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Abstract: Environmental friendly refrigerants with zero ozone depletion potential (ODP) and zero
global warming potential (GWP) are in great demand across the globe. One such popular refrigerant
is isobutane (R600a) which, having zero ODP and negligible GWP, is considered in this study.
This paper presents the two most popular artificial intelligence (AI) techniques, namely support
vector regression (SVR) and artificial neural networks (ANN), to predict the heat transfer coefficient
of refrigerant R600a. The independent input parameters of the models include mass flux, saturation
temperature, heat flux, and vapor fraction. The heat transfer coefficient of R600a is the dependent
output parameter. The prediction performance of these AI-based models is compared and validated
against the experimental results, as well as with the existing correlations based on the statistical
parameters. The SVR model based on the structural risk minimization (SRM) principle is observed to
be superior compared with the other models and is more accurate, precise, and highly generalized;
it has the lowest average absolute relative error (AARE) at 1.15% and the highest coefficient of
determination (R2) at 0.9981. ANN gives an AARE of 5.14% and a R2 value of 0.9685. Furthermore,
the simulated results accurately predict the effect of input parameters on the heat transfer coefficient.

Keywords: ozone depletion potential; global warming potential; artificial intelligence; support vector
regression; average absolute relative error

1. Introduction

The increasing demand for microelectronic devices in industrial and household applications,
such as air-conditioning, refrigeration, and heat pumps, requires efficient heat removal techniques
through micro- and mini-channels to resist high heat fluxes. Based on the hydraulic diameter,
researchers have classified the flow channels as conventional channels (Dh ≥ 3 mm), mini-channels
(3 mm ≥ Dh ≥ 200 µm), and micro-channels (200 µm ≥ Dh ≥ 10 µm) [1,2]. To better understand the
boiling phenomenon in micro- and mini-channels, several studies have been done [3–5]. However,
accurately modelling the boiling heat transfer coefficient in micro- and mini-channels is still
a difficult task.

In the recent past, support vector machines (SVMs) have emerged as an artificial intelligence (AI)
technique developed for classification purposes. However, its application has now been extended to
regression [6–8]. Moreover, support vector regression (SVR) enjoys a lot of benefits over the traditional
neural networks, such as the need to choose only a few parameters for modeling; avoiding over-fit to
the data; and being a unique, global, and optimal solution.

In open literature, SVR has many applications for the prediction of many real-world problems,
such as permeability predictions for hydrocarbon reservoirs [9], wind speed forecasting for wind
farms [10], predicting for carbon monoxide in the atmosphere [11], predicting the heat transfer
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coefficient in a thermosiphon reboiler [12], and predicting heavy metal removal efficiency [13,14].
In the current study, the prediction of the heat transfer coefficient of the refrigerant R600a is made by
using two artificial intelligence techniques (AI) namely, SVR and artificial neural networks (ANN).
R600a is an environment-friendly natural refrigerant having 0 ODP and a low GWP of 3 [15,16].

2. Basic Idea of Support Vector Machines (SVMs)

A detailed description of an SVM can be found out in several works of literature [17–19]. The basic
goal in a distinctive ε-regression with the training samples P = {(m1, n1), (m2, n2), . . . , (mN, nN)} is to fit
a function n = f (m) for a set of independent input variables mi ε RN and the corresponding dependent
output variable ni ε RN.

The regression equation in the feature space can be given as

f (m,w) = (w φ(m) + z) (1)

where w is the weight vector, z is a constant, φ(m) is the feature function, and (w φ(m)) is the
dot product.

The regression is equivalent to minimizing the following equation

Minimize : R( f ) = C
1
N

Lε(n, f (m, w)) +
1
2
||w2|| (2)

Lε(n, f (m, w)) =

{
0 i f |n− f (m, w)| ≤ ε

|n− f (m, w)|−ε otherwise
(3)

The first term in Equation (2) represents the empirical error, and the second term is the capacity or
the complexity of the model. Term C in Equation (2) gives a measure of the optimization between the
empirical error and the model complexity. Equation (3) defines a loss function called the ε-insensitive
loss function [20]. Furthermore, using Lagrangian multiplier α and α*, the optimization problem is
converted into the dual problem. Only the non-zero coefficients, along with their corresponding input
vectors, mi, are called the support vectors. The final form is as follows

f (m, αi, α∗i ) = ∑Nsv
i=1(αi − α∗i )

(
∅(mi)•∅

(
mj
))

+ z (4)

With the help of kernel function K(mi mj), the SVR function can be obtained as shown below

f (m, αi,α∗i ) = ∑Nsv
i=1(αi − α∗i )K(m, mi) + z (5)

The term z or bias is obtained by using the Karush–Kuhn–Tucker conditions.

3. An Overview of ANNs

ANNs are parallel information processing systems which, to a large extent, emulate the human
brain. It is composed of artificial neurons, nodes, or units. Furthermore, it has three layers: the
input layer, the hidden layer, and the output layer. The input layer receives inputs from the outside
environment and passes it to the hidden layer. The hidden layer transforms these inputs into a useable
form via some non-linear activation function, and the signal goes to the output layer. The most
commonly used activation functions are logistic (sigmoid), polynomial, linear, hyperbolic tangent,
Gaussian function, and etc. [21]. The output layer thus presents the final model output. Generally,
one hidden layer is sufficient to achieve the desired accuracy. Increasing the number of hidden layers
increases the chances of over-fitting or under-fitting. Moreover, the number of neurons in the input
and output layers are specified with respect to the input and output variable of a particular problem.
However, the number of neurons in the hidden layer is unknown and needs to be specified. The optimal
number of neurons at the hidden layers is found using a trial and error procedure. This optimal number
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produces the lowest value of mean square error (MSE) or the minimum value of residual variance,
as an inappropriate number of neurons might lead to over-fitting/under-fitting of the model [22].
Based on the organization of neurons, ANNs are broadly classified into the feed-forward neural
network and the feed-back neural network [23]. Employed in this study is a feed-forward neural
network with a logistic activation function at the hidden layer and a linear activation function at the
output layer.

4. An Overview of the Existing Correlations

A large number of correlations are available in the literature for predicting the heat transfer
coefficient of various refrigerants. Some of them are listed below.

4.1. Magdalena Piasecka Correlation

Magdalena Piasecka [24] proposed the following correlation for FC-72, and this is given below

h = 22.5•Γ•(Pe•Bo)0.64•We0.46• K
dh

, (6)

where Γ = 0.028.
Dimensionless numbers

Bo = qw/G•hlv, Pe = Re•Pr, Re = (G•dh)/µ, Pr = µ•Cp/K, We = G2•dh/σ

4.2. Dutkowski Correlation

The Dutkowski correlation [24,25] was developed for R134a and R-404a circular mini-channels,
dh = 0.45–2.30 mm, and has the following form

h = 0.41Re0.848
l •Bo0.66•Co−0.62•(ρl/ρv)

1.28 (7)

where Co = 1
dh
•
√

σ
g•(ρl−ρv)

.

4.3. Li and Wu Correlation

The Li and Wu correlation [26] was developed for water, refrigerants, ethanol, propane, and CO2.
It is given below (dh = 0.16–3.1 mm).

h = 334Bo0.3•
(

Bd•Rel
0.36
)0.4
•(Kl/dh) (8)

where Bd =
[
(ρl − ρv)•d2

h
]
/σ.

5. Results and Discussion

In this study, SVR and ANN models have been developed using the experimental dataset
comprising 319 data points taken from published literature [27]. DTREG software [28] was used
to develop both the SVR and ANN models. These models have been developed for refrigerant R600a
in a circular channel with an internal diameter of 1.1 mm covering a wide range of mass flux (G) from
200 to 800 Kg/m2·s, heat fluxes (q) ranging from 15 to 145 kW/m2, saturation temperatures (Tsat) of 31
and 41 ◦C, and vapor qualities (x) from 0.05 to 0.95. The whole dataset of 319 samples was divided into
80% (255 data points) and 20% (64 data points), as the training dataset and the test dataset, respectively.
Furthermore, a comparative study between ANN-based and SVR-based models is also presented in
this research. The developed models were evaluated and validated against the experimental data
based on statistical measures, such as R, AARE, RMSE, standard deviation (SD), mean absolute error
(MAE), etc.
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5.1. Development of the ANN-Based Model

The schematic representation of the multilayer perceptron neural network shown in Figure 1
is comprised of the input layer (independent variables), hidden layers, and the output layer
(dependent/target variables). The optimum neural network structure of 4:7:1 has been found using the
DTREG software. A three layered (4:7:1) feed-forward neural network has been used for modeling the
heat transfer coefficient (h), with four neurons in the input layer for mass flux (G, kg/m2·s), saturation
temperature (Tsat, ◦C), heat flux (q, kW/m2), and vapor fraction (x), seven neurons in one hidden
layer, and one neuron for the heat transfer coefficient, h (kW/m2·k) in the output layer. The number of
neurons at the input and output layers are set according to the particular type of problem, whereas
the optimal number of hidden layer neurons is seven, and these give a minimum value of residual
variance as shown in Table 1. A logistic activation function at the hidden layer and linear activation
function at the output layer has been used to develop the ANN model.

Table 1. Optimum neurons at the hidden layer.

Hidden Layer 1 Neurons % Residual Variance

2 8.27490
3 10.72571
4 4.03148
5 4.51386
6 8.74758
7 3.22918 (Optimal value)
8 3.99854
9 4.41057

10 6.25276
11 5.57635
12 4.74811
13 6.90271
14 4.34555
15 4.46499
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Figure 1. The schematic topology of the 4:7:1 ANN architecture.

A training and test course curve has been constructed using the ANN model output as shown
in Figure 2a,b, respectively. A comparison among the experimental and predicted values of the heat
transfer coefficient of R600a via the ANN model using the training and test dataset is demonstrated in
Figure 3. Table 2 exhibits the statistical evaluation parameters of the ANN model for both the training



ChemEngineering 2018, 2, 27 5 of 13

dataset and the test dataset. It is determined from this table that the ANN model has poor performance,
especially because the test (unseen) dataset have high values of AARE (5.14%), RMSE (0.8608), MRE
(0.0514), etc. ANN employs the empirical risk minimization principle (ERM) which minimizes only
empirical error and does not consider the complexity of the model. As a result, it has a high accuracy
for the training dataset and a low accuracy for the test (unseen) dataset.
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Table 2. Evaluation of the ANN-based model based on statistical parameters.

Statistical Indices Train Data Test Data

AARE (%) 4.12 5.14
R 0.9884 0.9842

RMSE 0.8142 0.8608
SD 4.7469 5.2438

MRE 0.0412 0.0514
MAE (%) 1.02 1.05

Q2
LOO (Train data), Q2

ext (Test data) 0.9832 0.9685
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5.2. Development of an SVR-Based Model

The whole dataset is grouped into a dependent parameter (output/target) and independent
input parameters for SVR modeling and then divided into two groups of 80% the total data (255
data points) and 20% the total data (64 data points) to create the training dataset and the test dataset,
respectively. Among the various kernel functions—such as linear kernel, polynomial kernel, radial
basis function (RBF) kernel, and sigmoid—the RBF kernel is chosen for its good general performance
and only needing one parameter to be set [12,29]. Table 3 gives the optimal measures of the SVR
hyper-parameters C, ε, and the RBF kernel (γ) using the exhaustive grid search technique, which has
10-fold cross-validation.

Table 3. Optimal parameters of the SVR model for the prediction of heat transfer coefficient of R600a.

Model C γ = 1/2σ2 ε
Kernel
Type

Loss
Function

Number of
Support Vectors

Number of
Training Points

Heat transfer
coefficient, h 4907.6 1.3486 0.001 RBF ε-insensitive 175 255

The SVR model output has been employed to get the training course curve and the test course
curve demonstrated in Figure 4a,b, respectively. Figure 5 was plotted between the actual and predicted
values of the heat transfer coefficient of R600a via the SVR-based model for the training and test
dataset. The close agreement between the experimental and predicted data points is a testimony to the
excellent predictability of the SVR-based model. Table 4 exhibits the statistical evaluation parameters
of the SVR-based model for both the training and the test dataset. The SVR-based model has been
observed to have a significant improvement in predicting the test dataset.

Table 4. Evaluation of SVR-based model based on statistical parameters.

Statistical Indices Train Data Test Data

AARE (%) 2.05 1.15
R 0.9978 0.9991

RMSE 0.3241 0.2365
SD 5.4354 4.8343

MRE 0.02045 0.0115
MAE (%) 0.41 0.28

Q2
LOO (Train data), Q2

ext (Test data) 0.9955 0.9986
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5.3. Comparative Study

This section presents a comparative study of the developed AI-based models with the existing
correlations for the prediction of heat transfer coefficient of R600a in mini-channels.

Table 5 shows the performances of AI-based models and the existing correlations in terms of
statistical measures over the test dataset (unseen data). A small average absolute relative error (1.15%),
root mean square error (0.2365), and high R2 value (0.9981) suggest that the SVR-based model has
highly improved statistical parameters in comparison to the other models. In Figure 6, all the predicted
data points of the SVR model lie close to the ideal fit line while the predicted data points found
using the ANN model lie slightly away from the ideal fit line. Thus, the obtained results in Table 5
and Figure 6 reveal the superior predictability of the SVR-based model. The SRM of the SVR model
exhibits superior prediction performance as it optimizes the generalization accuracy around the
empirical error and the flatness of the model or the capacity of SVM. While the ERM of the ANN
minimizes the empirical error (error associated with the training data) and does not consider the
capacity of the learning machines. This results in overtraining, i.e., high accuracy for the training
dataset and low for test data, giving poor generalization performance [12,20]. Furthermore, none of
the existing correlations (namely Piasecka [24], Dutkowski [24,25], and Li and Wu [26]) predict the
heat transfer coefficient of R600a accurately. This might be due to the fact that these correlations have
been developed for different refrigerants with different flow conditions.
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Table 5. Evaluation of the AI-based models versus existing correlations over the test dataset.

Correlations
Model Evaluation Indices

AARE (%) R2 RMSE SD MRE MAE (%)

SVR (Present study) 1.15 0.9981 0.2365 4.8343 0.0115 0.28
ANN (Present study) 5.14 0.9685 0.8608 5.2438 0.0514 1.05

Piasecka [24] 62.52 0.1600 35.61 14.0801 6.252 33.2313
Dutkowski [24,25] 43.89 0.2624 15.32 12.2 4.3893 13.68

Li and Wu [26] 47.68 0.0095 16.19 17.78 4.76 18.35

Table 6 illustrates the distribution of the predicted data points of the heat transfer coefficient
of R600a based on ANN-based and SVR-based models in terms of the absolute deviation (AD) for
the training dataset. 61.96% of predicted data points via ANN model are observed nearly within
an AD of less than 5%. 23.53% of predicted data points are between an absolute deviation of 5 and
10%, and 14.51% of predicted data points are above an AD of 10%. Now, in the SVR-based model,
98.82% predicted data points lie below an AD of 10%, and only 1.18% predicted data points are above
an AD of 10%.

Table 6. Percentage of predicted data points for the heat transfer coefficient of R600a via the ANN-based
and SVR-based model in terms of absolute deviation (AD) for the training dataset.

Absolute Deviation
(AD) (%)

% of ANN Model
Predicted Values

Cumulative
Score

% of SVR Model
Predicted Values

Cumulative
Score

AD < 5 61.96 61.96 93.73 93.73
5 < AD < 10 23.53 85.49 5.09 98.82

AD > 10 14.51 100 1.18 100
Total 100 100

Table 7 summarizes the distribution of predicted data points of heat transfer coefficient of R600a
based on ANN-based and SVR-based models in terms of the absolute deviation for the test dataset.
68.75% of predicted data points via the ANN model are within an absolute deviation of less than
5%. 28.12% of predicted data points are in between an absolute deviation of 5% and 10%, 96.87%
data points lie below an absolute deviation of 10%, and 54.55% data points are above an AD of 10%.
The SVR-based model predicts nearly 96.88% of data points, having less than 5% absolute deviation,
and all the data points falls within an absolute deviation of not more than 10%.

Table 7. Percentage of predicted data points for the heat transfer coefficient of R600a via the ANN-based
and SVR-based model in terms of absolute deviation for test (unseen) dataset.

Absolute Deviation
(AD) (%)

% of ANN Model
Predicted Values

Cumulative
Score

% of SVR Model
Predicted Values

Cumulative
Score

AD < 5 68.75 68.75 96.88 96.88
5 < AD < 10 28.12 96.87 3.12 100

AD > 10 3.13 100 0.00
Total 100 100
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5.4. Parametric Study

The following section discusses the performance of AI-based models for predicting the effects of
input parameters, namely heat flux (q), vapor quality (x), mass flux (G), and saturation temperature
(Tsat) on the heat transfer coefficient (h) of R600a in a mini-channel.

5.4.1. Effect of Heat Flux and Vapor Quality on the Heat Transfer Coefficient of R600a

Figure 7 is a plot of vapor quality versus the heat transfer coefficient of R600a for various heat
fluxes at a constant mass flux (400 kg/m2·s) and saturation temperature (41 ◦C). It depicts the increase
of the heat transfer coefficient with the increase of heat flux at low and intermediate vapor qualities.
However, at high vapor qualities heat flux does not have much influence over the heat transfer
coefficient. This implies the nucleate boiling dominant region at high heat flux levels and low vapor
qualities [27,30]. The simulated results from ANN-based and SVR-based models follow the same trend
as that of experimental results. Moreover, the predicted results from the ANN-based model slightly
deviate from the observed values because of the ERM principle on which ANN is based upon.
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Figure 7. Observed and modeled heat transfer coefficient for R600a in a mini-channel at different heat
fluxes (G = 400 kg/m2·s; Tsat = 41 ◦C).

5.4.2. Effect of Mass Flux on the Heat Transfer Coefficient, h of R600a

Figure 8 demonstrates the effect of mass flux (kg/m2·s) on the heat transfer coefficient for R600a at
a constant heat flux (45 kW/m2) and saturation temperature (31 ◦C). This figure clearly shows that the
heat transfer coefficient increases with increasing mass flux at intermediate and high vapor qualities as
convective boiling occurs. At low vapor qualities, the nucleate boiling dominates and the heat transfer
coefficient was found to be almost independent of mass flux [27].The modeled heat transfer coefficient
is found to have been a sound match with the experimental results. In fact, the SVR-based model has
excellent prediction performance due to its SRM principle.
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Figure 8. Observed and modeled heat transfer coefficient for R600a in a mini-channel at different mass
fluxes (q = 45 kW/m2; Tsat = 31 ◦C).

5.4.3. Effect of Saturation Temperature on the Heat Transfer Coefficient of R600a

Figure 9 demonstrates the observed and modeled heat transfer coefficient for R600a at two
different values of Tsat (i.e., 31 and 41 ◦C) and heat fluxes (115 and 75 kW/m2) with a constant mass
flux (500 Kg/m2·s). At low vapor qualities, the heat transfer coefficient increases with increasing
saturation temperature. However, at high vapor qualities, an opposite trend occurs. This change of
behavior is mainly because of a decrease in heat flux [27]. Furthermore, the SVR-based model most
accurately predicts the heat transfer coefficient, followed by the ANN-based model.
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Figure 9. Observed and modeled heat transfer coefficient for R600a in a mini-channel at two different
saturation temperatures in ◦C (q = 115 kW/m2 and 75 kW/m2; G = 500 kg/m2·s).

6. Conclusions

AI-based models have been built to predict the heat transfer coefficient of R600a in a mini-channel.
The simulated results obtained were in good agreement with the experimental results. Moreover,
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based on the statistical measures, training and test course curve, and the AD value, the predictability
of the SVR-based model outperforms the ANN model and the existing correlations. Neither of the
existing correlations, namely Piasecka [24], Dutkowski [24,25], and Li and Wu [26], provide an accurate
prediction of the heat transfer coefficient of R600a. This is because these correlations have been
developed for different refrigerants which have different flow conditions. Moreover, parametric
studies clearly depict the excellent prediction performance of the SVR model, which is attributed to
the fact that it is based on an SRM principle. This optimizes the generalization accuracy over the
empirical error and the model complexity or the capacity of the machines. Good SVR prediction results
can be helpful in the more efficient design and fabrication of heat transfer equipment, and it appears
to be a promising technique for the prediction in micro- or mini-channels. Thus, the SVR method,
as an artificial intelligence technique, can be applied in chemical engineering and its allied fields.
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Nomenclature

C cost function
dh hydraulic diameter, m
f (m) regression function
G mass flux, kg/m2·s
hlv latent heat of vaporization, J/kg
K(mi mj) kernel function
L Lagrangian multiplier (dual form)
mi input vector
ni output vector
qw heat flux density, W/m2

Q2
ext leave-one-out cross validation for test dataset

Q2
Loo leave-one-out cross validation for training dataset

w weight vector
x vapor quality
z bias term
Greek Symbols
Γ surface development parameter
ε loss function
γ regularization parameter
α and α* Lagrangian multiplier
φ(mi) high dimensional feature function for input space m
K thermal conductivity, W/m·K
µ dynamic viscosity, kg/m·s
ρ density, kg/m3

σ surface tension, N/m
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