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Abstract: In order to optimize and design new bubbly flow reactors, it is necessary to predict the
bubble behavior and properties with respect to the time and location. In gas-liquid flows, it is
easily observed that the bubble sizes may vary widely. The bubble size distribution is relatively
sharply defined, and bubble rises are uniform in homogeneous flow; however bubbles aggregate,
and large bubbles are formed rapidly in heterogeneous flow. To assist in the analysis of these systems,
the volume, size and other properties of dispersed bubbles can be described mathematically by
distribution functions. Therefore, a mathematical modeling tool called the Population Balance Model
(PBM) is required to predict the distribution functions of the bubble motion and the variation of their
properties. In the present paper, two rectangular bubble columns and a water electrolysis reactor
are modeled using the open-source Computational Fluid Dynamic (CFD) package OpenFOAM.
Furthermore, the Method of Classes (CM) and Quadrature-based Moments Method (QBMM) are
described, implemented and compared using the developed CFD-PBM solver. These PBM tools are
applied in two bubbly flow cases: bubble columns (using a Eulerian-Eulerian two-phase approach to
predict the flow) and a water electrolysis reactor (using a single-phase approach to predict the flow).
The numerical results are compared with measured data available in the scientific literature. It is
observed that the Extended Quadrature Method of Moments (EQMOM) leads to a slight improvement
in the prediction of experimental measurements and provides a continuous reconstruction of the
Number Density Function (NDF), which is helpful in the modeling of gas evolution electrodes in the
water electrolysis reactor.

Keywords: bubbly flow; population balance model; quadrature-based moment method; bubble column;
gas evolution electrode

1. Introduction

In recent years, there has been a growing interest in two-phase flows as they can be observed
in various industries such as petroleum, mining, chemical and biotechnology [1–4]. In a two-phase
flow, the dispersion of the particles (bubbles) in the continuous phase plays an important role in the
process. One of the main challenges is to use the population balance model to predict the evolution
of the number of bubbles and of their size in bubbly flow. To give an example, in order to optimize
and enhance the efficiency of electrochemical reactors, the evolved bubbles should be under control,
since the presence of bubbles has favorable and unfavorable effects, such as a resistive film for the
electric current flow and ions supply heading to the electrode to participate in the electrode reaction.

ChemEngineering 2018, 2, 8; doi:10.3390/chemengineering2010008 www.mdpi.com/journal/chemengineering

http://www.mdpi.com/journal/chemengineering
http://www.mdpi.com
https://orcid.org/0000-0002-5480-1562
https://orcid.org/0000-0001-9368-9393
http://dx.doi.org/10.3390/chemengineering2010008
http://www.mdpi.com/journal/chemengineering


ChemEngineering 2018, 2, 8 2 of 23

Bubbles can also play a role as a turbulence promoter and inducer of convection over the electrode
surface [5–8]. The accurate description of bubble size evolution is then beneficial to formulate predictive
models for design optimization.

In the literature concerning the simulation of gas-liquid systems, several authors have used
a monodisperse model only accounting for a mean bubble size (Deen et al. [9]; Holzinger [10]; Friberg [11],
Morud and Hjertager [12]; Ranade and Deshpande [13]; Ranade [14]; Schwarz and Turner [15];
Schwarz [16]). While these models reduce the computational cost of the numerical simulation, they are
unable to predict the evolution of the bubble size distribution, limiting their applicability and reliability
for industrial design purposes [17]. One of the main problems in modeling of multiphase dispersion is
the prediction of bubble size distribution. Global polydisperse models, in which a spatially-varying field
of bubble sizes is considered, can globally account for the polydispersity of the bubbles, in addition
to the phase continuity equation. As global polydispersity models yield a non-constant bubble
size, the disperse phase is global polydisperse with a locally monodispersed size distribution
(Kerdouss et al. [18] and Ishii et al. [19]). However, by applying this approach, the local probability
distribution of the bubble size is not considered. Detailed models using the locally polydisperse
approach give more information on the secondary phase behavior (Dhanasekharan et al. [20];
Venneker et al. [21]). The most used methods of locally polydisperse models are the Method of
Classes (CM) (Balakin et al. [22]; Bannari et al. [1]; Becker et al. [23]; Kumar and Ramkrishna [24];
Kumar and Ramkrishna [25]; Puel et al. [26]), Quadrature Method of Moments (QMOM) (McGraw [27];
Marchisio et al. [28]; Marchisio et al. [29]; Marchisio et al. [30]; Sanyal et al. [31]) and Direct Quadrature
Method of Moments (DQMOM) (Silva and Lage [32]; Selma et al. [33]; Marchisio and Fox [34]).
The method of classes, while intuitive and accurate, is computationally intensive due to the large
number of classes required to finely discretize the Number Density Function (NDF) with a large
number of classes. Compared with CM, the QMOM can consider a wide range of bubble sizes
with a reduced number of equations for the moments of the NDF. However, in some evaporation
and combustion problems (Fox et al. [35]; Yuan et al. [36]), the value of the NDF for null internal
coordinates needs to be known, which is not the case if the QMOM method is used. DQMOM solves
the equations for weights and abscissae directly. Shortcomings related to the conservation of moments
affect the DQMOM approach since weights and abscissas are not conserved quantities (Yuan et al. [36]).
In order to overcome these limitations, Yuan et al. [36] introduced the Extended Quadrature Method
of Moments (EQMOM), which enables the shape of NDF to be reconstructed from a moment set using
continuous kernel density functions instead of Dirac delta functions.

QMOM and EQMOM have been recently compared in the study of liquid-liquid dispersion in
a stirred tank [33,37]. Li et al. [37] performed a comparison between QMOM and EQMOM in turbulent
liquid-liquid dispersion, and they observed that these two methods provided similar predictions.
They managed to reconstruct the droplet size distribution by using EQMOM. CM and DQMOM have
been compared in bubbly flow by Selma et al. [33], as well. Their study was carried out based on
two test cases, one involving a bubble column and the other a stirred tank. They reported that it is
more computationally efficient to use DQMOM compared to CM even with a relatively low number of
classes. A summary of some works concerning the coupling of E-E with Population Balance Model
(PBM) and the comparison among PBMs are provided in Tables 1 and 2, respectively.
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Table 1. The most remarkable studies in the field of bubbly flow modeling using Population Balance
Model (PBM). CM, Method of Classes; EQMOM, Extended Quadrature Method of Moments; DQMOM,
Direct Quadrature Method of Moments.

Reference Test Case PBM Hypotheses Remarks

Bannari et al. [1] bubble column CM

accumulation,
advection,

coalescence,
breakage

Constant mean bubble size does not give
satisfactory results compared to those
based on PBM; 25 classes give better results

Gimbun et al. [38] gas-liquid
stirred tank QMOM

accumulation,
coalescence,

breakage

Better agreement is achieved using PBM
compared to a uniform bubble size

Li et al. [37] liquid-liquid
stirred tank

EQMOM
and QMOM

accumulation,
advection,

coalescence,
breakage

Similar predictions for EQMOM and
QMOM; EQMOM provides
a continuous BSD

Selma et al. [33]
gas-liquid

stirred tank;
bubble column

DQMOM
and CM

accumulation,
advection,

coalescence,
breakage

High number of classes is required; CM is
computationally heavy; DQMOM is much
more efficient (computationally) compared
to CM

Gupta and Roy [39] bubble column DQMOM
and QMOM

accumulation,
coalescence,

breakage

A summary of studies done on bubble
columns flow modeling using PBM; no
significant difference between DQMOM
and QMOM

Askari et al. [40] gas-liquid
stirred tank EQMOM

accumulation,
coalescence,

breakage

The agreement between experimental data
and simulation results using EQMOM;
reconstruction of bubble size distribution

Table 2. An overview of locally polydisperse PBMs. NDF, Number Density Function.

PBM Advantages Disadvantages

CM Intuitive and accurate Computationally intensive

QMOM Wide range of bubble sizes with a reduced
computational cost Disabled in case of null internal coordinates

DQMOM Wide range of bubble sizes with a reduced
computational cost

Shortcomings related to non-conservative
quantities (weights and abscissas)

EQMOM
Wide range of bubble sizes with a reduced
computational cost (ONLYcompared to CM) and
reconstruction capability of continuous NDF

Heavy computation compared to QMOM
and DQMOM

In the present work, we simulate a gas-liquid flow in two rectangular bubble columns using
CM, QMOM, DQMOM and EQMOM. The numerical results obtained in these two cases are used
to compare the four solution methods for the PBE. The implementation of EQMOM provided by
OpenQBMM [41] is coupled to a two-fluid solver in OpenFOAM to describe the bubble evolution in
bubble columns. The EQMOM approach, coupled with a single-phase CFD solver in OpenFOAM,
is then used to describe the evolution of the bubble phase in an electrochemical cell. This simplification,
in the case of the electrochemical system, is possible because the bubble sizes of interest in this system
are of the order of a micron, significantly smaller and having a lower Stokes number than in the case of
the bubble column. In this case, then, a one-way coupling approach is sufficient.

The remainder of this article is organized as follows. First, the modeling approach is explained
in Section 2. The numerical solution method used in the present work is summarized in Section 3.
The numerical results obtained for the bubble columns and the electrochemical cell are presented
in Section 4, comparing them to the experiments for validation purposes. Conclusions are drawn
in Section 5.
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2. Numerical Model

The governing equations of single-phase and two-phase system (two-fluid model) used in this
model are shown in Table 3.

Table 3. Governing equations of the CFD-PBM model.

Equation Formulation

Continuity (single-phase) ∂ρ
∂t +∇ · (ρU) = 0

Momentum (single-phase) ∂
∂t (ρU) +∇ · (ρUU) = −∇p +∇ · ¯̄τeffi

Continuity (multi-phase) ∂
∂t (ρiαi) +∇ · (αiρiUi) = 0.0

Reynolds stress tensor ¯̄τeffi = (µlam + µt)
(
∇U +∇UT)− 2

3 (ρk + (µlam + µt)∇ ·U) ¯̄I

Momentum (multi-phase) ∂
∂t (ρiαiUi) +∇ · (αiρiUiUi) = −αi∇p +∇ · (αi ¯̄τeffi,i) + Ri + Fi + αiρig

Interfacial momentum exchange RG = −RL = RG,drag + RG,lift + RG,vm

Liquid-gas exchange coefficient K = 3
4 ρLαG

CD
d32
| UG −UL | (UG −UL) + αGClρLUr × (∇×UL) + αLCvmρL

( DLUL
Dt −

DGUG
Dt

)
Schiller–Naumann drag coefficient [42] CD =

{
24
Re

(
1 + 0.15Re0.687

)
Re ≤ 1000

0.44 otherwise

Ishii–Zuber drag coefficient [43] CD = max{min[ 2
3

√
Eo, 8

3 ],
24
Re (1 + 0.1Re0.75)}

Tomiyama lift coefficient [44] Cl =

{
min(0.288 tanh(0.121Re), f (EoG)) EoG < 4
f (EoG) 4 ≤ EoG ≤ 10.7

Mixture k-ε model [45]
∂
∂t (ρmkm) +∇ · (ρmUmkm) = ∇ ·

(
µt,m
σk
∇km

)
+ Pm

k − ρmεm + Sm
k

∂
∂t (ρmεm) +∇ · (ρmUmεm) = ∇ ·

(
µt,m
σffl
∇km

)
+ εm

km
(C1εGk,m − C2ερmεm) + Cε3

εm
εk

Sm
k

Break-up rate function [46] ΩB(dj : di) =
−3k1(1−α)

11b8/11 nj

(
ε

d2
j

)1/3

{Γ(8/11, tm)− Γ(8/11, b) + 2b3/11(Γ(5/11, tm)− Γ(5/11, b))

+b6/11(Γ(2/11, tm)− Γ(2/11, b))}

Coalescence rate [47] β(di , dj) = θijPc

Coalescence frequency [48] θ(i, j) = π
4 ninj(di + dj)

2ε1/3
(

d2/3
i + d2/3

j

)1/2

Coalescence efficiency [47] PC(di , dj) = exp

(
−c

[
0.75(1+ξ2

ij)(1+ξ3
ij)
]1/2

(ρd/ρc+0.5)1/2(1+ξij)
3 We1/2

ij

)

2.1. Population Balance Modeling

The evolution of the size distribution of a particle population, which may consist of solid particles,
bubbles or droplets, is described studying the changes in space and time of the Number Density
Function (NDF) n(ζ; x, t). Here, ζ indicates the internal coordinate representing the size of the discrete
element of the disperse phase, x is the position vector in physical space and t is time.

Assuming the velocity of the disperse phase is known, the evolution of the NDF is defined by the
population balance equation (Marchisio et al. [28], Marchisio and Fox [49], D. Ramkrishna [50]):

∂n(ζ; x, t)
∂t

+∇x · [UGn(ζ; x, t)]−∇x · [Γ∇xn(ζ; x, t)]

+∇ζ · [G(ζ)n(ζ; x, t)] = Bag(ζ; x, t)− Dag(ζ; x, t)

+Bbr(ζ; x, t)− Dbr(ζ; x, t) + N(ζ; x, t),

(1)

where UG is the velocity of the disperse phase, Γ is the diffusivity and G(ζ) the continuous rate of
change in the space of internal-coordinate. The first term of Equation (1) represents accumulation;
the second term describes convection; and the third diffusion in physical space. The source terms
Bbr(ζ; x, t), Bbr(ζ; x, t), Dag(ζ; x, t) and Dag(ζ; x, t) are birth rate due to breakage, birth rate due to
coalescence, death rate due to breakage and death rate due to coalescence, respectively. Finally,
N(ζ; x, t) is the rate of change of the NDF due to nucleation. In the present study, the NDF has the
form of being length-based and G(ζ) is defined as growth rate.

Bubbles may nucleate when the liquid is supersaturated with gas. When the dissolved gas
concentration reaches a critical value, bubbles nucleate. This critical value might be theoretically
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obtained from Classical Nucleation Theory (CNT) (Abraham [51]). The nucleation theory provides
information about the generation of nuclei (the formation of cluster of molecules after reaching
some critical size) per unit time and volume of the liquid as a function of the local parameters.
The bubbles can grow in size if the liquid is saturated with dissolved gas. The remaining gas is
transported into the liquid on a molecular level and gives rise to supersaturation that causes an
increases of the growth of bubbles that move through liquid. In this case, the growth term is included
in the PBE as a source term. In some systems such as a gas-evolving electrode, bubble growth and
nucleation terms might be treated as boundary conditions, since the sources of nucleation are usually
irregularities of the electrode surfaces, and once a nucleus exists, the bubble growth occurs on the
electrode surface in a concentration boundary layer. Gas bubbles develop at nucleation sites on
the electrode surface, grow in size until they reach a critical break-off diameter and detach into the
electrolyte afterwards (Nierhaus [3], Tomasoni [52]). In other words, the bubble formation happens
on the electrode. Consequently, it can be described by means of a boundary condition (an ingoing
flux boundary).

Growth, nucleation and diffusivity were not taken into account in the example applications
presented in this work, since the focus is on bubble coalescence and breakage. Therefore, the final form
of the evolution equation of the NDF is:

∂n(ζ; x, t)
∂t

+∇x · [UGn(ζ; x, t)] = Bag(ζ; x, t)− Dag(ζ; x, t) + Bbr(ζ; x, t)− Dbr(ζ; x, t). (2)

The breakage and coalescence source terms are modeled as (Marchisio et al. [28], Marchisio and
Fox [49]):

Bag =
ζ2

2

∫ ζ

0

β

((
ζ3 − ζ

′3
)1/3

, ζ
′
)

(
ζ3 − ζ

′3
)2/3 n

((
ζ3 − ζ

′3
)1/3

; x, t

)
n(ζ

′
; x, t)dζ

′
, (3)

Dag = n(ζ; x, t)
∫ ∞

0
β(ζ, ζ

′
)n(ζ

′
; x, t)dζ

′
, (4)

Bbr =
∫ ∞

ζ
a(ζ

′
)b(ζ|ζ ′)n(ζ; x, t)dζ

′
, (5)

Dbr = a(ζ)n(ζ; x, t). (6)

Here, β(ζ, ζ
′
) is the coalescence rate between bubbles of size ζ and ζ

′
; a(ζ) is the break-up

frequency of a bubble with size ζ; b(ζ|ζ ′) represents daughter distribution function generated from the
breakup of a bubble of size ζ

′
.

2.1.1. Class Methods

The class method solves the bubble’ number density, directly [50]. In CM, the continuous size
range of bubbles can be realized through the discretization of the bubbles size distribution into
a number of classes of discrete sizes. For each class, the equation of the number density of bubbles is
solved and coalescence and breakup rates are transformed into birth and death rates. The population
balance equation for the i-th bubble class is represented as:

∂ni
∂t

+∇ · (UGni) = Bi,agr − Di,agr + Bi,br − Di,br (7)
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where ni is the number of the bubbles from group i per unit volume. Bbr and Bagr are the birth rates
caused by breakup and coalescence, respectively, and Dagr and Dbr the corresponding death rates,
from coalescence and breakage, respectively.

The relationship between the volume fraction and the number density is:

ni =
αi
νi

(8)

where νi is the volume of a bubble of class i.

∑ αi = αG (9)

where αG is the volume fraction of the dispersed phase.
To solve the population balance equation using the scalars fi, Equation (7) is changed to the

following equation:

∂αG fi
∂t

+∇ · (αGUG fi) = Bi,agr − Di,agr + Bi,br − Di,br (10)

fi =
αi
αG

(11)

∑ fi = 1 (12)

Here, fi is the bubble volume fraction of group of size i. As Equation (10) shows, all bubbles in
a computational cell move with the same velocity UG. This approach is called the MUlti SIzeGroup
(MUSIG) [53]. It is worth observing that assuming all the bubbles in a computational cell move with
the same velocity is a limitation of the approach, which may be acceptable for narrow bubble size
distributions, but not in general. A class of Quadrature-based Moments Methods (QBMM) that is
not affected by this limitation was proposed by Yuan et al. [54], and its adoption will be the topic of
future work.

The method of classes calculates the Sauter mean diameter d32 as follows:

d32 =
∑i fi

∑i fi/di
(13)

The Sauter mean diameter represents the average bubble size, and it is defined as the diameter of
a sphere that has the same volume to surface area ratio as the bubble under consideration. The Sauter
diameter is often used in problems where the active surface area is the relevant parameter [49].

Ramkrishna [50] proposed an approach named fixed pivot in order to discretize the source terms
in the PBE. The approach assumes that the population of bubbles is distributed on pivotal grid points
xi with xi+1 = sxi and s > 1, where i refers to the class i with i < n. Assuming spherical bubbles,
(4/3)π(di+1/2)3 = (4s/3)π(di/2)3, where s is calculated to ensure dn = d2r+1 = dmax = dmax and
dr = dmean.

In the CM technique, the bubble size is divided into n = 2r + 1 classes, where n is odd in order to
have symmetrical divisions. This gives the following relation:

di = s(i−r−1/3)dmean s =
(

dmax

dmean

)3/r
(14)

Bannari et al. [1] evaluated the the values of r and s for different classes assuming dmax = 5 mm
and dmean = 10 mm (Table 4).
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Table 4. Values of r and s used in different classes.

Number of Classes 7 11 15 25

Value of r 3 5 7 12
Value of s 2 1.5157 1.3459 1.1892

Breakage and aggregation may create bubbles with volume ν such that xi < ν < xi+1. This bubble
must be split by assigning respectively fraction γi and γi+1 to xi and xi+1. The following limitations
preserve the number balance and mass balance.{

γixi + γi+1xi+1 = ν

γi + γi+1 = 1
(15)

Ramkrishna [50] has also reported the birth in class i due to coalescence in this way:

Bi,agr =
n

∑
k=0

n

∑
j=0

[
θ(xi−1 < xj + xk < xi)× (1− 1

2
δjk)

]

× γi−1(xj + xk)β(xk, xj)
36α2

g

π2

f j fk

(djdk)
3

+
n

∑
k=0

n

∑
j=k

[
θ(xi < xj + xk < xi+1)× (1− 1

2
δjk)

]

× γi(xj + xk)β(xk, xj)
36α2

g

π2

f j fk

(djdk)
3 ,

(16)

where θ is a test function expressed as:

θ(ϕ) =

{
0 ϕ is false

1 ϕ is true
. (17)

and:
γi−1(ν) =

ν− xi−1

xi − xi−1
, γi(ν) =

xi+1 − ν

xi+1 − xi
. (18)

The death rates Di,agr in class i due to coalescence is defined as follows:

Di,agr =
36 fiα

2
G

π2d3
i

n

∑
k=0

β(xi, xk)
fk

d3
k

, (19)

while the birth rate Bibr in class i due to breakup as:

Bibr =
6αG
π

n

∑
k=i

b(xk|xi)a(xk)πi,k
fk

d3
k

, (20)

and the death rate Di,br in class i due to break-up:

Di,br =
6αG fi

πd3
i

a(xi), (21)

where:
πi,k =

∫ xi

xi−1

ν− xi−1

xi − xi−1
p(ν, νk)dν +

∫ xi+1

xi

xi+1 − ν

xi+1 − xi
p(ν, νk)dν (22)
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The mentioned integrals are solved by the Gaussian quadrature integration as follows:

πi,k '
5

∑
j=1

(1 + Wj)
3

(j + 1)2 p2
5 p(Wj)

p
(

xi − xi−1

2
(1 + Wj)− xi−1, xk

)
+

5

∑
j=1

(1 + Wj)
2(1−Wj)

(j + 1)2 p2
5 p(Wj)

p
(

xi+1 − xi
2

(1 + Wj)− xi, xk

) (23)

Pn is a Legendre polynomial and can be formulated using the recurrence relation:

Pn =
(2n− 1)xPn−1 − (n− 1)Pn−2

n
; P0 = 1; P1 = x (24)

Wj is the weighting function of the orthogonal polynomials as shown in Table 5. If j equals five,
adequate accuracy is achieved.

Table 5. Values of weights used in Gaussian quadrature.

W1 W2 W3 W4 W5√
35+2

√
70

63

√
35−2

√
70

63 0 −
√

35−2
√

70
63 −

√
35+2

√
70

63

Boundary and initial conditions to solve CM equations are shown in Table 6. It is assumed that
the bubble size at the inlet is monodispersed and spatially uniform, equal to the mean diameter (d2r).
The first-order upwind scheme is used to discretize the advection term of the fi equations.

Table 6. Boundary and initial condition for fi equations.

Boundary Conditions Initial Condition

Inlet Wall Outlet Inlet value

fi =

{
1 i = 2r
0 i 6= 2r

Neumann Neumann

2.1.2. Quadrature-Based Moments Method

Quadrature-based Moment Methods (QBMM) consider the evolution of a set of moments of the
NDF. If integer moments are considered, their definition is:

Mk =
∫ ∞

0
n(L; x, t)LkdL, k = 0, 1, . . . (25)

Evolution equations for the moments of the NDF read:

∂Mk(t, x)
∂t

+∇ · [UG Mk(t, x)] = Bag,k − Dag,k + Bbr,k − Dbr,k (26)

By solving Equation (26) for a set of at least four moments, the Sauter mean diameter d32 = m3/m2

can be calculated.
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2.1.3. Quadrature Method of Moments

In the QMOM technique, the unknown NDF is represented by a weighted summation of Dirac
delta distributions δ(L− Lα):

n(L) ≈
N

∑
α=1

Wαδ(L− Lα) (27)

where Wi are non-negative weights of each kernel density function, Li are the corresponding quadrature
abscissae and N is the number of kernel density functions to approximate the NDF. Source terms in the
moment Equation (26) become:

Bag,k =
1
2

N

∑
α=1

Wα

N

∑
β=1

Wβ(L3
α + L3

β)
k/3

β(Lα, Lβ), (28)

Dag,k =
N

∑
α=1

WαLk
α

N

∑
β=1

Wββ(Lα, Lβ), (29)

Bbr,k =
N

∑
α=1

Wαb
(k)
α a(Lα), (30)

Dbr,k =
N

∑
α=1

WαLk
αa(Lα), (31)

where the N is the number of weights wα, and the corresponding abscissae Lα are determined from
the first 2N integer moments of the NDF. βαβ is the aggregation kernel for the bubbles of size Lα

and Lβ; aα is the breakage kernel for the bubble size of Lα; and b
(k)
α represents daughter bubble

distribution function.
Boundary conditions and initial conditions to solve the moment equations are shown in Table 7.

Gauss upwind is utilized as the divergence scheme. If the bubble size, which can be represented
by a constant value or a distribution function, is known, the moments will be easily calculated.
The moments for constant bubble size are found by:

Mi =

{
αG i = 0

M0ζ i i 6= 0
(32)

where ζ is bubble size and αG is gas phase fraction.

Table 7. Boundary conditions, initial conditions and divergence scheme corresponding mi equations.

Boundary Conditions Initial Condition

Inlet Wall Outlet Inlet value

Equation (32) Neumann Neumann
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2.1.4. Direct Quadrature Method of Moments

DQMOM is based on the direct solution of the transport equations for weights and abscissas of
the quadrature approximation (Fan et al. [55]). The transport equations for weights and abscissas are
written as:

∂

∂t
Wα +∇(φWα) = aα (33)

∂

∂t
Lα +∇(φLα) = bα (34)

where ai and bi are found by the solution of the following linear system in terms of the unknown ai
and bi (Bove [56]):

N

∑
α=1

[(1− k)Lα
kaα + kLα

k−1bα] =
1
2

N

∑
α=1

Wα

N

∑
β=1

Wβ(L3
α + L3

β)
k/3

β(Lα, Lβ)−
N

∑
α=1

WαLk
α

N

∑
β=1

Wββ(Lα, Lβ)

+
N

∑
α=1

Wαb
(k)
α a(Lα)−

N

∑
α=1

WαLk
αa(Lα) k = 0, ..., 2N − 1.

(35)

The source terms S(k) are taken to be the as same as for the QMOM method. Boundary and initial
conditions to solve for weights and abscissae are shown in Table 8. The first-order upwind scheme is
used to discretize the advection term in both Equations (33) and (34). The linear system obtained from
Equation (35) is solved using the Gauss–Seidel technique.

Table 8. Boundary conditions and initial condition for DQMOM equations.

Boundary Conditions Initial Condition

Inlet Wall Outlet Inlet value

Li and Wi corresponding to mi Neumann Neumann

2.1.5. Extended Quadrature Method of Moments

The EQMOM approach approximates the unknown NDF with a weighted sum of smooth,
non-negative kernel density functions δσ(L, Lα) [36,57]:

n(L) ≈ pN(L) =
N

∑
α=1

Wαδσ(L, Lα) (36)

In this work, the log-normal kernel density is used [58]:

δσ(L, Lα) =
1

Lσ
√

2π
exp

(
− (L− Lα)

2

2σ2

)
, (37)

Source terms are then closed in terms of the primary and secondary quadrature found with the
EQMOM procedure, leading to:

Bag,k =
1
2

N

∑
α1=1

Nα

∑
γ1=1

Wα1Wα1γ1

N

∑
α2=1

Nα

∑
γ2=1

Wα2Wα2γ2(L3
α1γ1

+ L3
α2γ2

)
k/3

βα1γ1α2γ2 , (38)

Dag,k =
N

∑
α1=1

Nα

∑
γ1=1

Lk
α1γ1

Wα1Wα1γ1

N

∑
α2=1

Nα

∑
γ2=1

Wα2Wα2γ2 βα1γ1α2γ2 , (39)
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Bbr,k =
N

∑
α1=1

Nα

∑
γ1=1

WαWαγb
(k)
αγ aαγ, (40)

Bbr,k =
N

∑
α1=1

Nα

∑
γ1=1

WαWαγLk
αγaαγ, (41)

where the N primary weights Wα, the corresponding primary abscissae Lα, together with the parameter
σ are determined from the first 2N + 1 integer moments of the NDF. The 2Nα quantities Wαγ, called
secondary weights and abscissae, respectively, are computed using the standard Gaussian quadrature
formulae for known orthogonal polynomials to the kernel NDF [36,57]. βα1γ1α2γ2 is the aggregation
kernel for the bubbles of size Lα1γ1 and Lα2γ2 ; aαγ is the breakage kernel for the bubbles size of Lαγ;
and bαγ represents the daughter distribution function.

Boundary conditions and initial conditions used to solve the moment equations are the same as
those used for the QMOM approach (Table 7).

2.1.6. Closure Models for Coalescence and Breakage

There are many breakage and coalescence kernels available for bubbly flow, but they are essentially
written in a similar form with some minors differences in the model constants or assumptions [38].
The discussion of aggregation and breakage kernels is beyond the scope of this paper. Therefore,
it was decided to utilize the ones (Luo and Svendsen [46] and Hagesather et al. [47]) that have been
widely adopted for the bubble columns (Bannari et al. [1], Kerdouss et al. [18], Kerdouss et al. [59],
Kerdouss et al. [60] and Selma et al. [33]). The equations of coalescence and breakage kernels are
shown in Table 3.

3. Numerical Solution

The models described in the present work were solved using the OpenFOAM library [61].
Two-fluid model and single-phase flow libraries in OpenFOAM (twoPhaseEulerFOAM and
pimpleFoam) were customized in order to couple the PBE approaches used in this work to the
two -phase flow model, to simulate bubbly flows in bubble columns, and to the single-phase flow
model (dilute system), to simulate the electrochemical cell. Equations are solved iteratively, relying
on the semi-implicit PIMPLE (merged PISO-SIMPLE) approach provided by OpenFOAM, which is a
combination of the PISO (Pressure Implicit with Split Operator) and SIMPLE (Semi Implicit Method
for Pressure Linked Equations) procedures.

4. Results and Discussion

4.1. Test Case 1: Pseudo-2D Bubble Column

The first test case for the coupled Population Balance Model and Two Fluid Model (PBM-TFM)
approach is a simple geometry (a rectangular bubble column [1]). The same test case was used in [33]
to compare CM and DQMOM. Consequently, only the simulations with EQMOM were necessary to
allow the comparison.

The dimensions and boundary conditions used to perform the simulations are shown in Figure 1,
while Table 9 summarizes the models used in the simulations for this test case. Tables 10–12 demonstrates
the boundary and initial conditions applied in CM, QMOM, EQMOM and DQMOM, respectively.
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(a) (b)

Figure 1. (a) Dimension and boundary conditions in the bubble column [1] and (b) mesh.

Table 9. Models used in the simulation of the bubble column of Pfleger et al. [62]. TFM, Two-Fluid Model.

Settings Model

Two-phase flow Two-fluid model (TFM)
Drag Schiller and Naumann [42]
Lift Tomiyama et al. [44]

Virtual mass Cvm = 0.25 [33]
Turbulence Standard k-ε model

Population balance CM and EQMOM
Coalescence Hagesather et al. [47]

Breakage Luo and Svendsen [46]

Table 10. Boundary and initial conditions for fi equations (25 classes).

Boundary Conditions Initial Condition

Inlet Wall Outlet Inlet value

fi =

{
1 i = 12
0 i 6= 12

Neumann Neumann
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Table 11. Boundary and initial conditions for mi equations used in the QMOM and EQMOM methods
(Test Cases I and II).

Boundary Conditions Initial Condition

Inlet Wall Outlet Inlet value

mi =



1 i = 0
5 i = 1
25 i = 2
125 i = 3
625 i = 4
3125 i = 5
15, 625 i = 6

Neumann Neumann

Table 12. Boundary and initial conditions for Wi and Li equations used in the DQMOM method [33].

Boundary Conditions Initial Condition

Inlet Wall Outlet Wi =


0.33 i = 0
0.33 i = 1
0.34 i = 2

Li =


0.001 i = 0
0.002 i = 1
0.003 i = 2

Wi =


0.1667 i = 0
0.6667 i = 1
0.1667 i = 2

Li =


3.26 i = 0
5.00 i = 1
6.73 i = 2

Neumann Neumann

Figure 2 depicts a comparison between experimental measurements [62] and axial liquid velocity
provided by the CFD-PBM solver on a line along y = 37 cm. The comparison confirms that the
solver using EQMOM works properly for the bubble column. Figure 2a shows that the variation
of secondary nodes does not have a significant impact. However, the increase of primary nodes
from two to three provides better accuracy, as was expected. Figure 2b demonstrates the differences
among population balance models. It is observed that EQMOM using three nodes represents a slight
improvement in comparison with CM (25 classes) and DQMOM (three nodes). It is noteworthy that
the CM (25 classes) computationally is very expensive [33]. By contrast, DQMOM and EQMOM have
less computational demand.
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Figure 2. Profile of axial liquid velocity through a line at y = 37 cm from the bottom of the bubble
column. (a) The variation of primary and secondary nodes and their effects on the predicted velocity
profile. (b) The comparison among CM (classes), DQMOM (3 nodes), EQMOM (3 nodes) and EQMOM
(2 nodes).
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Figure 3 demonstrates the radial bubble segregation based on the Sauter mean diameter contour.
In fact, the bubble size decreases heading toward the wall due to breakage phenomena. However,
the high gas phase fraction and coalescence events at the center of column lead to the creation of larger
bubble sizes. As Figure 3 shows, Sauter mean diameter distributions predicted by the applied PBMs
(DQMOM, EQMOM, CM) are qualitatively confirmed by comparison with experimental observation.

Experiment DQMOM [33] EQMOM CM

Figure 3. Experimental snapshot of a meandering bubble plume by Buwa et al. [63] and the predicted
Sauter mean diameter using DQMOM ([33]), EQMOM and CM.

EQMOM is capable of providing a smooth reconstruction of the NDF for each arbitrary zone or
cell in the computational domain. While this reconstruction is not unique for the set of transported
moments, examining the reconstructed NDF can provide a better insight into the behavior of the
dispersed phase. In order to plot NDF, weights and abscissae calculated by EQMOM and extracted
from CFD-PBM solver are utilized to approximate Equation (37). Figure 4 indicates the shape of NDF
in the liquid phase (water zone) at t = 60 s. It can be observed that the mean bubble diameter ranges
from 1 mm to 6 mm, and thus, the monodispersity is not a suitable approximation. As can be observed
from Figure 4a, the NDF is represented by a Dirac delta function for N = 2, while Figure 4b exhibits
a continuous NDF for N = 3. This means the increase of the nodes in EQMOM configuration applied
in the bubble column leads to the creation of a spread in bubble sizes, even locally.

4.2. Test Case 2: 3D Bubble Column

For the second case, the coupled PBM-TFM solver was tested in a square bubble column
(Deen [64]). The models used in the simulations are summarized in Table 13. This configuration
is based on the work of Holzinger [10] in which the same test case was studied using a monodisperse
bubble size distribution. In Test Case 2, QMOM and EQMOM simulations were performed.

The column has a square cross-section with W (width) = D(depth) = 0.15 m. The sparger is
in the form of a square, the are of which is Ain = 0.03× 0.03 m. The dimensions and boundary
conditions are shown in Figure 5. The domain is discretized into 15 × 15 × 60 control volumes,
a total of 13,500 cells. Figure 6 shows the comparison between QMOM and EQMOM with the
experimental measurements reported by Deen [64]. Three nodes were used for QMOM, and three
primary nodes were used for EQMOM. The EQMOM approach yielded a minor improvement in
the gas velocity profile, while no change was observed through the liquid velocity profile. Likewise,
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the color maps of the Sauter mean diameter are similar for both methods, as shown in Figure 7.
In spite of the similarity, the computational cost of EQMOM is higher than the QMOM method,
as Madadi-Kandjani and Passalacqua [58] reported for a zero-dimension case, as well as the current
simulation process.

Table 13. Overview of the models used in the solver.

Settings Model

Two-phase flow Two-fluid model
Drag Ishii and Zuber [43]
Lift Cl = 0.5

Virtual mass Cvm = 0.5
Turbulence Behzadi et al. [45]

Population balance EQMOM and QMOM
Coalescence Hagesather et al. [47]

Breakage Luo and Svendsen [46]
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Figure 4. Number density function in water zone (liquid phase) using EQMOM (a) Nα = 2 and
(b) Nα = 3.

(a) (b)

Figure 5. (a) Dimension and boundary condition in the bubble column (Deen [64]) and (b) the mesh
(13,500 cells) in the case of Deen [64].
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Figure 6. Comparison between EQMOM and QMOM against experimental data: (a) axial gas velocity
and (b) axial liquid velocity for the case of Deen [64].

EQMOM QMOM

Figure 7. Color maps of time-averaged Sauter diameter along the plane located in the middle of the
column of Deen [64].

4.3. Test Case 3: Water Electrolysis Reactor

The bubbly flow in a water electrolysis reactor consisting of a gas evolution electrode was chosen
as the third case. This decision is based on the simplicity of the case and on the availability of
experimental data for the bubble size distribution. It was decided to investigate the Inverted Rotating
Disk Electrode (IRDE) proposed by Van Parys et al. [65], which is composed of three electrodes
as follows:

• Reference electrode: Ag/AgCl saturated with KCl
• Counter electrode: platinum grid
• Working electrode (rotating electrode): made by embedding a platinum rod in an insulating Poly

Vinylidene Fluoride (PVFD) cylinder.

When a potential difference is applied between electrodes, hydrogen is produced at the cathode
and oxygen at the anode in the form of bubbles. In this case, we put aside the influence of the
anode, because the experimental bubble distribution is only available over cathode and hydrogen
bubbles. Consequently, the impact of oxygen bubbles is not taken into account in the simulation.
The specifications of the IRDEreactor are presented in Figure 8. In this system, the rotating cathode is
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considered as an inlet boundary with imposed velocity, volume fraction and bubble size distribution.
The angular component of the liquid velocity is set according to the rotational speed of working
electrode (ω = 100 and 250 rpm). According to the applied rotational speeds, the calculated Reynolds
number is less than the critical ones [66]. Therefore, the flow regime is laminar, which allows
neglecting source terms in the population balance model because of ε = 0. In the present study,
gas hold-up is extremely low. The bubbles follow the bulk flow and are affected by the continuous
phase (water), but not vice versa. Hence, the flow field was calculated with a single-phase solver.
The flow field obtained from the single-phase approach was then imported in the population balance
solver, in order to advect the bubble size distribution imposed at the inlet and study how bubbles
distribute in the IRDE. The settings, boundary and initial conditions used in the simulation are
summarized in Tables 14 and 15.

Table 14. Models used in the simulations of Test Case 3.

Settings Model

single-phase flow -
laminar -

population balance EQMOM
coalescence no

breakage no

(a) (b) (c)

Figure 8. (a) Schematic of hexahedral mesh [67]. (b) The specifications of the reactor and (c) the location
of volume W1.

A distribution of bubble sizes is observed at the electrodes of the IRDE reactor. For this reason,
the continuous distribution function reported by Nierhaus et al. [66] was used in the simulation and
imposed at the electrode surface, which is treated as an inlet boundary for the gas phase (Figure 9a).
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A grid with 34,300 hexahedra yielded sufficiently accurate results for the proposed problem
and was selected for the IRDE study.

Nierhaus et al. [66] reported the experimental bubble size distributions in an optical window (W1)
for two different rotating velocities, 100 rpm and 250 rpm. Figure 8 illustrates how the W1 volume has
been configured in the IRDE reactor. W1 was located above the electrode to enable tracking bubbles in
the rising plume.
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Figure 9. (a) The continuous distribution function imposed at the electrode surface (Nierhaus et al. [66]);
(b) mean axial velocity component profile uz

∗ = uz√
ωzν

and comparison to the analytical solution.

Figure 9b compares the computed axial velocity component profile uz
∗(= uz√

ωzν
) as a function of

the dimensionless height (γ = z
δ ), where δ is the displacement thickness of the fluid boundary layer

(δ =
√

ν
ωz

). The comparison shows that the numerical results match with the analytical solution [68]
in the region close to the electrode. The confirmed flow field applied in population balance calculations
for its NDF consists of the accumulation and convection term (physical space).

Table 15. Boundary and initial condition for mi equations used in Test Case 3.

Boundary Conditions Initial Condition

Inlet Wall Outlet Inlet value

mi =



1 i = 0
145 i = 1
26, 801 i = 2
6.31×106 i = 3
1.89×109 i = 4
7.26×1011 i = 5
3.54×1014 i = 6

Neumann Neumann

To validate the CFD-PBM solver in IRDE, an analysis is applied to investigate the bubble size
distribution in volume W1. The comparison of the bubble size distribution between the experimental
study and current CFD-PBM using EQMOM (three nodes) is presented in Figure 10. The results thus
obtained are compatible with experimental measurements (Figure 10a,b). The fair agreement confirms
the assumptions in the PBM model, particularly for 150 rpm. In fact, since the bubble size is so small
(low Stokes number), most of the effect is due to advection, and no segregation occurs.

In the case of 150 rpm, simulation data better match experimental data, while there is a
disagreement for a higher rotational speed. The prime cause of the discrepancy might be the result of
the neglect of size change effects in the PBM model.
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Figure 10. Bubble size distribution in W1 for (a) EQMOM (three nodes) and rpm = 100; (b) EQMOM
(three nodes) and rpm = 250.

5. Conclusions

In this paper, an analysis was performed for comparison among local Population Balance Models
(PBM), CM, QMOM, DQMOM and EQMOM, based on three cases in the presence of bubbly flow.
The purpose of the paper is to validate the CFD-PBM solver, which was applied for two different
bubble columns and a water electrolysis reactor to predict the bubble size distribution. The originality
of the OpenFOAM solver lies on the fact that it employs the novel method of PBM, which can accept
the continuous bubble size distribution as a boundary condition. Moreover, the solver is able to
export the distribution function for a specified region in an arbitrary time based on the EQMOM
method. It was observed that the CFD-PBM using EQMOM provides a reasonable prediction, as well
as CM consisting of 25 classes, but requires less computational demand compared with CM (Table 16).
From the research that has been carried out, it is possible to conclude that QMOM and EQMOM have
similar predictions. EQMOM is computationally more expensive than QMOM, although it is able to
obtain a continuous NDF of the model. In order to simulate bubbly flow in the bubble column, it is
proposed to use at least three nodes in the EQMOM technique. This minimum value is required to
acquire a continuous NDF function. It is evident that the experimental and numerical NDF can be
compared in the water electrolysis reactor (IRDE). Agreement is achieved using EQMOM in the IRDE
reactor. The results proved that the most dominant term is advection in the PBM model.

Table 16. Normalized computational costs of applied PBMs in Test Cases 1 and 2.

Case DQMOM [33] CM (25 Classes) QMOM (n = 3) EQMOM (n = 2) EQMOM (n = 3)

Test Case 1 1 5 - 1.3 1.4
Test Case 2 - - 1 - 1.5
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Nomenclature

Symbols
a(ζ) breakage kernel s−1

B birth m−3 s−1

b(ν) break-up frequency function s−1

CD drag coefficient −
Cl lift coefficient −
Cνm virtual mass coefficient −
c f increase coefficient of surface area
D death m−3 s−1

d bubble diameter m
d32 Sauter mean diameter m
Eo Eotvos number −
f friction coefficient for flow around bubbles −
fi volume fraction of bubble class i −
F volumetric force N m−3

g acceleration vector due to gravity m s−2

I unit tensor
k turbulent kinetic energy j kg−1

L bubble size m
m(ν) mean number of daughter produced by breakage −
n number density of bubbles m−3

N angular velocity rad s−1

p pressure Pa
Pc coalescence efficiency or collision probability −
p(ν, ν′) pressure N m−2

r position vector m
R interphase force N m−3

Re Reynolds number −
Re f f

φ Reynolds (turbulent) and viscous stress m s−2

t Time s
U average velocity of phase m s−1

uij bubble approaching turbulent velocity m s−1

We Weber number −
Greek Symbols
α Volume fraction −
β constant 2.05 or s−1

β(ζ, ζ
′
) coalescence rate s−1

ε Turbulent kinetic energy dissipation rate m2 s−3

θi,j collision frequency m−3 s−1

µ dynamic viscosity of the continuous phase N/m3

λ eddy size m
ρ density kg/m3

σ surface tension or variance Nm−1 or m
ζ internal variable −
ΩB breakage frequency s−1

ν bubble size or kinematic viscosity m3 or m2/s
ξij size ratio di/dj
Γ(a, x) incomplete Gamma function −
η diameter ratio di/dj
τ stress tensor kg m−1 s−2
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Subscripts
ag aggregation
br breakage
e f f effective
G gas phase
L liquid phase
m mixture
i phase number
lam laminar
t turbulent
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