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Abstract: In this study, an experimentally validated computational model was developed to
investigate the hydrodynamics in a rotor-stator vortex agglomeration reactor RVR having a rotating
disc at the centre with two shrouded outer plates. A numerical simulation was performed using
a simplified form of the reactor geometry to compute the 3-D flow field in batch mode operations.
Thereafter, the model was validated using data from a 2-D Particle Image Velocimetry (PIV) flow
analysis performed during the design of the reactor. Using different operating speeds, namely 70,
90, 110, and 130 rpm, the flow fields were computed numerically, followed by a comprehensive data
analysis. The simulation results showed separated boundary layers on the rotating disc and the
stator. The flow field within the reactor was characterized by a rotational plane circular forced vortex
flow, in which the streamlines are concentric circles with a rotational vortex. Overall, the results of
the numerical simulation demonstrated a fairly good agreement between the Computational Fluid
Dynamics (CFD) model and the experimental data, as well as the available theoretical predictions.
The swirl ratio βwas found to be approximately 0.4044, 0.4038, 0.4044, and 0.4043 for the operating
speeds of N = 70, 90, 110, and 130 rpm, respectively. In terms of the spatial distribution, the
turbulence intensity and kinetic energy were concentrated on the outer region of the reactor, while the
circumferential velocity showed a decreasing intensity towards the shroud. However, a comparison
of the CFD and experimental predictions of the tangential velocity and the vorticity amplitude profiles
showed that these parameters were under-predicted by the experimental analysis, which could be
attributed to some of the experimental limitations rather than the robustness of the CFD model or
numerical code.
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1. Introduction

The removal of particulate solids from liquid process effluent is of great importance in
environmental quality management. However, when the sizes of solid particles diminish and
reach micron and submicron range, the particles tend to remain in suspension and cannot be
removed by gravity settling [1,2]. In order to achieve an acceptable solid-liquid separation at a
reasonable cost, the particles need to be agglomerated by flocculation, followed by a mechanical phase
separation—sedimentation, floatation, filtration, etc. The agglomeration of suspended particles to form
larger and settleable flocs form the basis of the upstream and downstream operations of many process
industries, such as mining, water and wastewater treatment, as well as pulp and paper processing.

Mixing plays an important role in the agglomeration of fine particles in suspension, either in
engineered or natural systems, and the choice of a particular stirrer-vessel configuration strongly
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influences the flow pattern in the treatment unit. Flow in the wheelspace or cavity between a stationary
and rotating disc (rotor-stator system) is of great importance in many engineering applications, such
as in mixing applications for food, chemical and pharmaceutical industries, and in the turbine and
compressor blades for the aeronautical industry [3–6]. Flows of this nature have been the subject of
many scientific investigations, both theoretically and experimentally [7,8]. Theoretical analysis of
the nature of flow in rotor-stator systems resulted in the so called Batchelor-Stewartson controversy
regarding the exact nature of the flow profile in the wheelspace between the rotor and the stator. It is
now generally accepted that both models are valid, with Batchelor’s model giving a more accurate
description of the flow in an enclosed or shrouded rotor-stator system that consists of separated
boundary layers on the rotor and the stator and an inviscid rotating core in between the boundary
layers [9,10].

The use of Computational Fluid Dynamics (CFD) for the investigation of complex fluid-particle
interactions in many engineering designs of fluid flow applications has been steadily growing in
popularity, both in academia and the industry over the past few decades [11,12]. Nowadays, numerical
simulations complement the experimental and analytical techniques, and are increasingly being
performed on a much bigger scale in many fluid engineering applications ranging from chemical and
mineral processing to civil and environmental process engineering [11]. In any design-based CFD
modelling, the main focus is to assess the hydrodynamics of the system and to determine the flow
pattern, hydrodynamic profile velocity, vorticity, kinetic energy, dissipation rates, turbulence intensity,
dead zones, and black spots, among other properties, which in turn, will help in improving and
optimizing the engineering design and overall performance of the reactor [13,14]. In many technical
applications of engineering design techniques to complex fluid flow problems, an understanding
of the interacting physical, biological, and chemical processes within the reactor system is highly
indispensable. This is particularly interesting as CFD offers a flexible and sophisticated platform
for engineers and scientists in the investigation of complex engineering design problems. A quick
survey of the literature in this field shows that many innovative fluid-particle multiphase reactors have
been successfully designed and tested on different scales for a wide range of engineering applications
ranging from particle separation and water purification, such as bacterial inactivation, to biological
cell culture preparation [15–22]. For instance, the application of Taylor-vortex or Taylor-Couette flow
for a wide range of beneficial physicochemical treatments have been reported with some encouraging
results [23].

Buwa et al. [3,4] investigated the performance and optimization of different types of disc impellers
as flow inducers in stirred tanks. Their two-part study compared the efficiency of the rotating disc
to the conventional propeller as alternative flow inducers in mixing tank applications. A radial grid
disc, square grid disc, solid discs, and a propeller were selected for the investigation. Laser Doppler
Anemometry (LDA) measurements and the subsequent numerical simulation showed that there was
no substantial variation in the axial flow pattern between the radial grid and the square grid disc.
However, the flow near the impeller shows a strong dependence on the impeller configuration. The
study also reported that the mixing performance of the radial grid disc and that of the propeller
was roughly the same. Similarly, Dionysios et al. [19] investigated the application of a rotating disc
photocatalytic reactor (RDPR) for the treatment of organic pollutants in water. A subsequent analysis
of the mixing and treatment efficiency in terms of the degradation of the organic pollutants showed
that the technique offers several benefits when compared to the existing ones, and the mixing regime
is quite close to that of the continuous stirred tank reactor (CSTR). However, vital information on the
hydrodynamic behavior of the reactor, either experimentally or numerically, was missing from the
study. In the case of technical applications of a Batchelor vortex, it is the comprehensive study of a
multi-inlet vortex reactor by Liu et al. [24,25] that has advanced research in this field to the greatest
extent. Their two-part study reported that the flow structure of the vortex flow in the nanoparticle
precipitation reactor consists of a spiral motion in the free-vortex region and a nearly homogeneous
mixing in the forced-vortex region.
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While there appears to be huge interest in rotor-stator flow among the scientific community from
a theoretical perspective, it is very rare to find practical applications of this type of flow, especially
in fluid-particle separation, with the exception of Taylor-Couette flow. Therefore, the aim of this
study is to investigate the hydrodynamic performance of a rotor-stator vortex RVR agglomeration
reactor for fluid-particle separation using a Batchelor flow in a shrouded cavity. A single rotating
reference frame (SRF) approach was used to model the disc interaction with the fluid domain coupled
with k-ε and Reynolds Stress Model (RSM) turbulence closure models. The validated CFD model is
subsequently employed in analyzing the flow pattern and the spatial distribution of the hydrodynamic
quantities within the reactor and in understanding the hydrodynamic behavior with respect to the
reactor geometry.

2. Materials and Methods

2.1. Description of the RVR Agglomeration Reactor

A patented rotating disc vortex reactor RVR made from perspex was designed for the
agglomeration of dispersed fine particles in suspension, as shown schematically in Figure 1a with the
design details available elsewhere [26]. It is a cylindrical rotor-stator configuration with a shrouded
outer casing. The working slurry is a mixed synthetic kaolin suspension fed into the reactor through
an opening at the top. Mixing of the synthetic suspension—kaolin slurry and the flocculating agents
(synthetic polyacrylamide PAM—Superfloc® C-492 and N-300) is provided by the spinning disc
powered by a rotating shaft. The rotating disc made from Polyvinyl chloride (PVC) generates both
radial swirling flow at the immediate vicinity of the disc and an axial pumping flow at some distance
away from the disc towards the stator, which eventually drives the agglomerated flocs towards the
shroud of the reactor, as shown schematically in Figure 1b. The axial flow away from the rotating disc
towards the shroud facilitates the collection of densified agglomerates on either side of the reactor in
batch mode operations.
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when it is above the critical Reynolds number Reϕ, critical ≈ 2 × 105 with small patches of turbulence or 
oscillating vortex disturbance [7,8]. This can be expressed mathematically for the boundary layer near 
the rotor using the local rotational Reynolds number Reϕ, local (Equation (1)). The gap ratio G of the 
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Figure 1. Schematic illustration of the reactor configuration and flow profiles: (a) RVR reactor, and (b)
rotor-stator flow boundary layers showing the tangential velocity and vorticity amplitude profiles on
the rotating disc (Reproduced from [8] with permissions © 2011 Elsevier).

2.2. Theoretical Analysis of the Fluid Flow

The flow in the reactor wheelspace or cavity is characterized by an axis-symmetrical forced-vortex
Batchelor flow with separated boundary layers at the rotor and the stator. The velocity profile of the
flow on the disc boundary layer is illustrated in Figure 1b with radial, tangential, and axial velocity
flow profiles. The circumferential velocity in a forced vortex flow increases radially outwards with the
radius attaining a maximum at the tip of the disc (tip velocity), while the vorticity magnitude is nearly
constant with its amplitude twice the angular velocity of the rotating disc. The flow in the reactor
system on the boundary layers may be characterized by a certain degree of flow instability when it is
above the critical Reynolds number Reφ, critical ≈ 2 × 105 with small patches of turbulence or oscillating
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vortex disturbance [7,8]. This can be expressed mathematically for the boundary layer near the rotor
using the local rotational Reynolds number Reφ, local (Equation (1)). The gap ratio G of the reactor is
defined as the ratio of the wheelspace width to the outer disc radius, and is approximately 0.2206 for
this reactor system (Equation (2)). The theoretical hydrodynamic characteristic values are given in
Table 1.

Reφ, local =

(
r

rd
2

)
ρωr2

µ
=

ρωr2

µ
(1)

G =
s
r

(2)

Table 1. Theoretical values of the flow quantities at different operating speeds near the rotating disc
boundary layer.

Operating Condition Hydrodynamic Parameters

Operating Speeds (rpm) Disc Rotational Reynolds Number (-) Disc Tip Velocity (m·s−1) Disc Vorticity (s−1)

70 2.59 × 104 0.4985 14.662
90 3.33 × 104 0.6410 18.852
110 4.07 × 104 0.7834 23.041
130 4.81 × 104 0.9258 27.231

2.3. Experimental Fluid Flow Measurements

The flow measurement commences after running the reactor for a period of time in which the
fluid flow had reached a steady state. In our case, we assume a time longer than t = tGφ = 25
as the time at which the system has reached a pseudo-steady state condition [27]. The 2-D PIV
measurements, which are described in detail elsewhere [15], consist of an RVR reactor system seeded
with tracing particles and distilled water at standard conditions as a working fluid (Figure 2). The
geometry of the reactor presented some measurement constraints, which was taken into account in
the post-processing and analysis of the experimental data. The laser system for the experimental
measurements consist of a LINOS Nano 259-532-100 (Qioptic GmbH & Co. KG, Munich, Germany)
providing illumination for a cross section of the reactor under investigation. A high-resolution
complementary metal-oxide semiconductor (CMOS) camera was used to capture the steady state fluid
flow behaviour for post-processing and cross-correlation in MATLAB R2015a (Mathworks GmbH,
Germany). The seeding particles is a mixture (1:1) of silver-coated and hollow glass spheres (Dantec
Dynamics, A/S, Denmark) measuring 10 µm in average diameter with a good light scattering efficiency
and sufficiently small velocity lag [28,29].
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3. Numerical Simulation

3.1. Model Description

3.1.1. Governing Equations

The general form of the governing equations of mass and momentum conservation, or the so
called Reynolds-Averaged Navier-Stokes (RANS) equation, can be written in a simplified form for a
steady-state single phase fluid flow, which is given in Equations (3) and (4), where ρ is the density,
p is the static pressure,

→
v is the velocity component,

=
τ represents the stress tensor due to viscous

stress, ρ
→
g is the gravitational force, and

→
F is the exerted body forces. The Reynolds-Averaged form of

the continuity and momentum conservation equations was used along with k-ε eddy-viscosity and
RSM turbulence models to close the RANS momentum equation. In the case of standard and RNG
k-ε models, this is done by calculating the turbulent or eddy-viscosity µt, or effective viscosity µeff ,
from the transport equations of turbulent kinetic energy k and its dissipation rate ε [4,30,31]. The
effective viscosity µeff and the stress tensor

=
τ can be written as follows in Equations (5) and (6), where

µ represent the molecular viscosity, and the constant Cµ = 0.09, and 0.0845 for the standard k-ε
and RNG k-ε models, respectively, while the last terms on the right represent the local turbulent or
eddy-viscosity [4,32–35]:

∂ρ

∂t
+ ∇·

(
ρ
→
v
)

= 0 (3)

∂

∂t

(
ρ
→
v
)

+ ∇·
(

ρ
→
v
→
v
)

= −∇p + ∇·
(
=
τ
)

+ ρ
→
g +

→
F (4)

µeff = µ +
ρCµk2

ε
(5)

=
τ = µ[(∇→v ) + (∇→v )

T
]− 2

3
µδ∇→v (6)

3.1.2. Fluid Flow Domain, Mesh and Grid Convergence

A solid modelling software (ANSYS DesignModeler 18.2, ANSYS Inc.) was used to create the
simplified CAD model of the reactor along with the rotating disc to describe the fluid domain (Figure 3).
Thereafter, a computational mesh was generated from the solid model for the computational study
which consisted of structured hexahedral mesh using the commercial grid generation software ANSYS
Meshing 18.2 (ANSYS Inc.). Four grids of different mesh densities of approximately 0.042 × 106,
0.431 × 106, 0.86 × 106, and 1.3 × 106 elements were created for the grid independence study. The
grid independence study was conducted by carrying out the numerical simulation on successively
finer grids. Thereafter, the results of the circumferential velocities were compared for all the grids
to establish that they are grid-independent. Finally, a mesh containing approximately half a million
elements was thereafter chosen on the basis of a trade-off between the required computational accuracy
and CPU time needed to run the simulation to a converged solution. This optimized mesh was
thereafter used for subsequent computations of all parameters of interest with a computation time of
approximately 15 h for the highest operating speed. Figure 4 shows the radial and axial circumferential
velocity profiles along the Y-Z and X-Z planes at x = 0.003725 and y = 0.045, respectively, for a rotation
speed of 70 rpm for all the four grids employed for the convergence study and clearly demonstrates
that the results are grid-independent.
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3.2. Numerical Methods and Boundary Conditions

The hydrodynamics of the wet agglomeration process was investigated by obtaining numerically
the steady-state flow field of a single-phase flow in the reactor. This flow field was then compared
to the experimentally derived one based on the assumption that the seeding particles in the PIV
measurement faithfully follow the flow and do not have any impact on the continuous phase (one-way
coupling). This assumption, which is obviously not the case in practice, especially at high solids
loading, was deemed sufficient to match the PIV experimental conditions in which the flow is a dilute
suspension. However, this simplified approach is rarely the case in practice as the agglomeration,
growth, and breakage of particle cluster—flocs ultimately led to an exchange of momentum and energy
between the carrier and the particulate phase through contacts and collisions, especially for high
particle concentrations or dense flows [36,37]. In modelling the single-phase flow in the agglomeration
reactor, the Single Reference Frame (SRF) approach was employed with relative velocity formulation.
This is due to the fact that most of the flow in the fluid domain is rotating as the flow inducer is in close
proximity to the reactor wall. No slip condition was imposed on the walls, with the choice of a relative
reference frame to describe the zones relative to one another. The pressure-based coupled algorithms
were used to obtain a steady-state numerical solution of the Navier-Stokes equation. This algorithm
has been shown to offer a more robust and efficient single-phase implementation for steady-state
flows [33].

In order to ensure the accuracy of the numerical solution, the scaled residuals, moment on the
revolving plate about the axis of rotation, and the average turbulent kinetic energy k, these values
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were monitored until these parameters reduced to minimal or constant values, and this forms the basis
for assessing the convergence of the solution. In verifying the accuracy of the numerical solution, the
theoretical values of some hydrodynamic quantities, such as the tip velocity Ω of the rotating disc, the
induced vorticity ζ on the disc boundary layer, the flow swirl ratio β, and the gap ratio G were also
calculated and compared to the numerically derived and literature values (Figure 1b, Equations (7)–(9)).
Finally, validation of the numerical results was carried out by comparing some of the CFD results with
the PIV data and the Batchelor model.

Ω = ωr = 2πnr (7)

ζ = 2ω (8)

β =
ω′

Ω
(9)

4. Results and Discussion

The results of the CFD analysis showing the distribution of the mean flow parameters is hereby
presented in the following sections. Only the data from one side of the reactor is analyzed as the flow
is fully symmetrical about the axis of rotation. The symmetrical nature of the flow was also confirmed
in the course of the data analysis by comparing data points on either side of the reactor and other
points of symmetry. It can be clearly seen that the flow fields are generally similar in structure, but
mainly differ in terms of the flow quantities’ magnitudes.

4.1. Analysis of the Mean Flow Characteristics

4.1.1. Radial Distribution of the Hydrodynamic Quantities

The flow streamlines in the rotor-stator system could be analyzed on the basis of the Batchelor
flow model. The flow structure in the RVR reactor broadly agreed with the Batchelor’s predictions
and other similar studies [9,10]. The Batchelor’s prediction was arrived at by solving a simplified
form of Navier-Stokes equation to obtain an approximate flow field Figures 5a–d and 6a–d shows
the radial profiles of the circumferential velocity vector fields and contours, and the vorticity vector
maps and contours on the rotating disc boundary layer and on three Y-Z planes along the reactor
wheelspace, which seems to be consistent with the theoretical descriptions given in Figure 1b and
Equations (6) and (7). Away from the boundary layer near the rotor in the radial direction, there was a
sharp increase the radial vorticity profile with respect to the radial distance (Figure 6b–d). In addition,
the radial circumferential velocity profile showed a somewhat lower magnitude than the tip velocity
close to the wall of the reactor (Figure 4a). However, in the case of the vorticity magnitude profile, it is
observed that there is a small region of high vorticity, mostly around the outer edge of the rotating disc
and the fluid rotating core, as shown in the vorticity magnitude contour in Figure 6a–d. Apart from
this region, the CFD results were consistent with the theoretical prediction of vorticity as twice the
magnitude of the rotating disc angular velocity (Figure 1b, Table 1). It had been shown by previous
studies that a region of high vortex and vorticity tends to promote the wet agglomeration of particles
and floc densification [38,39]. However, owing to the nature of the clearance between the rotating disc
and the reactor wall, which is quite narrow, it was not possible to take advantage of this rotational
effect for further densification of the formed flocs and this will be a factor to be considered in future
optimization of the reactor system. The velocity distribution across the wheelspace was characterized
by the Batchelor flow with separated boundary layers and an inviscid core that rotated at a fraction
of the rotor angular velocity with an axial pumping effect towards the shroud. The swirl ratio β,
which is a measure of the ratio of the rotating core tangential velocity to that of the disc tip velocity or
boundary layer velocity, was found to be approximately 0.4044, 0.4038, 0.4044, and 0.4043 for operating
speeds of N = 70, 90, 110, and 130 rpm, respectively, which are quite similar to the values reported by
Daily et al. [8].
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The basic outline of the flow pattern was also consistent with the PIV results, which are available
elsewhere [15]. The velocity profiles at two selected Y-Z cross sections on the model were validated
by comparing them with the PIV experimental data obtained with a measurement error of ±0.05.
(Figure 5b,c). In general, the velocity profile showed a fairly good agreement with the PIV data except
at the outer edge of the cross section of the PIV velocity profile. This region on the outer edge of the
cross section had to be masked out in the post-processing of the PIV data owing to some measurement
limitations encountered during the PIV analysis. The high fluctuation of the laser signal on the fluid
surface made the measurement quite a challenge. Compared with the PIV results, the maximum
tangential velocity predicted by the CFD differed by a value of approximately 10%. However, it is
worth pointing out that the observed deviations of the CFD data from the experimental results were
mainly due to the experimental limitations encountered in the PIV analysis rather than the accuracy
of the numerical predictions. A quick comparison of the CFD data with theoretical calculations in
Table 1 seems to suggest that the PIV analysis under-predicted the flow characteristics. In terms of the
accuracy of the turbulence models, the RSM model seemed to give better predictions of the flow profile.
The RSM model had been reported in several studies involving swirl and rotating flows to be more
efficient in capturing the salient turbulence characteristics of the flow [31,40]. One way to improve the
predictions of the two-equation eddy-viscosity models is by introducing curvature correction using a
modified turbulence production term [32,33]. The standard k-ε gives the least accurate prediction due
to the absence of curvature correction in this model.

4.1.2. Axial Distribution of the Hydrodynamic Quantities

The tangential velocity Uϕ contours and profiles, and the vorticity amplitude ζ contours and
profiles on the X-Z plane are shown in Figures 7a–c and 8a–c respectively. The axial tangential velocity
distribution shows a pattern consistent with a Batchelor flow profile, except on plane y = 0 near the
shaft where the velocity is zero as expected. Figure 7a–c shows a varying pattern of Batchelor velocity
profiles, but with distinct separated boundary layers and a central rotating core. By contrast, the width
of the rotor boundary layer is slightly longer and the rotating core slightly shorter when compared
to the Batchelor profile (Figure 10b). In terms of the axial vorticity amplitude, all the profiles seem
to be identical, except on plane y = 0 at the region close to the shaft where the vorticity amplitude
remains constant throughout the plane (Figure 8a). Overall, the velocity and the vorticity amplitude
increases with the axial plane height with the plane y = 45 recording the highest magnitude. However,
there is a region of high vorticity mostly on the outer edge of the rotating disc close to the reactor wall.
This observation is quite interesting as it suggests that the clearance between the disc and the reactor
wall might strongly influence the vorticity magnitude. The influence of the gap ratio G on the fluid
flow cannot be ruled out, and a detailed geometry parametric investigation prior to the scale-up of the
reactor in future can yield some useful data for design optimization.
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4.1.3. Spatial Distribution of Mixing and Turbulence Intensities

The transport phenomena in any engineered system is often controlled by the fluid properties.
In the case of a stirred tank, the turbulence kinetic energy, intensity, or mixing rate of the fluid is the
controlling factor [41]. Therefore, in the design of flocculation reactors, it is desirable to have uniform
mixing intensities in the agitation vessel. A quantification of spatial turbulence distribution and mixing
efficiency is often carried out on the basis of parameters, such as turbulent kinetic energy per unit
mass and Reynolds stresses, with the Reynolds stress defined as the time-averaged product of the
velocity signal fluctuations in the fluid flow, while the turbulent kinetic energy is the mean kinetic
energy per unit mass associated with the turbulent eddies or flow vortex [1,16]. It has been suggested
that there is a strong correlation between the stirring behavior in a mixing tank and the turbulence
amplitude [16,23]. Flow turbulence within the reactor was investigated at different radial and axial
planes to evaluate the mixing efficiency in the reactor. The spatial distribution of the mixing intensities
within the reactor expressed as a function of the normal time-averaged Reynolds stresses u′u′ is shown
quantitatively in Figure 9a, while Figure 9b represents the turbulent kinetic energy per unit mass k in
terms of the operating speeds at some specific locations in the fluid domain.

In turbulence modelling, the RSM model has been shown to give a better prediction of the
turbulence effect when compared to the eddy-viscosity based models, especially for flows in which
the assumption of isotropic turbulence does not hold, such as in swirling and rotating flows with
strong rotation and streamline curvature [11,42]. However, it is by far more computationally expedient
to use the k-ε models and their accuracy can be improved by applying higher order discretization
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schemes as well as curvature corrections. The radial distribution of the mixing intensity could be
seen to increase with the radius, with the highest intensities concentrated on the outer edge of the
rotating core, while the axial distribution is almost uniform for the lower planes except at y = 45 and
y = 68, where there appeared to be variations in the mixing intensity. In terms of the operating speeds,
the mixing intensities increased with the radius and the operating speeds as expected in the radial
direction. However, there seemed to be a region of lower mixing intensities at the reactor wheelspace in
the rotating core, which means that there was only a marginal improvement in mixing at this location
when the operating speed is increased. Overall, the mixing appears to be fairly good except in the
region close to the shaft, which showed somewhat low mixing intensities, and in the small area in the
outer region of the rotating core with high mixing intensities. One design modification to improve
mixing in the region close to the shaft might be the introduction of baffles on the disc to induce more
swirling effect. Similarly, in the outer region with high mixing intensities, the clearance between the
disc and the wall can be adjusted to make the mixing more uniform.
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Figure 9. Spatial distribution of the turbulence and mixing intensities (a) Reynolds stress distributions
on the Y-Z plane at x = 0.0015, 0.003725, and 0.006, and X-Z plane parallel to the shaft at y = 0, 0.025,
0.045, and 0.068. (b) Turbulent kinetic energy distribution on the Y-Z plane at x = 0.003725 and X-Z
plane parallel to the shaft at y = 0.025 for N = 70–130 rpm.

4.1.4. Theoretical Validation of the CFD Model

Figure 10 shows a comparison of the axial tangential velocity distribution on the X-Z plane with
the Batchelor model predictions. The axial flow streamline in the agglomeration reactor differed
somewhat from the Batchelor model, and it was assumed that this might be due to differences in the
configuration of the rotor-stator systems employed for the studies. The streamlines can be significantly
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influenced by the vessel geometry and the stirrer configuration thereby resulting in different gap
ratios and flow streamlines. However, Figure 10b shows the presence of separated boundary layers on
the rotor and the stator, and a rotating core is clearly visible, which is consistent with the Batchelor
predictions, although with minor variation in terms of the extent of the boundary layers. Overall, all
the axial tangential velocity profiles (Figures 7a–c and 10b) of the agglomeration reactor confirm the
presence of separated boundary layers on the rotor and the stator, and an inviscid rotating core.
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5. Conclusions

A 3-D computational model has been developed to investigate the hydrodynamic characteristics
and flow pattern in a rotating disc vortex reactor RVR. A steady state numerical simulation was
performed using a single reference frame (SRF) approach to describe the hydrodynamic interaction
between the rotating disc and the mixing vessel. A fairly good agreement was obtained between the
results of the CFD and the available theoretical and experimental data. A subsequent analysis of the
spatial distribution of the hydrodynamic quantities showed that the tangential velocity increased as
expected radially across the rotating disc, while decreasing in the axial direction with the vorticity
magnitude showing only a marginal increase in the radial direction, except at the annular space
between the disc and the reactor wall, while it increased marginally in the axial direction except
close to the stator where there was a high vorticity values. With respect to the operating speed, the
flow parameters’ values increased as expected with the operating speed across the fluid domain.
The investigation was able to meet the study objectives by identifying regions of high vorticity,
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rotation, and poor mixing within the reactor, which is quite useful information in optimizing the
reactor performance.

In terms of the fluid flow pattern, the axial velocity distribution across the wheelspace was
characterized by laminar Batchelor flow with separated boundary layers and an inviscid core that
rotates at a fraction of the rotor angular velocity with an axial pumping effect towards the shroud.
However, the radial tangential velocity profile taken on three planes along the reactor wheelspace
shows an almost linear distribution with a somewhat lower magnitude between the tip of the disc and
the reactor wall, while the radial vorticity amplitude is nearly constant, except around the tip of the
disc. It is anticipated that future studies will address the fluid-particle interactions within the reactor
towards a parametric optimization of the wet agglomeration process. A multiphase investigation
of the fluid-particle interactions within the reactor will provide an insight into the influence of the
hydrodynamics on the temporal and spatial evolution of the species concentration in the reactor.
This information will help in understanding the interplay between the micro-hydrodynamics and the
physicochemical processes occurring within the reactor.

6. Patents

The reported rotor-stator RVR agglomeration reactor is a patented device registered with the
German Patent and Trademark Office, Berlin, Germany, with Patent No. DE10 2015 107 682 A1.
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Notations

Reϕ Rotational Reynolds number (-)
ζ Vorticity magnitude (s−1)
G Gap ratio (-)
β Swirl ratio (-)
ρ Density (kg·m−3)
δ Boundary layer thickness (m)
n Disc rotational speed (s−1)
x Radial coordinate (m)
z Axial coordinate (m)
rd Rotating disc outer radius (m)
s Wheelspace or cavity width (m)
µ Dynamic viscosity (kg·m−1·s−1)
ω Disc or plate angular velocity (rad·s−1)
ω′ Angular velocity of the rotating core (m·s−1)
Ω Disc tangential or tip velocity (m·s−1)
Uϕ Tangential velocity component (m·s−1)
Ur Radial velocity component (m·s−1)
Uz Axial velocity component (m·s−1)
r Distance along the r-axis (m)
rs Shaft radius (m)
rr Reactor shroud radius (m)
φ Initial particle volume fractions (-)
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