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Abstract: The resting membrane voltage of excitable cells such as neurons and muscle cells is
determined by the electrochemical equilibrium of potassium and sodium ions. This voltage is
calculated by using the Goldman–Hodgkin–Katz equation. However, from the quantum perspective,
ions with significant quantum tunneling through closed channels can interfere with the electrochemical
equilibrium and affect the value of the membrane voltage. Hence, in this case the equilibrium becomes
quantum electrochemical. Therefore, the model of quantum tunneling of ions is used in this study to
modify the Goldman–Hodgkin–Katz equation in such a way to calculate the resting membrane voltage
at the point of equilibrium. According to the present calculations, it is found that lithium—with its
lower mass—shows a significant depolarizing shift in membrane voltage. In addition to this, when
the free gating energy of the closed channels decreases, even sodium and potassium ions depolarize
the resting membrane voltage via quantum tunneling. This study proposes the concept of quantum
electrochemical equilibrium, at which the electrical potential gradient, the concentration gradient and
the quantum gradient (due to quantum tunneling) are balanced. Additionally, this concept may be
used to solve many issues and problems in which the quantum behavior becomes more influential.

Keywords: quantum tunneling; quantum conductance; quantum biology; voltage-gated channel;
quantum electrochemical equilibrium

1. Introduction

Resting membrane voltage is determined by the electrochemical equilibrium of the ions such
as potassium and sodium ions [1]. Recently, several studies have focused on the quantum behavior
of ions [2,3] and its implications in the biologic systems including ion channels’ selectivity [4–7].
Despite the increasing interest on the quantum transport of ions across the biologic membrane [4–7],
the quantum transport of ions through the closed hydrophobic gate of the channels has not been
addressed by researchers. Despite that, it has been proposed that ions can use the phenomenon of
quantum tunneling to pass through the closed voltage-gated channels of the biologic membrane [8].
Additionally, it has been suggested that quantum tunneling phenomenon can be applicable on
ions [9,10]. However, under normal physiological conditions sodium and potassium ions have
insignificant tunneling probability that does not affect the electrochemical equilibrium or the membrane
voltage [8]. On the other hand, when ions with significant tunneling probability such as lithium ions
are introduced to the biologic system, they will affect the resting membrane voltage [8,11]. Therefore,
these ions determine the membrane voltage not by the classical electrochemical equilibrium but by
quantum electrochemical equilibrium indicating the role of quantum transport through the closed
channels via quantum tunneling. The term “quantum electrochemical equilibrium” is novel and it
has not been proposed before especially in cell membrane biophysics. Thus, this study proposes new
concept that may serve to solve future paradoxes, problems and medical issues such as epilepsy and
cardiac arrhythmias caused by channelopathies. This insight will be discussed in this article.
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Quantum electrochemical equilibrium is the equilibrium in which the electrical potential gradient,
the chemical gradient (concentration gradient) and the quantum gradient (quantum tunneling effect)
are balanced. At this equilibrium, the membrane voltage of the membrane will be determined.
The plausible indication of positing this concept is to determine the membrane voltage of equilibrium
at which the quantum membrane conductance can be calculated. Intriguingly, the quantum membrane
conductance depends on the kinetic energy of the ion which also depends on the membrane voltage
itself [8]. Therefore, if the biologic system begins with certain value of quantum conductance other
than that of equilibrium, the membrane will get certain value of voltage that will change the quantum
conductance which in turn will change the membrane voltage and this voltage will change the quantum
conductance again, etc. Based on this, the quantum electrochemical equilibrium can be used to
determine the value of the membrane voltage at which the quantum conductance cannot change the
membrane voltage anymore because at this point all the three gradients (the chemical, the electrical
and the quantum) are balanced. In other words, the membrane voltage will be calculated when the net
flux of ions due to these three gradients across the membrane is zero. Consequently, this will offer
more accurate theoretical results by defining the predicted value of membrane voltage due to quantum
electrochemical equilibrium. Additionally, this will be beneficial if experiments are conducted to
measure the membrane voltage so that a reliable comparison can be made between the experimental
observations and the theoretical data.

The aim of the present study is to modify the Goldman–Hodgkin–Katz equation in a way to
integrate the effect of quantum tunneling so that the resting membrane potential can be calculated at
the equilibrium point. This integration is accomplished by using the model of quantum tunneling of
ions [8]. Additionally, the present study will modify some aspects of the mathematical model used
before [8] and the model used to explain the therapeutic effect of lithium [11] to ensure higher accuracy
in the obtained results and the calculations will be based on defining the state of equilibrium. Moreover,
different reasonable assumptions are made to show how the concept of quantum electrochemical
equilibrium can be used to delineate the effect of certain pathologies on the membrane potential.

2. Methods

The model of quantum tunneling of ions through the closed voltage-gated channels was proposed.
In this model, the intracellular hydrophobic gate is defined as an energy barrier and ions have the
opportunity to pass through [8]. Hence, the quantum conductance can be calculated and used to
investigate the effect of quantum tunneling on the membrane potential.

The intracellular hydrophobic gate impends the passage of ions because it forms barrier energy
higher than the kinetic energy KE of moving ions. This barrier energy is referred to the free gating
energy of the channel G which represents the minimum amount of energy required to open the closed
gate [8,12,13]. In addition to this, if the closed gate is delineated as a potential barrier, its shape will
not be rectangular where barrier energy is constant at every point, but it will change as ion passes
across the gate. This is because the free gating energy G represents the total sum of energy amount
that ion should acquire to overcome the barrier and this energy is divided on each point or position
x in the gate. Consequently, as ion goes through each position x, it needs certain quantity of energy
U(x) that enables it to pass starting from a position X1 where U(x) = KE until reaching the end of the
gate X2. Therefore, the general formula of tunneling probability or transmission coefficient of ions (P),
as derived from Schrodinger equation, can be written as the following [8,14]:

P = e
−
√

8m
}

X2∫
X1

√
U(x)−KEdx

(1)

where m is the mass of the ion, } is the reduced Planck constant (1.05 × 10−34 Js) and X1–X2 is the
region where U(x) is equal or higher than KE.



Quantum Rep. 2020, 2 268

To solve the integral in Equation (1), a mathematical relation between U(x) and x must be set.
To do so, the closed gate is demonstrated as regular electric field E in the space of a parallel capacitor
which holds out against the movement of ions [8]. This capacitor will have a voltage V and a length L
which also represents the length of the intracellular hydrophobic gate [8]. Thus, the electric field E
corresponded to the closed gate can be formulated as in the following equation [8]:

E =
V
L

=
G
qL

(2)

where q is the charge of the ion.
Additionally, U(x) can be calculated by the following equation [8]:

U(x) = qEx (3)

Eventually, by substituting Equation (2) in Equation (3), the equation becomes:

U(x) =
G
L

x (4)

Equation (4) can be substituted in Equation (1) to become:

P = e
−

√
8m
}

X2∫
X1

√
G
L x−KEdx

(5)

The integral in Equation (5) can be solved as the following:

X2∫
X1

√
G
L

x−KEdx =
2L
3G

√
(

G
L

x2 −KE)
3
−

2L
3G

√
(

G
L

x1 −KE)
3

(6)

As previously said, X2 is at the end of the gate which means X2 = L and X1 is where U(x) = KE.
Therefore, Equation (6) becomes:

X2∫
X1

√
G
L

x−KEdx =
2L
3G

√
(G−KE)3 (7)

By substituting Equation (7) in Equation (5), the equation of tunneling probability becomes:

P = e−
√

8m
} ×

2L
3G

√
(G−KE)3

(8)

To determine the effect of ions quantum tunneling on the resting membrane voltage, the membrane
conductance due to quantum tunneling (quantum conductance) CQM must be calculated.

To calculate CQM, quantum conductance of single closed channel CQ−channel must be considered.
Assuming that there is no spin degeneracy of ions, CQ−channel can be calculated by the following
equation [14,15]:

CQ−channel =
103q2

h
P (9)

where q is the charge of the ion, h is the Planck constant (6.6 × 10−34 Js), P is the tunneling probability
and 103 is used to convert the unit of conductance from Siemens (S) to milliSiemens (mS).
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Finally, taking into consideration the density of channels D which is the number of channels per
area unit of the membrane (channels/cm2), CQM can be calculated [8]:

CQM = CQ−channel ×D (10)

The kinetic energy of ions is due to the membrane voltage and the thermal source of body
temperature. Therefore, as long as the membrane is polarized (negative inside in comparison to
the outside) and the hydrophobic gate is located at the intracellular end of the membrane [16,17],
the extracellular cations get kinetic energy while passing through the membrane voltage and kinetic
energy from the thermal source, but the intracellular cations get kinetic energy only from the thermal
source because they will hit the intracellular hydrophobic gate before going through the membrane
voltage. Therefore, the kinetic energy of extracellular KEo and intracellular KEi cations can be calculated
by the following equations, respectively [18]:

KEo = qVm +
1
2

KBT (11)

KEi =
1
2

KBT (12)

where q is the charge of the ion, Vm the membrane potential (voltage), KB is the Boltzmann’s constant
(1.38 × 10−23 J/K) and T is the absolute body temperature (310 K).

As presented in the Equations (11) and (12), it is apparent that extracellular cations acquire higher
kinetic energy when compared with intracellular cations.

The intracellular hydrophobic gate of the voltage-gated channels such as sodium and potassium
channels represents the main controller of the channels’ conductance unlike the selectivity filter which
aims to differentiate between ions with minor effect on the channels’ conductance for the specific
ion [12,13,16,17]. For this reason, the quantum model is applied on this gate to calculate the quantum
conductance of the channel and to determine the effect of quantum tunneling of ions through the
closed gate on the membrane voltage.

Taking into consideration the classical electrochemical contribution of potassium and sodium
ions and the significant quantum tunneling of a monovalent cation X such as lithium, the
Goldman–Hodgkin–Katz equation can be written as the following:

CNa[Na]o + CK[K]o + CQM(Xo)[X]o = e
FVm
RT (CNa[Na]i + CK[K]i + CQM(Xi)[X]i) (13)

where (o) means extracellular, (i) means intracellular, [ ] is the concentration, CNa is the membrane
conductance of sodium at the resting state, CK is the membrane conductance of potassium at the resting
state, Vm is the membrane voltage, F is Faraday’s constant (96,485.33 C/mol), R is the gas constant
(8.31 J/Kmol) and T is the absolute body temperature (310 K).

By substituting Equations (8)–(12) in Equation (13):

CNa[Na]o + CK[K]o + AeB
√
(G−(qVm+

1
2 KBT))

3

[X]o = e
−FVm

RT (CNa[Na]i + CK[K]i + AeB
√
(G− 1

2 KBT)
3

[X]i) (14)

where A = 103D q2

h and B = −
√

8m
} ×

2L
3G

Equation (14) calculates the resting membrane voltage Vm that is negative inside in comparison to
the outside of the cell. The non-quantum conditions at the resting state favor the polarized state of
the membrane as being negative inside in comparison to the outside. Thus, the quantum tunneling
effect does not switch the polarization of the membrane to become positive inside in comparison to
the outside, but it changes the value of polarization. Furthermore, Vm in the equation represents

the absolute value of the voltage, for this reason the negative sign is added in this expression e
−FVm

RT .
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In a conclusion, Equation (14) calculates the absolute value of the resting membrane voltage, which is
negative inside in comparison to the outside, governed by the quantum electrochemical equilibrium.

Interestingly, the quantum electrochemical equilibrium of sodium and potassium ions can be
significant and affect the membrane voltage when the factors that determine the tunneling probability
change. Thus, the following general equation can be used to calculate the membrane voltage at the
equilibrium point when the quantum tunneling of sodium and potassium ions are more evident than
in normal physiology:

(CNa + CQM(Na)o)[Na]o + (CK + CQM(K)o)[K]o = e
FVm
RT ((CNa + CQM(Na)i)[Na]i + (CK + CQM(K)i)[K]i) (15)

The quantum conductance for intracellular sodium and potassium ions can be neglected because
they have lower kinetic energy that makes the tunneling probability and the quantum conductance
low in a way that they do not affect the membrane voltage. Accordingly—and by substituting
Equations (8)–(12) for sodium and potassium ions in Equation (15)—the equation can be written as
the following:

(CNa + [AeB
√
(G−(qVm+

1
2 KBT))

3

]Na)[Na]o + (CK + [AeB
√
(G−(qVm+

1
2 KBT))

3

]K)[K]o = e
−FVm

RT (CNa[Na]i + (CK[K]i) (16)

Moreover, if the focus is on sodium ions only, the equation can be written as the following:

(CNa + [AeB
√
(G−(qVm+

1
2 KBT))

3

]Na)[Na]o + CK[K]o = e
−FVm

RT (CNa[Na]i + CK[K]i) (17)

On the other hand, if the focus is on potassium ions only, the equation can be written as
the following:

CNa[Na]o + (CK + [AeB
√
(G−(qVm+

1
2 KBT))

3

]K)[K]o = e
−FVm

RT (CNa[Na]i + CK[K]i) (18)

3. Results and Discussion

The resting membrane potential is set when the electrochemical equilibrium has been established
and it is calculated by the Goldman–Hodgkin–Katz equation. However, when an ion with significant
quantum conductance is introduced into the biologic environment, the resting membrane potential
cannot be calculated by the same equation and further modifications are required to determine
the effect of quantum tunneling on the resting membrane potential. The Equations (14)–(18)
represent the modified equations required to calculate the membrane voltage at the quantum
electrochemical equilibrium.

3.1. Quantum Electrochemical Equilibrium under the Effect of Lithium Ions

Lithium has significant quantum tunneling effect and significant quantum conductance [8,11].
Therefore, it is used to be the ion X in Equation (14), also the model is applied on the sodium
voltage-gated channels because they are approximately selective for lithium as for sodium [19].

By substituting 0.005 mS/cm2 [1], 0.5 mS/cm2 [1], 142 mmol/L [1], 14 mmol/L [1], 4 mmol/L [1],
140 mmol/L [1], 0.9 mmol/L [11,20], 3.6 mmol/L [11,20], 1.6× 10−19 C, 1.15× 10−26 kg, 5.4 × 10−11 m [8,21],
6.33 × 10−20 J [18], 5 × 109 channels/cm2 [22] for the following variables CNa, CK, [Na]o, [Na]i, [K]o,
[K]i, [Li]o, [Li]i, the lithium ion’s charge (q), the mass of lithium ion (m), the length of the gate (L),
the free gating energy (G) and the channels density in the neuronal membrane (D), respectively in
Equation (14):

2.71 + 1.75× 108e−1.64
√
(6.12−16Vm)

3
= 70.08e−37.45Vm (19)

Using MATLAB software, Equation (19) can be solved and Vm = 71 mV.
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Accordingly, the resting membrane voltage becomes −71 mV (negative inside in comparison to
the outside of the cell) under the effect of quantum tunneling of lithium ions. Before adding lithium
ions, the resting membrane voltage is −87 mV and that means lithium ions show a depolarization effect
on the membrane potential. Here is a clear example on how the quantum behavior of ions can really
affect the membrane voltage of the cells using the concept of quantum electrochemical equilibrium.

Based on the membrane voltage of −71 mV, the tunneling probability and the quantum membrane
conductance of lithium ions can be calculated using the Equations (8)–(12). See Table 1.

Table 1. Tunneling probability and the quantum membrane conductance of lithium ions when the
membrane voltage is −71 mV.

Lithium Tunneling Probability Quantum Membrane Conductance (mS/cm2)

Extracellular 1.22 × 10−8 2.37
Intracellular 1.65 × 10−11 3.2 × 10−3

Two interesting findings have been found in experiments documented in the literature. First,
lithium ions depolarize the resting membrane potential, for example, from −74.9 mV to −48.64 mV at
extracellular concentration of 100 mmol/L and intracellular concentration of 120 mmol/L after 1 h of
infusion of lithium salt [23]. Second, lithium ions have high permeability at the resting state which is a
contributing factor to the depolarization induced by lithium ions [23]. The classical electrophysiology
cannot provide a reasonable solution for this issue because the high lithium conductance cannot
be explained since lithium passes approximately by the same high degree of selectivity of sodium
through sodium channels [19]; however, it passes by the same low selectivity of sodium through
the potassium channels [24]. This means that lithium will have a conductance approximately
equals to that for sodium at the resting state which is 0.005 mS/cm2 and this conductance is not
enough to cause such marked depolarization at the extracellular concentration of 100 mmol/L and
intracellular concentration of 120 mmol/L. Paradoxically, these concentrations after 1 h should induce
hyperpolarization instead of depolarization because it is obvious that intracellular concentration is
higher than the extracellular concentration and this means that lithium ions will flow from inside
the cell to the outside resulting in hyperpolarization. However, the experimental observations are
consistent with membrane depolarization instead of hyperpolarization and this can be only true if the
extracellular lithium ions have higher conductance than the intracellular ions. Based on the values in
Table 1, it is evident that extracellular lithium ions have higher quantum conductance in comparison
with the intracellular lithium ions and this attributed to the higher kinetic energy of extracellular ions
which results in higher quantum tunneling probability. Thus, the quantum model provides congruous
clarification of the discrepancy of conductance between extracellular and intracellular lithium ions.

According to the results obtained in Table 1, it is clear that extracellular lithium has quantum
membrane conductance higher than the resting conductance of sodium and even higher than that of
potassium. This high quantum conductance of lithium can resolve the issue of the ability of lithium
to depolarize the resting membrane potential with high resting conductance. Furthermore, if the
extracellular concentration of 100 mmol/L and the intracellular lithium concentration of 120 mmol/L
are substituted in Equation (14), the membrane voltage will be −39 mV which represents marked
depolarization. Moreover, another similar experiment was conducted to show a depolarization from
−84.6 mV to −59.2 mV after 1 h of lithium salt infusion [23]. Probably, if the infusion persisted for
longer than 1 h in these two experiments, the membrane voltage would be −39 mV.

These set of equations will be useful when the different variables (i.e., the free gating energy, the
kinetic energy of the ion, the length of the gate and the mass of the ion) that govern the tunneling
probability are changed under different pathological conditions because when they change, the
tunneling probability may change significantly in a way that affects the resting membrane potential.
Therefore, establishing equations that calculate the membrane potential at the point of equilibrium is
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important to explore the effect of such changes on the membrane voltage and consequently on the
overall electrophysiological features of the biologic membrane.

Possible mechanism that may decrease the free gating energy of the channel is the disorder of
channelopathies [25–27]. This disorder is implicated in different pathologies including epilepsy and
cardiac arrhythmias [28]. In the further calculations, it will be shown how such decrease in the free
gating energy can make the quantum tunneling more obvious for sodium and potassium ions.

3.2. Quantum Electrochemical Equilibrium when the Free Gating Energy of the Sodium Channels Decreases

Regarding sodium ions, the same values substituted for lithium will be substituted for sodium
taking into consideration the differences in concentration and mass (mass of sodium is 3.8 × 10−26 kg):

1. At normal physiological parameters with no decrease in the free gating energy and by
substituting in Equation (17), the equation becomes:

2.71 + 2.75× 1010e−2.99
√
(6.12−16Vm)

3
= 70.07e−37.45Vm (20)

By using MATLAB software, Vm = 87 mV and this indicates that sodium ions do not affect
the membrane voltage under normal physiological parameters so that their equilibrium is mainly
governed by the classical electrochemical equilibrium.

Based on the membrane voltage of −87 mV and no change in the free gating energy, the quantum
tunneling probability and the quantum membrane conductance of sodium ions can be calculated. See
Table 2.

Table 2. Tunneling probability and the quantum membrane conductance of sodium ions with membrane
voltage of −87 mV and no change in the free gating energy.

Sodium Tunneling Probability Quantum Membrane Conductance (mS/cm2)

Extracellular 4.33 × 10−14 8.4 × 10−6

Intracellular 2.19 × 10−20 4.25 × 10−12

The quantum conductance of extracellular sodium ions is lower than their conductance at the
resting state (0.005 mS/cm2) and this explains why membrane voltage does not change due to quantum
tunneling of sodium ions under normal physiological parameters. The quantum conductance of
intracellular sodium ions is much lower than the quantum conductance of extracellular sodium ions
and the conductance at the resting state (0.005 mS/cm2) and hence it was neglected when the membrane
voltage was calculated.

2. Assuming that a disorder such as channelopathy affects the voltage-gated sodium channels
and decreases the free gating energy by 25% so that the barrier energy becomes 4.75 × 10−20 J after
being 6.33 × 10−20 J, the equation becomes:

2.71 + 2.75× 1010e−3.98
√
(4.54−16Vm)

3
= 70.07e−37.45Vm (21)

Using MATLAB software, Vm = 77 mV and this means depolarizing shift in the membrane
voltage from −87 mV to −77 mV.

Based on the membrane voltage of−77 mV and the decrease in the free gating energy, the tunneling
probability and the quantum membrane conductance can be calculated. See Table 3.
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Table 3. Tunneling probability and the quantum membrane conductance of sodium ions with membrane
voltage of −77 mV and decrease in the free gating energy by 25%.

Sodium Tunneling Probability Quantum Membrane Conductance (mS/cm2)

Extracellular 3.93 × 10−11 7.62 × 10−3

Intracellular 1.92 × 10−17 3.72 × 10−9

The quantum conductance of extracellular sodium ions is higher than the conductance at the
resting state (0.005 mS/cm2) and this interprets the depolarizing shift in the membrane voltage.
In addition to this, the quantum conductance of intracellular sodium ions is still low in a way that does
not affect the membrane voltage.

3. If the calculation is repeated with a decrease by 50% in the free gating energy so that the barrier
energy drops to 3.17 × 10−20 J, the equation becomes:

2.71 + 2.75× 1010e−5.99
√
(2.96−16Vm)

3
= 70.07e−37.45Vm (22)

By using MATLAB software, Vm = 39 mV and this indicates depolarizing shift from −87 mV to
−39 mV.

Based on the membrane voltage of−39 mV and the decrease in the free gating energy, the tunneling
probability and the quantum membrane conductance can be calculated. See Table 4.

Table 4. Tunneling probability and the quantum membrane conductance with membrane voltage of
−39 mV and decrease in the free gating energy by 50%.

Sodium Tunneling Probability Quantum Membrane Conductance (mS/cm2)

Extracellular 5.0 × 10−10 9.7 × 10−2

Intracellular 5.4 × 10−14 1.05 × 10−5

Here, the depolarizing shift is larger than the previous one because the quantum tunneling
probability and the quantum conductance are higher. Again, quantum conductance of intracellular
sodium ions is still low and does not affect the membrane voltage.

3.3. Quantum Electrochemical Equilibrium when the Free Fating Energy of the Potassium Channels Decreases

Regarding potassium ions and their selective channels, the following values will be considered
for substitution in Equation (18): the free gating energy is 5.35 × 10−20 J [29], the length of the gate is
4.4 × 10−11 m [8,21] and the mass is 6.5 × 10−26 kg:

1. At normal physiological parameters, the equation will be:

2.71 + 7.76× 108e−3.76
√
(5.14−16Vm)

3
= 70.07e−37.45Vm (23)

By using MATLAB software, Vm = 87 mV and this indicates that the quantum tunneling of
potassium does not affect the membrane voltage.

Based on the membrane voltage of −87 mV and no decrease in the free gating energy, the quantum
tunneling probability and the quantum membrane conductance can be calculated. See Table 5.

Table 5. Tunneling probability and the quantum membrane conductance of potassium ions with
membrane voltage of −87 mV and no change in the free gating energy.

Potassium Tunneling Probability Quantum Membrane Conductance (mS/cm2)

Extracellular 1.39 × 10−12 2.7 × 10−4

Intracellular 8.6 × 10−20 1.67 × 10−11
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The quantum conductance of extracellular potassium ions is lower than the resting conductance of
potassium (0.5 mS/cm2) and sodium (0.005 mS/cm2) and this gives the reason why quantum tunneling
of potassium ions does not affect the membrane voltage under normal physiological conditions.
Moreover, the quantum conductance of intracellular potassium ions is much lower than the quantum
conductance of extracellular potassium ions and the resting conductance and hence it was neglected
when the membrane voltage was calculated.

2. If the free gating energy decreases by 25%, the equation will be:

2.71 + 7.76× 108e−5.02
√
(3.8−16Vm)

3
= 70.07e−37.45Vm (24)

Then, Vm = 78 mV, and this shows depolarizing shift in the membrane voltage from −87 mV to
−78 mV.

Based on the membrane voltage of−78 mV and the decrease in the free gating energy, the tunneling
probability and the quantum membrane conductance can be calculated. See Table 6.

Table 6. Tunneling probability and the quantum membrane conductance of potassium ions with
membrane voltage of −78 mV and decrease in the free gating energy by 25%.

Potassium Tunneling Probability Quantum Membrane Conductance (mS/cm2)

Extracellular 1.34 × 10−9 0.26
Intracellular 6.99 × 10−17 1.36 × 10−8

The quantum membrane conductance of extracellular potassium ions is comparable to the resting
conductance of potassium ions (0.5 mS/cm2) and this explains the depolarizing shift. Regarding
the quantum conductance of intracellular potassium ions, it is still low and does not influence the
membrane voltage.

3. If the free gating energy decreases by 50%, the equation will be:

2.71 + 7.76× 108e−7.56
√
(2.47−16Vm)

3
= 70.07e−37.45Vm (25)

Then, Vm = 43 mV and this represents depolarizing shift from −87 mV to −43 mV.
Based on the membrane voltage of−43 mV and the decrease in the free gating energy, the tunneling

probability and the quantum membrane conductance can be calculated. See Table 7.

Table 7. Tunneling probability and the quantum membrane conductance of potassium ions with
membrane voltage of −43 mV and decrease in the free gating energy by 50%.

Potassium Tunneling Probability Quantum Membrane Conductance (mS/cm2)

Extracellular 1.54 × 10−8 2.99
Intracellular 1.83 × 10−13 3.55 × 10−5

Here, the depolarizing shift is larger because the tunneling probability and the quantum
conductance of extracellular potassium ions are higher. On the other hand, the quantum membrane
conductance of intracellular potassium ions is still low and does not change the membrane voltage.

By comparing the values previously obtained, the quantum tunneling of sodium and potassium
ions does not affect the membrane voltage under normal physiology. However, when a decrease
in the free gating energy happens due to certain diseases such as channelopathies, the tunneling
probability may be significant and affect the membrane voltage due to the significant quantum
membrane conductance. Obviously, the exponential function of tunneling probability is sensitive
to the decrease in the free gating energy. This sensitivity is manifested in the significant shift in
membrane voltage when a drop by 25% and 50% happens to the free gating energy of the voltage-gated
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channels. Surprisingly, potassium ions induce depolarizing shift instead of hyperpolarizing shift
because the quantum tunneling probability of extracellular potassium ions is much higher than that
for intracellular potassium ions since the extracellular ions have higher kinetic energy. Consequently,
there will be a net quantum flux of cations to inside the cell resulting in depolarization. Remarkably,
lithium can depolarize the membrane voltage under normal physiological parameters unlike sodium
and potassium ions which make this action under pathological conditions such as channelopathies or
probably any condition that may change the factors that set the tunneling probability. This variance
is attributed mainly to the smaller mass of lithium when compared with the mass of sodium and
potassium ions.

Furthermore, the discrepancy in the kinetic energy between intracellular and extracellular ions as
indicated in the Equations (11) and (12) creates quantum gradient generated from the higher tunneling
probability of extracellular ions and the lower tunneling probability of intracellular ions. As a result,
a quantum flux of ions from the extracellular space to the intracellular space (inward flux) is created.
This quantum inward flux will be balanced with the flux due to the concentration gradient of ions
and the flux due to the membrane potential (voltage). At this balance, the net flux of ions across the
membrane is zero as presented by the modified Goldman–Hodgkin–Katz equations.

According to the assumptions, when the voltage-gated channels are diseased by channelopathy
and the free gating energy decreases, the tunneling probability and quantum conductance increase
and the membrane potential is depolarized. The membrane depolarization is a predisposing factor
for the hyperexcitability of epilepsy and cardiac arrhythmias. Therefore, the concept of quantum
electrochemical equilibrium may be useful to treat such diseases in the future.

The model of quantum tunneling of ions seems to be able to unravel the underlying mechanism
behind the ionic current permeated through closed channels as documented in the literature especially
that no mechanical opening of the closed gate was observed [30,31]. These currents could be quantum
currents generated by quantum tunneling of ions. Accordingly, if experiments will be conducted so
that they will measure these quantum currents, the quantum conductance, and the membrane voltage
and then a comparison will be made between these experimental observations with the theoretical
data postulated here in this article, a consistent correlation may be made to prove the validity of the
ions quantum tunneling model.

4. Conclusions

The present work introduces a new concept in cell membrane biophysics and this concept is
quantum electrochemical equilibrium at which the electrical potential gradient, the concentration
gradient and the quantum gradient (due to quantum tunneling effect) are balanced. This concept
will be useful to explore the changes on the membrane voltage and the overall excitability when the
quantum behavior of ions becomes evident and more obvious under the influence of certain disorders
and diseases. Moreover, experiments will be required to prove the validity of the model proposed in
this article.
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