

Keywords: quantum tomography; probability representation; quantizer–dequantizer; qubit;
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1. Introduction

The goal of this work is to discuss some aspects of the new formulation of quantum mechanics
where system states are described by the probability distributions. The Schrödinger and von Neumann
equations take the form of kinetic equations for the probability distributions. In the conventional
formulation of quantum mechanics, a system state (e.g., the oscillator state) is associated with the wave
function [1]. In the presence of interaction of the system with the heat bath, the system state is identified
with the density matrix [2,3]. The wave functions and density matrices are associated with state vectors
in the Hilbert spaces and density operators acting on the vectors [4]. The physical observables—e.g.,
the energy of the oscillator—in the conventional formulation of quantum mechanics are described
by the Hermitian matrices or Hermitian operators—e.g., the Hamiltonian of the oscillator—acting
in the Hilbert space of the system state vectors. The aim of this work is to discuss the probability
representation of quantum states—e.g., of the oscillator states [5–8].

In this representation, the quantum states are identified with fair probability distributions
containing the same information on the states, which is contained in the state density operator.
In this probability representation of quantum mechanics, physical observables are associated
with the sets of formal classical-like random variables. The evolution of the quantum states
described in the conventional formulation of quantum mechanics by the Schrödinger equation
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for the wave function or by the von Neumann equation for the density operator, as well as by
the Gorini–Kossakowskii–Sudarshan–Lindblad (GKSL) equation [9,10], is described by the kinetic
equations for the probability distributions identified with the quantum states.

The suggested probability representation is constructed using the invertible map of the probability
distributions on the density operators acting in the Hilbert space. For example, in the case of systems
with continuous variables like the harmonic oscillator, the invertible map is given either by the Radon
transform [11] of the state Wigner function [12] or by the fractional Fourier transform of the wave
function [13]. The tomographic probability distributions of spin states were discussed in [14–16].
We point out that different representations—like the Wigner function representation for the system
states with discrete variables based on using the formalism of the quantizer operators—were studied
in [17–20]. Gauge invariance of quantum mechanics in the probability representation was studied
in [21].

This paper is organized as follows.
In Section 2, the case of the tomographic probability distribution of a system with continuous

variables like the harmonic oscillator is considered. In Section 3, the generic method of quantization,
based on using the quantizer–dequantizer operators [22,23] to introduce the associative product
(star product) of the symbols of the operators, is discussed. In Section 4, the gauge invariance of the
von Neumann equation and the gauge transform of the wave functions (state vectors) are studied.
The gauge invariance is used to investigate the phase factor of the state vector depending on time in
the probability representation of quantum mechanics. The qubit (spin-1/2) states are described in
the probability representation of quantum mechanics in Section 5. Quantum observables are mapped
onto the set of formal classical-like random variables in Section 6. The notion of distance between
different quantum states is characterized using the standard notion of the difference between the
probability distributions in Section 7. In Section 8, the evolution of quantum states is considered in the
probability representation and in the other representations using the quantizer–dequantizer formalism.
Conclusions are presented in Section 9.

2. Quantum State Description by Probability Distribution for the Case of Continuous Variables

The possibility of describing the states of systems with continuous variables—like the oscillator
system—by probability distributions can be demonstrated on an example of the use of tomographic
probability distribution [5–7] . For the harmonic oscillator state, the symplectic tomographic probability
distribution can be introduced using the fractional Fourier transform of the wave function 〈y|ψ〉 = ψ(y).
The function [13]

wψ(X|µ, ν) =
1

2π|ν|

∣∣∣∣∫ ψ(y) exp
(

iµ
2ν

y2 − iX
ν

y
)

dy
∣∣∣∣2 , −∞ ≤ X, µ, ν < ∞ (1)

has the following properties. It is nonnegative and normalized for arbitrary parameters µ and ν, i.e.,∫
wψ(X|µ, ν)dX = 1, (2)

if the wave function is normalized, i.e.,
∫
|ψ(y)|2dy = 1.

The density operator ρ̂ψ = |ψ〉〈ψ| of the pure state |ψ〉 can be reconstructed as follows [7]:

ρ̂ψ =
1

2π

∫
dX dµ dν wψ(X|µ, ν) exp[i(X− µq̂− ν p̂)], (3)

where q̂ and p̂ are the position and momentum operators, respectively. For mixed states with the density
operator ρ̂ = ∑k pk ρ̂ψk , 0 ≤ pk ≤ 1, ∑k pk = 1, the probability distribution wρ(X|µ.ν) reconstructs



Quantum Rep. 2020, 2 66

the operator ρ̂ in view of the same Formula (3). For a given operator ρ̂, the tomographic probability
distribution, called the symplectic tomogram of the state, is given by the relation [22,23]

wρ(X|µ, ν) = Tr ρ̂ δ(X− νq̂− ν p̂). (4)

If the real parameters µ and ν are described as µ = s cos θ and ν = s−1 sin θ, where s = 1,
the tomogram coincides with the optical tomogram wopt(X|θ) used to measure photon states [24], i.e.,

wopt(X|θ) = Tr ρ̂ δ(X− q̂ cos θ − p̂ sin θ). (5)

Here, θ is the local oscillator phase and X is the photon quadrature.
The optical tomogram of the pure state is related to the Wigner function [12] of the system via the

Radon transform [25,26],

wopt
ψ (X|θ) = 1

2π

∫
Wψ(q, p) delta(X− q cos θ − p sin θ) dq dp, (6)

where
Wψ(q, p) =

∫
ψ(q + u/2)ψ∗(q− u/2) exp(−ipu) du,

1
2π

∫
Wψ(q, p) = 1.

The optical tomogram is related to the symplectic tomogram wopt(X|θ) = w(X| cos θ, sin θ). If we
know the optical tomogram, the symplectic tomogram is given by the formula

w(X|µ, ν) =
1√

µ2 + ν2
wopt

(
X√

µ2 + ν2

∣∣∣∣arctan
(

ν

µ

))
, (7)

in view of the property of the Dirac delta-function δ(λx) =
1
|λ| δ(x) used to define the tomogram (4).

The harmonic oscillator states, such as Fock states |n〉, n = 0, 1, 2, . . ., are described in the
probability representation of quantum mechanics by the distributions (m = h̄ = ω = 1)

wn(X|µ, ν) =
exp

[
−X2/(µ2 + ν2)

]√
π(µ2 + ν2)

1
2nn!

H2
n

(
X√

µ2 + ν2

)
. (8)

Here, Hn is the Hermite polynomial.
The coherent states |α〉 [27–29], the eigenfunctions of the oscillator annihilation operator â|α〉 =

α|α〉, â = (q̂ + i p̂)/
√

2, are described by the normal distributions

wα(X|µ, ν) =
1√

2πσ(µ, ν)
exp

[
− (X− X̄(µ, ν))2

2σ(µ, ν)

]
, (9)

X̄(µ, ν) = µ
√

2 Re α + ν
√

2 Im α, σ(µ, ν) =
µ2 + ν2

2
. (10)

The time evolution of the tomogram of the harmonic oscillator state is determined by the Green
function [30], namely,

w(X|µ, ν, t) =
∫

w(X′|µ′, ν′, 0)G(X, µ, ν, X′, µ′, ν′, t) dX′ dµ′ dν′, (11)

which can be expressed in terms of the Green function of the Schrödinger equation for the
harmonic oscillator

g(y, y′, t) =
1√

2πi sin t
exp

(
i

y2 + y′2

2 tan t
− i

yy′

sin t

)
. (12)
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The above function provides the formula for the evolution of the oscillator’s wave function

ψ(y, t) =
∫

g(y, y′, t)ψ(y′, 0) dy′. (13)

Using this formula and relations (1), (3), and (4) for the tomogram expressed in terms of the wave
function, we obtain the expression for the Green function in (11). Since the Green function in (13) can
be given in the form of the path integral [31,32]

g(y, y′, t) =
∫

D (u(t)) exp
{

i Scl; y,y′ (u(t))
}

, (14)

where y and y′ are the initial and final points of classical trajectories and Scl; y,y′ (u(t)) is the classical
action, the path integral formulation of quantum mechanics can be also applied in the probability
representation of quantum states.

The generic evolution kernel for the tomogram in (11) reads in terms of the path integral as follows:

G(X, µ, ν, X′, µ′, ν′, t) = 1
2π

∫ [∫
D (u(t)) D (v(t)) exp

{
−iScl; y,x (u(t)) + iScl; x′ ,y′ (v(t))

}]
×〈x|δ(X′ − µ′ q̂− ν′ p̂)|x′〉〈y′| exp (i(X− µq̂− ν p̂)) |y〉 dx dy dx′ dy′. (15)

Here, the matrix elements of the Weyl operator in the position representation are

〈y′| exp (i(X− µq̂− ν p̂)) |y〉 = exp
(

iX +
iµν

2
− iµy′

)
δ(y′ − y− ν). (16)

The matrix elements of the expression with the Dirac delta-function read

〈x|δ(X′ − µ′ q̂− ν′ p̂)|x′〉 = 1
2π|ν′| exp

{
i(x− x′)

ν′

[
X′ − µ′

x + x′

2

]}
. (17)

In view of the term in the matrix element of the Weyl operator (16) and the term with the Dirac
delta-function in (17), after integrating in (15) over variable y′, we arrive at the result

G(X, µ, ν′, X′, µ′, ν, t)

=
1

4π2|ν′|

∫ [∫
D (u(t)) D (v(t)) exp

{
−i Scl; y,x (u(t)) + i Scl; x′ ,(y+ν) (v(t))

}]
× exp

{
i (x− x′)

ν′

[
X′ − µ′

x + x′

2

]}
exp

[
i
(

X− µν

2
− µy

)]
dx dy dx′. (18)

For the harmonic oscillator, the Green function g(y, y′, t) (12) is expressed in terms of the path

integral g(y, y′, t) =
∫

D (u(t)) exp
[
iScl; y,y′ (u(t))

]
. Thus, for the harmonic oscillator, we derive the

integral expression for the Green function (propagator), which describes the evolution of symplectic
tomographic probability distribution as follows:

G(X, µ, ν, X′, µ′, ν′, t)

=
1

8π3|ν′|

∫
exp

(
−i

y2 + x2

2 tan t
+ i

yx
sin t

+ i
x′2 + (y + ν)2

2 tan t
− i

x′(y + ν)

sin t

)
× exp

{
i (x− x′)

ν′

[
X′ − µ′

x + x′

2

]}
exp

[
i
(

X− µν

2
− µy

))
dx dy dx′. (19)

The propagator is expressed in the form of a Gaussian integral, and the result of the integration
applied to the initial tomogram provides the same result, which one can obtain using the propagator,

G (X, µ, ν, µ′, ν′, t) = δ (X− X′) δ (µ cos t− ν sin t− µ′) δ (ν cos t + µ sin t− ν′). (20)
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3. Quantizer–Dequantizer Formalism

The presented approach is the example of using the formalism of the quantizer–dequantizer
method [22,23,33,34] applied for the quantization of classical system states in the tomographic
probability representation of quantum mechanics. In this section, we formulate the relation of the
path-integral method to the quantizer–dequantizer formalism by providing different representations
of the quantum state evolution such as the evolution of the Wigner function [12] and the
Glauber–Sudarshan [27,28] and Husimi–Kano [35,36] quasidistributions; for a review, see [37].

For a given Hilbert space H, the sets of two operators Û (~γ) and D̂(~γ)—where γ̂ =

(γ1, γ2, . . . , γN)—are continuous or discrete variables, and are called dequantizer and quantizer
operators [22,38,39], respectively, if for any operator Â, one has the equalities

fA(~γ) = TrÂÛ (~γ), (21)

Â =
∫

fA(~γ)D̂(~γ) d~γ. (22)

The product of the operators ÂB̂ is mapped onto the associative product of functions
( fA ∗ fB)(~γ), called the star product. The function fA(~γ) is called the symbol of the operator Â.
In the considered representation of states, either by means of the Wigner function or by means of
symplectic tomographic probability distribution, one uses known dequantizer–quantizer pairs of the
operators.

In the case of the Wigner function ~γ = (q, p),

Û (q, p) =
∫
|q + u/2〉〈q− u/2| e−ipu du, (23)

and D̂(q, p) =
1

2π
Û (q, p).

In the case of the symplectic tomographic probability representation, ~γ = (X, µ, ν), and the
dequantizer reads

Û (X, µ, ν) = δ (X− µq̂− ν p̂). (24)

The quantizer has the form of the Weyl operator

D̂(X, µ, ν) =
1

2π
exp[i(X− µq̂− ν p̂)]. (25)

Now we present the expression for the propagator of the symbol of the density operator ρ̂ in
terms of generic dequantizer–quantizer operators and the path integral which determines the wave
function evolution; it is

G (~γ,~γ′, t) =
∫ [∫

D (u(t)) D (v(t)) exp
{
−iScl; y,x (u(t)) + i Scl; x′ ,y′ (v(t))

}]
×〈x|Û (~γ′)|x′〉〈y′|D̂(~γ)|y〉 dx dy dx′ dy′. (26)

This formula is a generalization of Formula (15) to the case of an arbitrary known representation
of quantum states given in the form of expressions containing the dequantizer–quantizer operators.
The formulated approach provides the relation of the path integral quantization of the classical
mechanics with known star-product schemes of quantization.

4. Gauge Invariance and the Probability Representation of Quantum States

Using the dequantizer–quantizer formalism, gauge invariance in the probability representation of
quantum mechanics was considered in [21].
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The pure state vector |ψ〉 of a quantum system [4] satisfies the Schrödinger equation

i
∂|ψ(t)〉

∂t
= Ĥ(t)|ψ(t)〉. (27)

Here, we take Planck’s constant h̄ = 1; also, the state vector belongs to the Hilbert space; e.g.,
the N-dimensional Hilbert space of qudit states. The Hilbert space can be also infinite-dimensional, e.g.,
for the harmonic oscillator system states. In the generic case, the operator Ĥ(t) is the time-dependent
operator (Hamiltonian of the system) acting in the Hilbert space of the system states. The density
operator of the pure state ρ̂ψ(t), which is determined by the state vector, i.e.,

ρ̂ψ(t) = |ψ(t)〉〈ψ(t)|, (28)

satisfies the von Neumann evolution equation [3]

i
∂ρ̂ψ(t)

∂t
+
(

Ĥ(t)ρ̂ψ(t)− ρ̂ψ(t)Ĥ(t)
)
= 0. (29)

The gauge transform of the state vector of the form

|ψ(t)〉 = eiχ(t)|ψ0(t)〉, (30)

where χ(t) is the time-dependent phase, is the symmetry transform of the von Neumann equation,
since the density operator of the pure state with the state vector |ψ0(t)〉 is equal to the density operator
of the pure state with the state vector |ψ(t)〉, i.e., ρ̂ψ(t) = ρ̂ψ0(t). In view of this fact, the density
operator ρ̂ψ0(t) satisfies the same evolution Equation (29). In the case of a mixed state of the system
with the density operator given as an arbitrary convex sum of the pure state density operators, i.e.,

ρ̂(t) = ∑
k

λk ρ̂ψk (t), 0 ≤ λk ≤ 1, ∑
k

λk = 1, (31)

the operator ρ̂(t) satisfies the evolution Equation (29).
Now we consider the influence of the gauge transform (30) and express the connection of the

Schrödinger equations for state vectors |ψ(t)〉 and |ψ0(t)〉, using the time dependence of the phase
χ(t). In view of (30), we obtain the evolution equation for the state vector |ψ0(t)〉 of the form

i
∂|ψ(t)0〉

∂t
= Ĥχ(t)|ψ0(t)〉, (32)

where the Hamiltonian Ĥχ(t) reads

Ĥχ(t) = [Ĥ(t) + χ̇(t)1̂]. (33)

The unitary evolution operator Û(t), which describes the evolution of the state vector |ψ(t)〉,
namely,

|ψ(t)〉 = Û(t)|ψ(t = 0)〉, (34)

satisfies the equation

i
∂Û(t)

∂t
= Ĥ(t)Û(t) (35)

with the initial condition Û(t = 0) = 1̂.
In the case of the qubit, for the time-independent Hamiltonian

H =

(
H11 H12

H∗12 H22

)
, (36)
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the unitary matrix U(t) reads

U(t) = exp

[
−it

(
H11 H12

H∗12 H22

)]
= exp

(
− it

2
(H11 + H22)

)
M(t), (37)

where the unitary matrix M(t) is

M(t) =

 cos Ωt− i sin Ωt
2Ω

(H11 − H22) − i sin Ωt
Ω

H12

− i sin Ωt
Ω

H∗12 cos Ωt +
i sin Ωt

2Ω
(H22 − H11)

 . (38)

Here, the frequency Ω is given by formula

Ω =
√

H12H∗12 + [(H11 − H22)/2]2. (39)

Analogously, the evolution of the state vector |ψ0(t)〉 is described by the unitary operator Uχ(t),
which satisfies Equation (35), where the Hamiltonian Ĥ(t) is replaced by the operator (Ĥ(t) + χ̇(t)1̂).
The unitary evolution operators Û(t) and Ûχ(t) are different ones but, due to the gauge invariance
of the von Neumann equation for the density operators satisfying Equation (29) with Hamiltonians
Ĥ(t) and Ĥχ(t), the density operators are equal. In the case of continuous variables, the wave function
ψ(x, t) = 〈x|ψ(t)〉 and the function ψ0(x, t) = 〈x|ψ0(t)〉 are different. The Schrödinger equation for
the system wave function ψ(x, t), written in the form of an equation for the function ψ0(x, t) following
from Equation (32) for the vector |ψ0(t)〉, provides the relation

χ̇(t) = i
∂

∂t
ln ψ0(x, t)− ψ−1

0 (x, t)Ĥ(t)ψ0(x, t). (40)

This relation contains information on the phase χ(t), determining the gauge transform of the
wave function ψ(x, t), which does not change the density matrix

ρψ(x, x′, t) = 〈x|ψ(t)〉〈ψ(t)|x′〉 = ρψ0(x, x′, t) = 〈x|ψ0(t)〉〈ψ0(t)|x′〉.

Analogous consideration can be presented in the case of N-dimensional Hilbert space, e.g., in the
case of a qubit system with N = 2.

5. Qubit State in the Probability Representation

In the case of qubits (two-level atom, spin-1/2 system), the variable x takes two values
x → m = ±1/2, where m is the spin-1/2 projection in the z-direction. The pure state is described by

the state vector |ψ〉 with two components |ψ〉 =
(

ψ+1/2
ψ−1/2

)
satisfying the normalization condition

〈ψ|ψ〉 = |ψ+1/2|2 + |ψ−1/2|2 = 1. The 2× 2 density matrix of the pure state ρψ reads

ρψ =

(
|ψ+1/2|2 ψ+1/2 ψ∗−1/2

ψ−1/2 ψ∗+1/2 |ψ−1/2|2

)
. (41)

The 2× 2 density matrix ρmm′ of the mixed state has the matrix elements expressed in terms of
probabilities p1, p2, p3 [40,41]:

ρ =

(
p3 (p1 − 1/2)− i (p2 − 1/2)

(p1 − 1/2) + i (p2 − 1/2) 1− p3

)
. (42)
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Here, the numbers 0 ≤ p1, p2, p3 ≤ 1 determine three probability distributions— (p1, 1− p1),
(p2, 1− p2), and (p3, 1− p3)—of dichotomic random variables. These numbers satisfy the Silvester
criterion of nonnegativity of the matrix eigenvalues:

N

∑
j=1

(
pj − 1/2

)2 ≤ 1/4. (43)

For the pure state with the density matrix given by (41) satisfying the condition ρ2
ψ = ρψ, we have

equality ∑N
j=1
(

pj − 1/2
)2

= 1/4. Our aim is to consider the gauge invariance property of matrix (42).
We introduce vector |ψ0(t)〉 of the form

|ψ0(t)〉 =


√

p3(t)
1√

p3(t)
[(p1(t)− 1/2) + i (p2(t)− 1/2)]

 . (44)

The vector |ψ(t)〉 = eiχ(t)|ψ0(t)〉 gives the density matrix of the form (42). Equation (40) provides
the relation of the phase χ(t) to probabilities p1(t), p2(t), and p3(t). In fact, the probabilities satisfy
the von Neumann evolution equation for the density matrix |ψ0(t)〉〈ψ0(t)| of the form

 d
dt

p3(t)
d
dt

p1(t)− i
d
dt

p2(t)
d
dt

p1(t) + i
d
dt

p2(t) − d
dt

p3(t)



=

(
H11(t) H12(t)
H21(t) H22(t)

)(
p3(t) (p1(t)− 1/2)− i (p2(t)− 1/2)

(p1(t)− 1/2) + i (p2(t)− 1/2) 1− p3(t)

)

−
(

p3(t) (p1(t)− 1/2)− i (p2(t)− 1/2)
(p1(t)− 1/2) + i (p2(t)− 1/2) 1− p3(t)

)(
H11(t) H12(t)
H21(t) H22(t)

)
.

(45)

This matrix equation provides the connection of the time derivatives
dpj(t)

dt
; j = 1, 2, 3 with

probabilities and matrix elements of the Hamiltonian Hjk(t); j, k = 1, 2. In addition, Equation (40)
written for probabilities pj(t); j = 1, 2, 3 takes the form

i
d
dt

√
p3(t) = [H11(t) + χ̇(t)]

√
p3(t) + H12(t)

(p1(t)− 1/2) + i (p2(t)− 1/2)√
p3(t)

. (46)

Thus, using (40), we can obtain the connection of the phase χ(t) with probabilities p1(t), p2(t),
and p3(t). For the case of the spin-1/2 pure state with matrix elements of the Hamiltonian Hjk; j = 1, 2,
one obtains the evolution equation for the phase χ(t) of the Pauli spinor of the form

dχ(t)
dt

= p−1
3 (t)

[
(p2(t)− 1/2) Im H12(t)− (p1(t)− 1/2)Re H12(t)

]
− H11(t). (47)

The probabilities p1(t), p2(t), and p3(t) are given as solutions of the kinetic Equation (45),
which follows from the von Neumann equation for the density matrix ρ(t) of spin-1/2 states, and it
does not contain the phase χ(t). The evolution Equation (47) can be rewritten using Bloch parameters
Bj(t) = 2pj(t)− 1. These parameters have the physical meaning connected with mean values of the
spin-1/2 projections onto three perpendicular directions—x, y, and z, respectively. The equation has
the form

dχ(t)
dt

= [B3(t) + 1]−1 [B2(t) Im H12(t)− B1(t)Re H12(t)]− H11(t). (48)
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The values Bj(t) and probabilities pj(t) can be measured. This means that one can find the
evolution of the phase χ(t) of the spin-1/2 wave function given by the formula

χ(t) =
∫ t

0 dτ
{

p−1
3 (τ) [(p2(τ)− 1/2) Im H12(τ)− (p1(τ)− 1/2)Re H12(τ)]− H11(τ)

}
, χ(0) = 0. (49)

For the Hamiltonian describing the evolution of the spin-1/2 particle with magnetic moment ~M in
a constant magnetic field ~H = (0, 0,H), i.e., H(t) = −MHσz, the probabilities p1(t), p2(t), and p3(t)
depend on the initial values of the state, p1(0), p2(0), and p3(0). For example, if p1(0) = p2(0) = 1/2
and p3(0) = 1, one has Equation (47) of the form

dχ(t)
dt

=MH. (50)

The solution (49) of this equation gives the phase

χ(t) =MHt, (51)

and this phase corresponds to the solution of the Schrödinger equation for the Pauli spinor |ψ(t)〉,

|ψ(t)〉 =
(

e−iµHt 0
0 eiµHt

)(
1
0

)
, (52)

where the initial value |ψ(0)〉 corresponds to the pure state density matrix ρ(0) =

(
1 0
0 0

)
, and the

initial phase χ(0) = 0.
The density matrix ρ(t) corresponding to the pure state (52) does not depend on the magnetic

field H due to the stationarity of probabilities p1(t) = p2(t) = 1/2 and p3(t) = 1 in this particular

case. However, in the case of the initial state with density matrix ρ(0) =
1
2

(
1 1
1 1

)
and |ψ(0)〉 =

1√
2

(
1
1

)
, one has the evolution of probabilities

p1(t) =
1 + cos(2MHt)

2
, p2(t) =

1 + 2 sin(2MHt)
2

, p3(t) =
1
2

. (53)

The phase χ(t) given by (49) takes into account the connection of the probabilities of the spin-1/2
projections m = +1/2 onto perpendicular directions x and y on the magnetic field. Thus, the value of
the magnetic field can be found measuring the probability evolution.

6. The Quantum Observable as a Set of Dichotomic Random Variables

As we found, the density matrix of a spin-1/2 system (42) is expressed in terms of three probability
distributions, (p1, 1− p1), (p2, 1− p2), and (p3, 1− p3), where the probabilities pj, j = 1, 2, 3 satisfy
inequality (43). For an observable

A =

(
A11 A12

A21 A22

)
, (54)

one can determine the set of formal classical-like random variables using the following rule.
Let us determine a random dichotomic variable ~x taking two values, (x1 = x, x2 = −x),

and another random variable ~y taking two values, (y1 = y, y2 = −y), where x + iy = A12. The third
random variable~z takes two real values, (z1 = A11, z2 = A22). The introduced random dichotomic
variables can be interpreted as the rules in such a game as tossing three classical coins. The game with
the first coin has a gain equal to x and a loss equal to −x. For the second coin, the gain is equal to y and



Quantum Rep. 2020, 2 73

the loss is equal to −y. For the third coin, the gain and loss are not equal; they are denoted as z1 and
z2, respectively. We interpret the probability distributions (p1, 1− p1), (p2, 1− p2), and (p3, 1− p3)

as distributions describing the classical statistics of random variables ~x, ~y, and~z. This means that we
define the moments for the dichotomic variables

Mn(~x) = xn
1 p1 + (1− p1)xn

2 , Mn(~y) = yn
1 p2 + (1− p2)yn

2 , Mn(~z) = zn
1 p3 + (1− p3)zn

2 ,

n = 1, 2, . . . (55)

The quantum statistics of observable (54) are described by the matrix A and the density matrix ρ

given by (42) as follows:
〈An〉 = Tr ρ An, n = 1, 2, . . . (56)

One can check that, for the quantum observable A, the mean value 〈A〉 is expressed in terms of
classical mean values M1(~x), M1(~y), and M1(~z), namely,

〈A〉 = M1(~x) + M1(~y) + M1(~z). (57)

The highest moments (55) of classical-like random variables, which we used to interpret the
matrix elements of the quantum observable A and the quantum moments, e.g., 〈A2〉, are not expressed
in the form of a sum analogous to (57).

We consider now an example of the qubit thermal equilibrium state with the density matrix ρ(T).
For a given Hamiltonian H (36) with matrix elements Hjk; j, k = 1, 2, the density matrix reads

ρ(β) =
1

Z(β)
exp(−βH), β =

1
T

. (58)

Using the properties of Pauli matrices σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
,

namely, σ2
j = 1, Tr σj = 0; j = 1, 2, 3 and the relation exp τ(~σ~n) = (cosh τ)12 + (sinh τ)~σ~n, where

~n2 = 1, we arrive at

exp

(
a b
c d

)
= e(a+d)/2

 cosh τ +
a− d

2τ
sinh τ b

sinh τ

τ

c
sinh τ

τ
cosh τ +

d− a
2τ

sinh τ

 , (59)

where
τ =

√
[(a− d)/2]2 + bc (60)

and

Tr

[
exp

(
q b
c d

)]
= 2 exp [(a + d)/2] cosh τ. (61)
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The thermal equilibrium state of the qubit at the temperature T = 1/β is identified with three
probabilities, p1(β), p2(β), and p3(β). For Hamiltonian (36), −βH11 = a, −βH12 = b, −βH21 = c,
and −βH22 = d, the probabilities read

p1(β) =
1
2

1 +
(Re H12) tanh

(
β

√
[(H11 − H22)/2]2 + |H12|2

)
√
[(H11 − H22)/2]2 + |H12|2

 ,

p2(β) =
1
2

1 +
(Im H12) tanh

(
β

√
[(H11 − H22)/2]2 + |H12|2

)
√
[(H11 − H22)/2]2 + |H12|2

 ,

p3(β) =
1
2

1 +
(H22 − H11) tanh

(
β

√
[(H11 − H22)/2]2 + |H12|2

)
√
(H11 − H22)

2 + 4|H12|2

 . (62)

We arrive at the function Z(β) = Tr [exp(−βH)] of the form

Z(β) = 2 [exp (−β [(H11 + H22)/2])] cosh
(

β

√
[(H11 − H22)/2]2 + |H12|2

)
.

Thus, the three probabilities pj(β); j = 1, 2, 3 describe the statistical properties of thermal
equilibrium states of qubits (two-level atoms).

The geometrical picture for all of the states of the qubit is given in terms of Bloch ball parameters.
However, the states of the qubit could also be presented in the form of Triada of Malevich’s squares
(Figure 1) using the probabilities p1, p2, and p3 [40,42,43].

Figure 1. Triada of Malevich’s squares as a geometrical interpretation of qubit states.

An equilateral triangle with a side length of
√

2 is given. This triangle is constructed by gluing
vertices on hypotenuses of three rectangular triangles with equal legs and with the points Aj; j = 1, 2, 3.
The points have coordinates pj and 1− pj. Inside this equilateral triangle, we have the triangle A1 A2 A3

with three side lengths:
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S1 =
(

2 + 2p2
1 − 4p1 − 2p2 + 2p2

2 + 2p1 p2

)1/2
,

S2 =
(

2 + 2p2
2 − 4p2 − 2p3 + 2p2

3 + 2p2 p3

)1/2
,

S3 =
(

2 + 2p2
3 − 4p3 − 2p1 + 2p2

1 + 2p3 p1

)1/2
. (63)

We construct the squares on sides A1 A2, A2 A3, and A3 A1 of triangle A1 A2 A3. We paint the
squares in different colors: The square with side A1 A2 is red, the square with side A2 A3 is black,
and the square with side A3 A1 is white. Thus, the state with density matrix ρ can be geometrically
described either by the point in the Bloch ball or by the three squares on the plane, called the Triada of
Malevich’s squares. This approach was called quantum suprematism [40,42,43].

The quantum nature of the qubit state provides a difference with classical coins, which are also
described by the probabilities p1, p2, and p3. The maximum area of the Triada of Malevich’s squares for
three classical coins is equal to 6. However, for the qubit state (spin-1/2 state, two-level atom state), it is
equal to 3. By measuring Bloch parameters or probabilities p1, p2, and p3, one provides the possibility
of checking this property. This measurement is analogous to checking the Bell inequality for a two
spin-1/2 system, where the maximum value of specific correlations is equal to 2

√
2. The classical-like

maximum is equal to 2. However, in the case of the possible measurement of the Malevich’s square
areas (i.e., measuring probabilities p1, p2, and p3), the system under investigation is a single spin-1/2
particle. In the case of the Bell inequality, the system under study is the two-qubit system. Thus, one can
check the differences in the properties of classical and quantum correlations in the case of one spin-1/2
particle by measuring probabilities p1, p2, and p3, which determine the area of Malevich’s squares.

7. Distance between Quantum States

The probability representation of quantum states can be used to introduce classical-like
characteristics of difference between the states in addition to the fidelity. We consider qubit states as an
example. For density matrices ρ1 and ρ2, there exist six probability distributions

(p(1)1 , 1− p(1)1 ), (p(1)2 , 1− p(1)2 ), (p(1)3 , 1− p(1)3 ), (p(2)1 , 1− p(2)1 ), (p(2)2 , 1− p(2)2 ), (p(2)3 , 1− p(2)3 )

which determine the density matrices. In conventional probability theory, the difference between
the two probability distributions (P1, P2, . . . , PN) and (Q1, Q1, . . . , QN) is characterized by the
distance parameter

S = [(P1 −Q1)
2 + (P2 + Q2)

2 + · · ·+ (PN −QN)
2].

This classical formula can be used to characterize the difference of quantum states with density
matrices ρ1 and ρ2. We determine such characteristics for the two qubit states as follows:

S12 = 2
3

∑
j=1

(p(1)j − p(2)j )2. (64)

In the case of continuous variables, the difference of the two states is characterized by an analogous
relation; it reads

S12(µ, ν) =
∫

[w1(X|µ, ν)− w2(X|µ, ν)]2 dX, (65)

where we use the tomographic probability distributions w1,2(X|µ, ν) corresponding to the states, e.g.,
of the oscillator with density operators ρ1 and ρ2, respectively. The difference of the two states depends
on the parameters µ and ν, which describe the reference frames in the phase space where the position
X is measured.
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In the case of the classical oscillator, for which the tomographic probability distribution can be
introduced [6] and expressed in terms of the Radon transform of the classical probability density
function f (q, p)

wcl(X|µ, ν) =
∫

f (q, p) δ(X− µq− νp) dq dp, (66)

the parameters µ = s cos θ and ν = s−1 sin θ correspond to scale and rotation transforms of the
position and momentum: q → q′ = sq, p → p′ = s−1 p, q′ → q′′ = q′ cos θ + p′ sin θ,
and p′ → p′′ = p′ cos θ − q′ sin θ, respectively. Thus, we can use the notion of the difference of the
states both in classical and quantum mechanics using the tomographic probability distributions.

In connection with the construction of the probability distributions identified with quantum states,
one can apply other characteristics of the state difference used in classical probability theory to study
the difference of two probability distributions. For example, in addition to (66), the Shannon relative
entropy can be considered as a tool to characterize the difference of the two states of photons with two
different tomographic probability distributions.

The relative entropy for quantum symplectic and optical tomograms must be nonnegative; i.e.,
for the symplectic tomogram, we have

Hrelative =
∫

w1(X|µ, ν) ln
[

w1(X|µ, ν)

w2(X|µ′, ν′)

]
dX ≥ 0.

This relative entropy can be equal to zero only for equal probability distributions. Since optical
tomograms of photon states are measured experimentally [24], tomograms w1(X|θ1) and w2(X|θ2)

must satisfy the inequality for the relative entropy:

H(θ1, θ2) =
∫

w1(X|θ1) ln
[

w1(X|θ1)

w2(X|θ2)

]
dX ≥ 0.

This inequality can be checked experimentally. An analogous entropic inequality can be checked
for qubit states, namely,

3

∑
j=1

[
pj ln

(
pj

Pj

)
+ (1− pj) ln

(
1− pj

1−Pj

)]
≥ 0,

where p1, p2, p3,P1,P2, and P3 are different probabilities of spin projections m = +1/2 on the
x, y, z-directions in two different spin-1/2 states identified with the probability distributions.

For composite systems like that of the two qubits, quantum correlations between the subsystem
degrees of freedom can be associated with the probability distributions and their entropies by
describing the states of the system and its subsystems. This problem needs extra consideration.

8. The Evolution Equation in the Probability Representation

Given an arbitrary pair of dequantizer–quantizer operators Û (γ) and D̂(γ), the von Neumann
Equation (27) can be written for the symbol of operator ρ̂(t) determined by the dequantizer operator,

fρ(~γ, t) = Tr
(
Û (~γ)ρ̂(t)

)
; (67)

the equation has the form
∂

∂t
fρ(~γ, t) =

∫
fρ(~γ

′, t)K(~γ,~γ′, t) d~γ′. (68)

Here, the integral kernel is determined by the quantizer–dequantizer operators [21]

K(~γ,~γ′, t) = iTr
[
Û (~γ)

(
D̂(~γ′)Ĥ − ĤD̂(~γ′)

)]
. (69)
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In the case where the symbol of the density operator is a probability distribution, e.g., in the case
of ~γ = (X, µ, ν), using dequantizer–quantizer operators (24) and (25), we arrive at the von Neumann
equation of the form of a kinetic equation for tomographic probability distribution w(X|µ, ν, t) [5].
Equations (68) and (69) provide the unitary evolution description for all known representations of
quantum states in the literature, including the probability representation. For optical tomographic
probability distribution, the evolution equation was found in [44].

9. Conclusions

To conclude, we point out the main results of our work.
We reviewed the probability representation of quantum states and considered the application of

this approach on the examples of harmonic oscillator states and qubit states. In the case of systems
with continuous variables, like the harmonic oscillator, we obtained the relation of the probability
representation of quantum states with the path integral method. We expressed the propagator
describing the evolution of the tomographic probability distribution identified with the quantum state
of the system with continuous variables, like the oscillator, with the path integral determining the
Green function of the Schrödinger evolution equation for the wave function of the system.

In the generic case of systems with continuous variables, we formulated the connection of the
path integral representation of the quantum-state evolution with other representations of quantum
states, using the quantizer–dequantizer approach to the quantization of classical systems studied
in [22,23,38,39]. The notion of classical-like difference of quantum states was introduced, using the
standard notion of the difference of two probability distributions for both the oscillator system
and qubit system, where the state is identified with three probability distributions of dichotomic
random variables.

We found the equation for the time-dependent phase determining the gauge transform of the wave
function. For the qubit state, the equation is given in the form of a relation, where the time-dependent
phase is expressed in terms of the probabilities of dichotomic random variables determining the
evolution of the density matrix satisfying the von Neumann equation with a given Hamiltonian.

The statistical properties of qubit quantum observables were discussed in relation with the
classical statistical properties of the classical-like dichotomic random variables. The different aspects of
the relation of the probability theory with properties of quantum or quantum-like states were discussed
in [45–49]. We will consider other examples of the connection of the path integral with star-product
schemes and entropic inequalities for quantum systems based on the probability representation of
quantum mechanics in future publications.
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