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Abstract: Shannon entropy in position (Sr) and momentum (Sp) spaces, along with their sum (St) are
presented for unit-normalized densities of He, Li+ and Be2+ ions, spatially confined at the center of
an impenetrable spherical enclosure defined by a radius rc. Both ground, as well as some selected
low-lying singly excited states, viz., 1sns (n = 2–4) 3S, 1snp (n = 2–3) 3P, 1s3d 3D, are considered
within a density functional methodology that makes use of a work function-based exchange potential
along with two correlation potentials (local Wigner-type parametrized functional, as well as the
more involved non-linear gradient- and Laplacian-dependent Lee-Yang-Parr functional). The radial
Kohn-Sham (KS) equation is solved using an optimal spatial discretization scheme via the generalized
pseudospectral (GPS) method. A detailed systematic analysis of the confined system (relative to
the corresponding free system) is performed for these quantities with respect to rc in tabular and
graphical forms, with and without electron correlation. Due to compression, the pattern of entropy in
the aforementioned states becomes characterized by various crossovers at intermediate and lower rc

regions. The impact of electron correlation is more pronounced in the weaker confinement limit and
appears to decay with the rise in confinement strength. The exchange-only results are quite good
to provide a decent qualitative discussion. The lower bounds provided by the entropic uncertainty
relation hold well in all cases. Several other new interesting features are observed.

Keywords: Shannon entropy; quantum confinement; impenetrable boundary; excited states;
helium-like ions; exchange correlation

1. Introduction

A particle in an impenetrable box of infinite height has served the role of a simple, elegant
pedagogical tool to illustrate the effects of boundary condition on the energy spectrum of a quantum
system. Understanding of such a system in some sub-region Ω of space (in contrast to the “whole”
space available in a free system) offers new insights to simulate realistic situations in highly
inhomogeneous media or in an external field. Matter constricted under such an extreme pressure
environment gives rise to a wide range of novel changes (from the respective free counterpart) in energy
spectra, electronic structure, chemical reactivity, ionization potential, polarizability etc., depending
on the geometrical forms of the cavity and dimensions. This has inspired a variety of theoretical
and experimental works. Some prominent applications are found in the context of the cell model of
a liquid, superlattice structure, quantum dot, quantum wire, atoms/molecules encapsulated inside
nanocavities (like fullerene, zeolite sieves, porous silicon, carbon nanotube), modeling defects in solids,
confined phonons (or plasmons, polaritons, gas of bosons), as well as astrophysical phenomena such
as the mass-radius relation of white dwarfs, ionized plasma etc. The topic is vast, and there has
been a burgeoning growth of activity as evident from an extensive literature having many excellent
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comprehensive reviews. The interested reader may refer to the following reviews [1–5] and the
references therein.

The first report of a confined hydrogen atom (CHA) within a sphere having rigid impenetrable
walls was published as early as in 1937 [6], imposing the Dirichlet boundary condition that the
wave function vanishes at the boundary. Subsequently, many attempts have been made to estimate
the eigenvalues and eigenfunctions invoking a wide range of approximate analytic, semi-analytic,
and purely numerical schemes. Here we mention a few like Rayleigh-Schrödinger perturbation
theory, the Wentzel-Kramers-Brillouin method, the power-series solution, hypervirial theorem, Padé
approximation, Lie algebraic treatment, super-symmetric quantum mechanics, the Lagrange-mesh
method, the asymptotic iteration method, searching the zeros of the hypergeometric function,
the generalized pseudospectral (GPS) method and the Hartree-Fock (HF) method [7–22]. In recent
years, the exact solution of the Schrödinger equation has been found in terms of the Kummer-M
function (confluent hypergeometric) [16]. As the boundary approaches the nucleus and the volume of
confinement squeezes, one notices a monotonic increase in energy in CHA. Another interesting feature
is that, in contrast to a free atom, due to the breaking of the symmetry in CHA, it is characterized
by different energy eigenvalues, eigenfunctions, and reduced degeneracies. On the other hand,
new degeneracies, namely simultaneous, incidental and inter-dimensional degeneracy, which are
non-existent in the free system, are introduced in CHA afresh. Apart from the effect of compression on
the ground and various energy levels, properties such as the dipole shielding factor, nuclear magnetic
screening constant, hyper-fine splitting constant, pressure, static and dynamic polarizability, etc.,
were examined.

An analogous study of the compressed He atom is a prototypical non-trivial mathematical
problem. Due to the presence of inter-electronic repulsion, the SU(3) symmetry of the simplified
one-electron case is broken, which promises many exciting physics. Ever since the variational
calculation of energy variation [23] with respect to the cage radius and function of pressure, vigorous
attempts have been known. Some of them include the Roothaan-HF-type calculation with the
Slater-type basis [24] or with its modifications [25], configuration interaction [26,27], quantum
Monte Carlo [28], a host of direct variational schemes with the appropriate choice of cut-off
function [8,29–31], variational method with B-splines basis [32], and Rayleigh-Schrödinger perturbation
theory [30,33]. Some other prominent works are explicitly correlated Hylleraas-type wave functions
within the variational framework [34–41], a combination of the quantum genetic algorithm and HF
method [42], variational Monte Carlo [43,44], HF calculation employing local and global basis sets [45],
and so on. Whereas a vast majority of publications have focused on the lowest state, low-lying excited
states were also treated quite decently. For example, 1sns 1,3S states in [29,30,35,38–42,44,46], 1s2p 3P,
1P states in [29,42,46], singly excited 1s3d 3D, 1D and some doubly excited states in [42,46] etc., using a
host of theoretical approaches giving results of varied accuracy.

All the above works pertain to the wave function-based methods. In the past two decades,
some results have been published within the alternative density-based concept, the so-called density
functional theory (DFT) [47–49]. Thus, within an exchange-only framework (using two exchange
functionals, viz. local density approximation (LDA) [47] and Becke-88 exchange potential [50]),
the desired Kohn-Sham (KS) equation was solved satisfying the Dirichlet boundary condition for
many-electron systems via the numerical shooting method [51]. The usefulness of a one-parameter
hybrid exchange functional (including a fraction of exact exchange and the Perdew-Burke-Ernzerhof
functional) for treatment of confined atoms has been presented recently [52]. In another attempt,
ground and 1s2s 3S, 1S states of a confined He atom were reported [53] taking into account the
LDA-approximated exchange-correlation (XC) (with Perdew-Wang parametrization for correlation [54])
with and without self-interaction correction. Response properties such as polarizability and
hyperpolarizability of the confined He atom were reported within a DFT-based variation-perturbation
approach [55]. In a recent work [56], spherically confined atoms were treated by means of the local
exchange potential corresponding to the Zhao-Morrison-Parr and Becke-Johnson potential. Moreover,
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spherical confinement was used in the comparative study (taking the free-ion limit as reference) of
the behavior of spin potential and the pairing energy of first row transition metal cations within the
KS model [57]. A detailed analysis of the correlation energy, the performance of several commonly
used functionals, electron density, as well as the XC potential in some constrained atoms have been
reported [58,59]. The calculation of the static polarizability of confined He and Ne atoms was done
through time-dependent DFT in [60].

Recently, there has been a growing interest in information theoretical analysis of diverse models
and realistic systems. They have found wide-spread applications in many branches of physics and
chemistry, such as thermodynamics, spectroscopy, quantum mechanics. In chemical physics, typically
they can provide valuable information regarding the localization-delocalization, diffusion of atomic
orbital, periodic properties, spreading of electron density, correlation energy, etc. Entropic uncertainty
measures based on these quantities are arguably the most effective quantifiers of uncertainty, as they
do not relate to any specific points of the respective Hilbert space. The present work is particularly
concerned with Shannon entropy (S) [61,62], which is the arithmetic mean of uncertainty. Interestingly,
S like some of the other measures such as Fisher information, Onicescu energy and Rényi entropy are
functionals of density and also characterize density. Many articles have been published to analyze these
measures in free systems (e.g., for free He, we refer the reader to a recent article [63]), but in confined
quantum systems as treated here, analogous studies are quite limited. Two such reports [64,65] in
CHA are available so far. A systematic variation of S with respect to rc in r and p spaces has been
presented only recently [66,67] for ` = 0, as well as non-zero-` states. One finds that confinement
affects S more profoundly in the stronger regime. Further, Sr increases with the rise in rc and at the
very low-rc region (≈0.1), CHA displays exactly the opposite trend from a free H atom (Sr declines
with the rise in n keeping l fixed). Usually, the effect of perturbation on higher quantum number states
is more pronounced. In confined two-electron isoelectronic series (H−, He, Li+, Be2+), S has been
reported for only ground states [64] by means of BLYP calculations.

Some reports [52,68–73] are available on S in penetrable confinement in atoms. For example, it was
observed [68] that, in CHA, up to a certain value of rc, Sr decreases with rc. However, for small rc and
depending on barrier height, Sr may also increase. Apart from constant potential, it was probed [73]
for confinements imposed by a dielectric continuum and by isotropic harmonic potential. It was also
proposed [72] as an indicator to measure the delocalization of electron density. Ground-state atomic
S’s, as a function of the width of confining potential, was calculated by employing the correlated
Hylleraas-type wave function in both repulsive and attractive finite potentials [70]. Confinement
by an inert geometric planar boundary with finite barrier height has been studied [69] within a
Thomas-Fermi-Dirac-Weizsäcker-type DFT framework. Some limited works exist on excited states as
well, viz. low-lying singly [70] and doubly [71] excited states. It is worth noting that S values in He are
available [74] in selected excited states, such as 1,3Se, 1,3Po and 1,3De.

The objective of this work is to make a thorough systematic analysis of S in a He-like ion placed
inside a spherical cage or radius rc. This is done by invoking DFT within a work function-based
exchange potential in conjunction with two correlation functionals, viz., a local, parametrized
Wigner-type [75] and somewhat involved nonlinear Lee-Yang-Parr (LYP) [76] functional. The pertinent
KS differential equation is solved within the Dirichlet boundary condition by means of the GPS
method in an accurate and efficient manner. The electron density as well as Sr are calculated from
the self-consistent orbitals. The p-space orbitals are constructed from respective r-space orbitals via
standard Fourier transform, from which the Sp’s are computed. Variation of Sr, Sp and the total
Shannon entropy sum (S = Sr + Sp) with respect to rc is offered for He, Li+ and Be2+. Apart from the
ground state, we also consider singly excited 3S, 3P and 3D states arising out of configurations 1sns
(n = 2–4) 3S, 1snp (n = 2–3) 3P and 1snd (n = 3). As is apparent from the preceding discussion, there
is a lack of such results in the literature, especially in excited states, and we attempt to provide them.
The article is organized as follows. Section 2 outlines the methodology used. Section 3 discusses the
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results along with a comparison with available references, while Section 4 makes a few concluding
remarks.

2. Methodology

Here, we briefly outline the proposed density functional method for ground and excited states
of an arbitrary atom centered inside an impenetrable spherical cavity, followed by the GPS method
for the calculation of the eigenvalues and eigenenergies of the corresponding KS equation. It may be
noted that the present method has been very successfully used for ground and various excited states
(such as singly, doubly, triply excited states corresponding to low- and high-lying excitation, valence
and core excitation, autoionizing states, hollow and doubly hollow states, very high-lying Rydberg
states, satellites states, etc.) of free or unconfined neutral atoms, as well as positive and negative
ions in a series of articles [77–83]. However, it has never been tested for any confinement studies as
intended here. Thus, we present an extension of the method for the purpose of confinement effects.
Our focus remains on essential portions, omitting the relevant details, which could be found in the
above references.

The starting point is the non-relativistic single-particle time-independent KS equation with
imposed confinement, which can be conveniently written as (atomic unit employed unless otherwise
mentioned),

H(r)φi(r) = εi(r)φi(r), (1)

where H is the perturbed KS Hamiltonian, written as,

H(r) = −1
2
∇2 + ve f f (r)

ve f f (r) = vne(r) +
∫

ρ(r′)
|r− r′|dr′ +

δExc[ρ(r)]
δρ(r)

+ vcon f (r). (2)

In the above, vne(r) and vcon f (r) signify external electron-nuclear attraction and the effective
confining potentials, whereas the second and third terms in the right-hand side denote classical
Coulomb (Hartree) repulsion and many-body XC potentials, respectively. The desired confinement
effect is built into the system by introducing a potential of the following form (rc refers to the radius of
a spherical enclosure),

vcon f (r) =

{
0, r ≤ rc

+∞, r > rc.
(3)

Though DFT has achieved impressive success in explaining the electronic structure and
properties of a many-electron system in the ground state in the past four decades, the calculation of
excited-state energies and densities has remained a bottleneck. This is mainly due to the absence of a
Hohenberg-Kohn theorem parallel to the ground state, as well as the lack of a suitable XC functional
valid for a general excited state. In this work, we employed an accurate work function-based exchange
potential, which was physically motivated [84,85]. Accordingly, exchange energy is interpreted as the
interaction energy between an electron at r and its Fermi-Coulomb hole charge density ρx(r, r′) at r′,
and given by,

Ex[ρ(r)] =
1
2

∫ ∫
ρ(r)ρx(r, r′)
|r− r′| dr dr′. (4)
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Assuming that a unique local exchange potential vx(r) exists for a given state, it can be defined
as the work done in bringing an electron to the point r against the electric field generated by its
Fermi-Coulomb hole density, leading to the following form,

vx(r) = −
∫ r

∞
Ex(r)dl, (5)

where the electric field is expressed as,

Ex(r) =
∫

ρx(r, r′)(r− r′)
|r− r′|3 dr

′
. (6)

The Fermi hole can be written in terms of orbitals as,

ρx(r, r′) = −|γ(r, r′)|2

2ρ(r)
, (7)

where |γ(r, r′)| = ∑i φ∗i (r)φi(r′) is the single particle density matrix and ρ(r) is the electron density,
expressed in terms of occupied atomic orbitals (ni denotes occupation number) as,

ρ(r) =
N

∑
i=1

ni|φi(r)|2. (8)

While the exchange potential vx(r) corresponding to a given state arising from an electronic
configuration can be accurately calculated by the above procedure as delineated, the correlation
potential vc(r) is unknown and must be approximated for practical calculations. The current work
incorporates two correlation functionals, namely a Wigner-type [75] and LYP [76]. These two
functionals were chosen on the basis of their success in the unconfined atomic excited states, which
were recorded in [77–83]. This work will help shed some light on the applicability of such functionals
in the context of confined quantum systems, including those studied here.

With this choice of vx(r) and vc(r), the resulting KS differential equation,[
−1

2
∇2 + ve f f (r)

]
φi(r) = εiφi(r), (9)

needs to be solved, where ve f f (r) is as defined in Equation (2), maintaining the Dirichlet boundary
condition. For an accurate and efficient solution, we adopted the GPS scheme leading to a non-uniform,
optimal spatial discretization. It is a simple, but very effective method; its success has been
demonstrated for many static and dynamic properties of a variety of singular and non-singular
potentials of physical and chemical interest [80–83,86–89] such as, Coulomb, Húlthen, Yukawa,
logarithmic, spiked oscillator, Hellmann potential, etc., along with its recent extension to quantum
confinement [15,21,22]. As the method is very well established and documented, in the following, we
will mention a very brief summary of it; the details are available in the cited references.
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The key characteristic of this approach is to approximate an exact function f (x) defined in the
interval [−1, 1] by an Nth-order polynomial fN(x),

f (x) ∼= fN(x) =
N

∑
j=0

f (xj)gj(x), (10)

which ensures that the approximation is exact at the collocation points xj,

fN(xj) = f (xj). (11)

Here, we utilize the Legendre pseudo-spectral method where x0 = −1, xN = 1, while xj(j =
1, . . . , N − 1)’s are defined by the roots of the first derivative of Legendre polynomial PN(x), with
respect to x, namely,

P
′
N(xj) = 0. (12)

In Equation (10), gj(x) are termed cardinal functions, and as such are expressed as,

gj(x) = − 1
N(N + 1)PN(xj)

(1− x2)P
′
N(x)

(x− xj)
, (13)

fulfilling the unique property that gj(xj′ ) = δj′ ,j. Then, use of a non-linear mapping followed by a
symmetrization procedure eventually leads to a symmetric eigenvalue problem, which is solved by
standard available software to provide accurate eigenvalues and eigenfunctions.

The p-space wave function is obtained numerically from the Fourier transform of the respective
r-space counterpart in the following way,

ξ(p) =
(

1
2π

)3/2 ∫
φ(r) eip.rdr. (14)

It is noted here that ξ(p) is not normalized; hence, it needs to be normalized. The normalized
r- and p-space densities are represented as ρ(r) = ∑N

i=1 ni|φi(r)|2 and Π(p) = ∑N
i=1 ni|ξi(p)|2,

respectively, where ni represents the occupation number of each orbital.
Next Sr, Sp, and Shannon entropy sum St are defined in terms of the expectation values of

logarithmic probability density functions, which have the forms given below as,

Sr = −
∫
R3

ρ(r) ln[ρ(r)] dr, Sp = −
∫
R3

Π(p) ln[Π(p)] dp,

St =
[
Sr + Sp

]
≥ 3(1 + ln π), in 3 dimension.

(15)

Here, ρ(r) and Π(p) are both normalized to unity.
All the computations are done numerically. The convergence is ensured by carrying out

calculations with respect to variation in grid parameters, such as the total number of radial points and
the maximum range of the grid. It is generally observed that convergence is achieved relatively easily
in the lower rc region compared to the rc → ∞ limit. All results given in the following tables and plots
were checked for the above convergence.
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3. Result and Discussion

At the onset, it would be appropriate to mention a few points to facilitate the discussion. The net
information measures in r and p space of confined many-electron system consist of (i) radial and (ii)
angular contributions. The angular part remains invariant in both spaces with respect to change in
boundary condition resulting from confinement. Note that, an analogous energy analysis with respect
to rc in these and other excited states, would be presented elsewhere. However, it suffices here to
mention that, energies for both ground and excited states obtained with the present method are in good
agreement with those available in literature. Here our aim is to investigate S for confined two-electron
atomic systems at various rc in several low-lying states. These are calculated for spherically confined
He and extended to confined iso-electronic members, namely, Li+ and Be2+. Apart from ground state,
following low-lying singly excited states have been considered, viz., 1sns 3S with n= 2–4; 1snp 3P with
n = 2–3; 1snd 3D having n = 3. The necessary results are presented in the following tables and plots
along with available literature values, for a comparative discussion. All calculations are performed
with unit-normalized density.

To start with, Table 1 imprints the numerical results of Sr, Sp, St for confined He, Li+ and Be2+

in their ground states. In order to put things in perspective, here and in all other tables, three sets of
calculations have been performed at each rc, namely, (i) exchange-only (ii) XC with Wigner correlation
(iii) XC with LYP correlation. Throughout the article, these three results are denoted by labels X-only,
XC-Wigner and XC-LYP respectively. This can give us an idea how X-only and HF results compare
and contrast. Moreover, it will help us in getting a sense of correlation contribution in current context,
approximated by two functionals. In all three occasions (i)–(iii), Sr’s increase with rise in rc and finally
merge to corresponding free atom entropy at a sufficiently large rc. The reported values of Sr in this table
further reinforces the previous conclusions [64,72] that impenetrable walls impose confinements in a way
that localizes the electron density, and consequently Sr→−∞ when rc → 0. However, it is important
to point out that, in all these cases total energy monotonically decreases with rc eventually reaching the
free-atom limit. Actually, with reduction in rc the r-space electron density gets compressed and as a
consequence, Sr decreases. On the contrary, Sp gradually abates with progress in rc. At all rc’s, however,
St maintains the lower bound (6.434) governed by the well-known BBM inequality [62]. The qualitative
behavior of Sr, Sp, St with growth in rc does not change much with atomic charge (Z), although their
numerical values differ. In fact, at a given rc, Sr regresses and Sp progresses with advancement of Z.
With rise in Z, electron density gets compressed and hence such a pattern is noticed. Interestingly, while
in one-electron systems St does not depend on Z, in a many-electron atom, with change of Z it varies [90].
Earlier St has been mentioned as a measure of correlation in free systems. Our work establishes the same
fact in confinement as well. It is noticed that, for all the three species, S’s are identical at very low rc

region (≤0.5), without or with (either Wigner or LYP) correlation. Furthermore, these two results begin
to differ at larger rc indicating correlation effects to assume more significance in the respective free-atom
case. In other words, this implies that, at smaller rc region, XC effect is minimum, which enhances with
rise in rc. Similar conclusions have been found in the energy analysis of confined He in [55]. For He
and Li+, these have been estimated by BLYP calculation [64] in most of the rc’s considered here, which
are appropriately quoted. Note that the HF values [91] for Sr, Sp, St in ground state of unconfined He
match reasonably well with our X-only results. Since we are unable to find reference theoretical results for
X-only S’s in the hard confinement, for direct comparison, as a matter of check, a couple of comparisons
on respective free systems is provided here. Thus the literature Sr, Sp, St values of He and Li+ within
HF method [91,92], employing N-normalized densities, given in footnote of the table, are in reasonable
agreement with our X-only values. Recently, in a penetrable confinement calculation within HF, some
results on Sr have been presented [72]. The same has also been calculated from a DFT-based study with
hybrid exchange functional [52]. Results for He in free-limit from both these studies, presented in footnote
show quite decent agreement with ours. It may be noted that in these two aforementioned references Sr in
U0 → ∞ corresponds to the impenetrable confinement. Highly accurate benchmark-quality result for Sr

was calculated from a Hylleraas-type variational method producing a value of 2.7051028 and 1.2552726 for
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free He and Li+ [93] respectively. Correlated results obtained from variational Monte carlo and diffusion
Monte Carlo methods [92] for He and Li+ are also cited in the footnote. The current single-determinantal
approach quite nicely compares with reference values in the table–XC-LYP providing a slight edge over
XC-Wigner. It would be worthwhile to make a comparative energy analysis of these two functionals,
which we intend to do in near future. No reference entropies are available for Be2+.

A careful examination of Table 1 reveals that, X-only, XC-Wigner and XC-LYP results provide
similar qualitative trend with respect to changes in rc, for all three species. Hence in Figure 1, X-only Sr,
Sp and St are plotted for ground state of all three isoelectronic members, as functions of rc in panels
(a)–(c). The first two panels imply that, for a fixed Z, Sr, Sp go up and down respectively with rise in
rc. On the contrary, for a given rc, variation of these two quantities with Z shows opposite trend; the
former decays and latter develops as Z advances. These results reinforce the inferences drawn from
Table 1. Another point to be noted here is that, with lowering in rc the difference between Sr and Sp

corresponding to two successive members of the isoelectronic series, diminishes; in other words, as rc

enhances, so does the difference. As rc declines, both average electron-nucleus and electron-electron
distances fall down. In stronger confinement regime, the effect of Z on ground state gets dominated
by confining potential, resulting in the fact that the three Sr, Sp plots very nearly coincide. For a fixed
Z, variation of St with rc in panel (c) suggests that the entropy sum reduces dramatically from its free
atomic value as rc is lowered. With enhanced confinement, a distinct minimum followed by a maximum
shows up in the curve for all He-like ions. The minimum tends to shift towards left as Z progresses.
This observed pattern is in consonance with that found in [64].
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Table 1. Sr, Sp, St (a.u.) in the ground states of confined He, Li+, and Be2+. See the text for details.

Species rc
X-Only XC-Wigner XC-LYP Literature 1

Sr Sp St Sr Sp St Sr Sp St Sr Sp St

0.1 −6.2534 12.855 6.5744 −6.2534 12.855 6.5744 −6.2534 12.855 6.5744
0.3 −3.004 9.580 6.576 −3.004 9.580 6.576 −3.004 9.580 6.576 −2.988 9.488 6.5
0.5 −1.525 8.075 6.550 −1.525 8.075 6.550 −1.525 8.075 6.550 −1.498 8.023 6.525
1 0.389 6.118 6.507 0.387 6.119 6.506 0.388 6.118 6.506 0.4326 6.078 6.51

He 2,3 1.4 1.22 5.273 6.493 1.22 5.276 6.49 1.22 5.327 6.547 1.2739 5.234 6.508
2 1.97 4.547 6.517 1.96 4.555 6.515 1.96 4.549 6.509 2.0097 4.519 6.528
3 2.50 4.061 6.561 2.48 4.080 6.560 2.50 4.068 6.568 2.5241 4.057 6.581
4 2.65 3.943 6.593 2.63 3.969 6.599 2.64 3.952 6.592 2.6651 3.945 6.61
5 2.68 3.921 6.608 2.65 3.95 6.60 2.67 3.932 6.602 2.7042 3.918 6.622
6 2.69 3.918 6.608 2.66 3.95 6.61 2.68 3.93 6.61 2.7106 3.914 6.625
7 2.69 3.918 6.608 2.66 3.95 6.61 2.68 3.93 6.61 2.7117 3.913 6.625

0.1 −6.2665 12.860 6.5935 −6.2665 12.860 6.5935 −6.2665 12.860 6.5935
0.3 −3.050 9.604 6.554 −3.050 9.604 6.554 −3.050 9.604 6.554 −3.034 9.538 6.504
0.8 −0.392 6.890 6.498 −0.393 6.891 6.498 −0.392 6.890 6.498 −0.353 6.849 6.496
1 0.12 6.376 6.496 0.121 6.378 6.499 0.122 6.377 6.499 0.1659 6.335 6.501

Li+ 4,5 2 1.135 5.431 6.566 1.12 5.440 6.56 1.13 5.43 6.56 1.174 5.4 6.574
2.5 1.22 5.361 6.581 1.21 5.373 6.58 1.22 5.36 6.58 1.2618 5.331 6.593
3 1.24 5.346 6.586 1.23 5.358 6.58 1.24 5.34 6.58 1.2878 5.313 6.601
4 1.25 5.343 6.593 1.23 5.355 6.58 1.24 5.34 6.58 1.2942 5.309 6.603
7 1.25 5.343 6.593 1.23 5.355 6.58 1.24 5.34 6.58

0.1 −6.2801 12.866 6.5859 −6.2801 12.866 6.5859 −6.2801 12.866 6.5859
0.3 −3.102 9.636 6.534 −3.102 9.636 6.534 −3.102 9.636 6.534
0.5 −1.725 8.226 6.501 −1.725 8.226 6.501 −1.725 8.226 6.501
1 −0.229 6.748 6.519 −0.231 6.750 6.519 −0.229 6.748 6.519

Be2+ 1.5 0.191 6.373 6.564 0.186 6.378 6.564 0.190 6.374 6.564
2 0.27 6.311 6.581 0.26 6.317 6.577 0.26 6.312 6.572

2.5 0.28 6.305 6.585 0.27 6.311 6.581 0.26 6.306 6.566
3 0.28 6.305 6.585 0.27 6.311 6.581 0.26 6.306 6.566
7 0.28 6.305 6.585 0.27 6.311 6.581 0.26 6.306 6.566

1 DFT calculation [64], using the BLYP functional. 2 For the free atom, using N-normalized HF density; Sr: 4.01 [72], 4.06 [91], 4.0100 [92], 4.0107 [52]; Sp: 6.45 [91]; St: 10.52 [91].
Our exchange-only (X-only) results are 4.00, 6.45, and 10.52 respectively. 3 Correlated Sr values in the free He atom: (i) unit-normalized density: 2.7051028 [93], 2.705 [94]; (ii)
N-normalized density: 4.40106; (variational Monte Carlo), 4.0256 (diffusion Monte Carlo) [92]. Our exchange-correlation (XC) results are 3.93 (XC-Wigner) and 3.96 (XC-Lee-Yang-Parr
(LYP)). 4 HF Sr value in the free Li+ ion using N-normalized density: 1.1023 [92]. Our X-only result is 1.11. 5 Correlated Sr value in the Li+ ion: (i) unit-normalized density:
1.2552726 [93]; (ii) N-normalized density: 1.1204 (Variational Monte Carlo), [92]. 1.1143 (diffusion Monte Carlo). Our XC results are: 1.08 (XC-Wigner), 1.10 (XC-LYP).
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Now, we move on to some low-lying singly excited state-Sr, Sp, St for He, Li+ and Be2+ in
Tables 2–4. Following the presentation strategy of previous table, it reports results for 1s2s 3S, 1s2p 3P
and 1s3d 3D states respectively. Like the ground state, here also in all three states, both X-only and
correlation-included Sr, Sp moves up and down respectively with growth in rc. In all cases again St

obeys the stipulated lower bound [62]. The qualitative pattern of Sr, Sp, St with progress in rc remains
invariant with change of Z. However, their numerical values alter substantially. Similar to the ground
state, at a fixed rc, Sr falls off and Sp enhances with advancement of Z. Once again, for a given Z, at
low rc region, X-only, XC-Wigner and XC-LYP results practically merge with each other, signifying that
the effect of correlation is somewhat less impactful in stronger confinement region, as the confining
potential leads the contribution in this scenario. Whereas, with rise in rc, the correlation effect prevails,
indicating its importance in free conditions. Except the free atom-limit of Sr in 1s2s 3S He, no reference
results could be found for any of the confined states and we hope the present work would provide
useful guideline in future.

Table 2. Sr, Sp, St (a.u.) in 1s2s 3S states of confined He, Li+, and Be2+. See the text for details.

Species rc
X-Only XC-Wigner XC-LYP

Sr Sp St Sr Sp St Sr Sp St

0.1 −6.2172 14.190 7.9728 −6.2172 14.190 7.9728 −6.2172 14.190 7.9728
0.5 −1.4472 9.376 7.9288 −1.4472 9.376 7.9288 −1.4472 9.3756 7.9288
1 0.547 7.333 7.880 0.547 7.333 7.880 0.547 7.333 7.880
2 2.417 5.409 7.826 2.415 5.410 7.825 2.417 5.409 7.826

He 1 4 3.956 3.86 7.819 3.948 3.87 7.818 3.953 3.86 7.813
6 4.60 3.22 7.82 4.59 3.23 7.82 4.59 3.23 7.82

6.5 4.71 3.11 7.82 4.69 3.13 7.82 4.69 3.13 7.82
7.5 4.87 2.94 7.81 4.85 2.96 7.81 4.85 2.97 7.82
8.5 4.99 2.81 7.80 4.96 2.84 7.80 4.96 2.85 7.81
10 5.10 2.69 7.79 5.06 2.72 7.78 5.03 2.75 7.78

0.1 −6.2246 14.191 7.9664 −6.2246 14.191 7.9664 −6.2246 14.191 7.9664
0.5 −1.4905 9.392 7.9015 −1.4905 9.392 7.9015 −1.4905 9.392 7.9015
1 0.442 7.401 7.843 0.442 7.401 7.843 0.442 7.401 7.843

1.5 1.481 6.335 7.816 1.480 6.336 7.816 1.481 6.336 7.817
Li+ 2 2.141 5.669 7.810 2.138 5.671 7.809 2.140 5.669 7.809

3 2.910 4.90 7.810 2.905 4.90 7.805 2.909 4.905 7.814
4 3.32 4.49 7.81 3.312 4.49 7.802 3.31 4.49 7.80
7 3.70 4.07 7.77 3.68 4.09 7.77 3.69 4.09 7.78

8.5 3.72 4.05 7.77 3.70 4.07 7.77 3.70 4.07 7.77
10 3.72 4.05 7.77 3.70 4.07 7.77 3.70 4.07 7.77

0.1 −6.2320 14.191 7.9590 −6.2320 14.191 7.9590 −6.2320 14.191 7.9590
0.5 −1.5376 9.415 7.8774 −1.537 9.415 7.8774 −1.5376 9.415 7.8774
1 0.322 7.499 7.821 0.322 7.500 7.822 0.322 7.499 7.821
2 1.829 5.981 7.810 1.826 5.983 7.809 1.828 5.981 7.809

Be2+ 3 2.42 5.38 7.80 2.141 5.39 7.531 2.418 5.38 7.798
4 2.66 5.12 7.78 2.651 5.13 7.781 2.656 5.12 7.776
5 2.73 5.03 7.76 2.72 5.05 7.77 2.72 5.04 7.76
6 2.75 5.02 7.77 2.73 5.03 7.76 2.74 5.02 7.76

20 2.75 5.02 7.77 2.73 5.03 7.76 2.74 5.02 7.76
1 Correlated Sr value in the free atom is: 5.239 [94].
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Figure 1. Variation of Sr, Sp, St for He-isoelectronic series (Z = 2–4) with rc in (a–c).

In order to gain a better understanding of the effect of confinement on excited states, Sr, Sp in
compressed He have been plotted in panels (a), (b) of Figure 2, for three triplet singly excited states
arising from configuration 1sns, corresponding to n =2–4. Since correlation does not affect the results
qualitatively, for this purpose, it suffices to consider X-only results. With this in mind, here and in
next figure (Figure 3), only X-only entropies are shown. It is obvious from these plots that, for excited
states, as in Figure 1, Sr gains with rise in rc, while Sp declines. Now for a fixed rc, the behavior of Sr

with n (in this series), shows interesting pattern. For a large enough value of rc, which corresponds to
the free-atom limit of He of the state under consideration, Sr progresses as n grows. Though it may
not be so apparent from the data presented in respective table or plot, as the maximum range of rc

presented here is 10 a.u. This can be concluded from the fact that Sr for 1s2s, 1s3s and 1s4s triplet states
in the free limit are 5.20, 6.53, 7.43 respectively, signifying a progressive delocalization. But this pattern
gets dissolved with reduction in rc and crossing between Sr for different states occurs. From the inset
plots of panel (a) it is noticed that, at rc ≈ 7.43 there is a crossing between S(1s2s)

r and S(1s4s)
r ; another

crossing occurs at rc ≈ 6.36 between S(1s3s)
r and S(1s4s)

r . With further gain in confinement strength, at
rc ≈ 0.33 and 0.34, crossings take place between S(1s2s)

r , S(1s4s)
r and S(1s2s)

r , S(1s3s)
r respectively. Hence,

one encounters frequent change in the order arrangement on proceeding from free to strong confined
regime. In the strong confinement regime (rc ≈ 0.1) the following ordering of entropy holds good:
S(1s2s)

r > S(1s3s)
r > S(1s4s)

r . Apparently, there exists an interplay between two competing effects,
namely, (i) radial confinement (localization) and (ii) accumulation of nodes and humps with growth
in n (delocalization). And these two opposing forces control the ordering of S values of these states.
Similarly, in p space also, such crossovers prevail at various rc’s. However, at rc → ∞ limit and rc = 0.1,
Sp shows opposite trend to that of Sr.
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Table 3. Sr, Sp, St (a.u.) in 1s2p 3P states of confined He, Li+, and Be2+. See the text for details.

Species rc
X-Only XC-Wigner XC-LYP

Sr Sp St Sr Sp St Sr Sp St

0.5 −1.392 8.596 7.204 −1.392 8.596 7.204 −1.392 8.596 7.204
0.8 −0.031 7.213 7.182 −0.031 7.213 7.182 −0.031 7.213 7.182
1 0.60 6.570 7.170 0.60 6.570 7.170 0.60 6.570 7.170
3 3.26 4.04 7.30 3.26 4.05 7.31 3.26 4.04 7.30

He 1 5 4.09 3.49 7.58 4.08 3.50 7.58 4.08 3.50 7.58
6 4.35 3.34 7.69 4.32 3.36 7.68 4.33 3.35 7.68
7 4.54 3.23 7.77 4.51 3.25 7.76 4.51 3.25 7.76

7.6 4.63 3.18 7.81 4.58 3.21 7.79 4.58 3.21 7.79
8 4.68 3.15 7.83 4.65 3.18 7.83 4.64 3.18 7.82

10 4.86 3.04 7.90 4.82 3.08 7.90 4.78 3.10 7.88

0.5 −1.437 8.620 7.183 −1.437 8.620 7.183 −1.437 8.620 7.183
0.8 −0.121 7.284 7.163 −0.121 7.284 7.163 −0.121 7.284 7.163
1 0.471 6.693 7.164 0.470 6.694 7.164 0.47 6.69 7.16

1.5 1.44 5.91 7.35 1.438 5.91 7.358 1.44 5.91 7.35
Li+ 2 2.009 5.29 7.299 2.005 5.30 7.305 2.008 5.30 7.308

3 2.65 4.85 7.50 2.64 4.86 7.50 2.653 4.86 7.513
6 3.33 4.47 7.80 3.31 4.49 7.80 3.31 4.48 7.79
8 3.39 4.45 7.84 3.36 4.47 7.83 3.37 4.47 7.84
9 3.40 4.45 7.85 3.36 4.47 7.83 3.37 4.47 7.84
10 3.40 4.45 7.85 3.37 4.47 7.84 3.37 4.47 7.84

0.5 −1.490 8.658 7.168 −1.490 8.658 7.168 −1.490 8.658 7.168
0.8 −0.235 7.402 7.167 −0.235 7.402 7.167 −0.235 7.402 7.167
1.2 0.698 6.532 7.23 0.697 6.534 7.231 0.698 6.532 7.23
2 1.589 5.857 7.446 1.585 5.861 7.446 1.588 5.858 7.446

Be2+ 2.5 1.892 5.670 7.562 1.88 5.67 7.55 1.890 5.701 7.591
5 2.37 5.41 7.78 2.35 5.43 7.78 2.36 5.42 7.78
6 2.38 5.41 7.79 2.36 5.42 7.78 2.37 5.42 7.79
10 2.38 5.41 7.79 2.36 5.42 7.78 2.37 5.42 7.79

1 Correlated Sr value in the free atom is: 5.356 [74].
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Figure 2. Variation of Sr, Sp in 1sns 3S (n = 2–4) states of confined He with rc. See the text for details.
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Table 4. Sr, Sp, St (a.u.) in 1s3d 3D states of confined He, Li+, and Be2+. See the text for details.

Species rc
X-only XC-Wigner XC-LYP

Sr Sp St Sr Sp St Sr Sp St

0.5 −1.3053 9.110 7.8047 −1.3053 9.110 7.8047 −1.3053 9.110 7.8047
1 0.707 7.073 7.780 0.706 7.073 7.779 0.707 7.073 7.780

1.5 1.828 5.938 7.766 1.826 5.939 7.765 1.827 5.938 7.765
2.6 3.155 4.640 7.795 3.150 4.645 7.795 3.153 4.641 7.794

He 1 4 3.960 3.957 7.917 3.951 3.967 7.918 3.957 3.960 7.917
5 4.327 3.687 8.014 4.317 3.699 8.016 4.323 3.691 8.014
6 4.61 3.48 8.09 4.60 3.50 8.10 4.60 3.49 8.09
7 4.85 3.33 8.18 4.83 3.34 8.17 4.83 3.34 8.17
8 5.04 3.19 8.23 5.03 3.21 8.24 5.02 3.22 8.24

10 5.36 2.97 8.33 5.35 2.99 8.34 5.27 3.04 8.24

0.5 −1.339 9.129 7.790 −1.339 9.129 7.790 −1.339 9.129 7.790
0.8 −0.003 7.774 7.771 −0.003 7.774 7.771 −0.003 7.774 7.771
1 0.601 7.161 7.762 0.601 7.161 7.762 0.601 7.161 7.762

2.5 2.611 5.27 7.881 2.608 5.280 7.888 2.611 5.277 7.888
Li+ 3 2.918 5.042 7.960 2.914 5.047 7.961 2.917 5.043 7.960

4 3.373 4.72 8.093 3.36 4.73 8.09 3.37 4.72 8.09
5 3.704 4.50 8.204 3.69 4.51 8.20 3.70 4.50 8.20

6.5 4.06 4.26 8.32 4.05 4.27 8.32 4.05 4.27 8.32
7 4.16 4.20 8.36 4.15 4.21 8.36 4.14 4.21 8.35

7.5 4.24 4.14 8.38 4.23 4.15 8.38 4.22 4.16 8.38
10 4.53 3.97 8.50 4.51 3.99 8.50 4.46 4.03 8.49

0.5 −1.3803 9.157 7.776 −1.3803 9.157 7.776 −1.3803 9.157 7.776
0.8 −0.097 7.857 7.760 −0.097 7.857 7.760 −0.097 7.857 7.760
1 0.460 7.303 7.763 0.459 7.304 7.763 0.460 7.303 7.763

2.5 2.21 5.79 8.00 2.211 5.79 8.001 2.213 5.79 8.003
Be2+ 3 2.496 5.59 8.086 2.492 5.60 8.092 2.495 5.59 8.085

4 2.911 5.32 8.231 2.907 5.32 8.227 2.909 5.32 8.229
7 3.53 4.94 8.47 3.51 4.96 8.47 3.51 4.96 8.47
8 3.60 4.91 8.51 3.59 4.92 8.51 3.58 4.93 8.51

8.5 3.63 4.90 8.53 3.61 4.92 8.53 3.60 4.92 8.52
10 3.66 4.90 8.62 3.64 4.91 8.55 3.62 4.92 8.54

1 Correlated Sr value in the free atom is: 6.634 [74].

As a continuation of the earlier discussion, we present in Figure 3, X-only Sr, Sp and St as a
functions of rc corresponding to 3S, 3P and 3D states resulting from 1s3s, 1s3p and 1s3d configurations
of He, in panels (a)–(c). From panel (a), at rc ≈ 10, we obtain the following ordering of entropy:
Sr(3S) > Sr(3P) > Sr(3D), indicating a drop in fluctuation as one passes from 3S to 3P to 3D. Similar to
that in Figure 2, here also, multiple crossovers take place at intermediate and lower rc region and
eventually settles with the following sequential order Sr(3P) > Sr(3S) > Sr(3D) at (rc ≈ 0.1),
representing strong confinement region. Now in conjugate space, at higher rc region ≈ 20, Sp

displays an exact opposite trend to that of Sr in the free limit, which is depicted in panel (b). This is
obvious as the more localized a state is in r space, the more diffused it is in p space. Here also,
due to crossover between states this pattern gets dissolved at lower rc, leading to an ordering as
Sp(3S) > Sr(3P) > Sr(3D), at rc ≈ 0.1. Panel (c) portrays the response of St which verifies that the
lower bound is maintained throughout entire confinement region.



Quantum Rep. 2020, 2 202

-6

-3

 0

 3

 6

 0  2.5  5  7.5  10

S
r

rc

1s3s

1s3p

1s3d

(a)

-4.15

-3.32

-2.49

 0.2  0.3  0.4  0.5

 4.4

 4.8

 5.2

 6  7  8  9

 3

 6

 9

 12

 0  5  10  15  20

S
p

rc

1s3s

1s3d

1s3p

(b)

 10.4

 11.7

 13

 0  0.2  0.4  0.6

 3.2

 3.28

 3.36

 3.44

 9.2  9.6  10

 2.55

 2.7

 2.85

 13.28  14.94  16.6

 7.83

 8.1

 8.37

 8.64

 0  2.5  5  7.5  10

S
t

rc

1s3s

1s3p

1s3d

(c)

Figure 3. Sr, Sp, St in 1s3s 3S, 1s3p 3P, 1s3d 3D states of confined He, against rc. See the text for details.

4. Conclusions

Shannon information entropy (in r and p spaces) was analyzed for confined He iso-electronic
series. Ground and excited states were studied via a simple DFT method, by solving the radial KS
equation through a generalized Legendre pseudospectral method. Some attempts are known for S
of the free He atom, as well as its confinement within a soft, penetrable boundary. However, to the
best of our knowledge, this is the first such systematic study of information in a confined two-electron
atom within a rigid, impenetrable spherical cage. Apart from the ground state, several low-lying
singly excited triplet states of the iso-electronic series were considered. As the X-only entropies were
comparable to their HF counterparts in the free atom limit, it was expected that this would also hold
in the confined case as well. The effects of electron correlation were probed through two correlation
functionals. For the states considered here, the correlation contribution remained rather small in
the low rc regime, assuming greater significance as the latter approached the free atom limit. It was
observed that the two correlation functionals offered quite comparable results as far as Shannon
entropy was concerned. To get more accurate results, it would be necessary to design/employ proper
correlation functionals suited for confined systems.



Quantum Rep. 2020, 2 203

It was seen that Sr amplified and Sp declined with the rise in rc, in both ground and excited
states under consideration. Besides, for a particular confinement strength, as Z grew, the state of a
system became more localized with a consequent drop and rise in Sr, Sp, respectively. For the two
families of states arising out of configurations (a) 1sns 3S (n = 2–4) and (b) 1s3s 3S, 1s3p 3P, 1s3d 3D, in
the intermediate and lower rc region, the information entropies showed interesting crossovers and
finally reached their free atom limit at certain large rc. In all cases, the St bound was maintained.
The emergence of these novel characteristics of Sr, Sp, and St makes such information-centric analyses
valuable tools for structure and dynamics under a constrained environment. It would be worthwhile
to extend the present study to the case of supposedly more realistic penetrable boundaries. Besides,
we are also interested in several other information measures like Fisher information, Onicescu energy,
complexity, etc., in such systems. Some of these works may be undertaken in the future.
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