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Abstract: Lignocellulosic agricultural side products like wheat straw are widely seen as an important
contribution to a sustainable future economy. However, the optimization of biorefinery processes,
especially the pretreatment step, is crucial for an economically viable biorefinery. The monitoring of
this pretreatment process in terms of delignification and the generation of the fermentation inhibitors
acetic acid, furfural, and hydroxymethylfurfural (HMF) is essential in order to adapt the process
parameters for a desired outcome and an economical operation. However, traditional wet chemistry
methods are time-consuming and not suitable for on-line process monitoring. Therefore, UV-Vis
spectroscopy in combination with partial least-squares regression was used for the determination of
the concentrations of lignin, acetic acid, furfural, and HMF. Five different data blocks with increasing
amounts of impurities were investigated to evaluate the influence of the inevitable impurities on
the calibration models. Lignin showed a good prediction accuracy with 95% tolerance intervals
between ±0.46 to ±1.6 mg/L for concentrations up to 30 mg/L. Also, the other components could be
predicted with a sufficient accuracy for on-line process monitoring. A satisfactory calibration can be
obtained with 10 to 20 reference samples valid at process temperatures between 160 ◦C and 180 ◦C.
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1. Introduction

Many petrochemicals are produced from conventional crude oil-fed refineries, whereas it is
anticipated that in the future, many products and chemicals will be produced from biorefineries fed
with lignocellulosic biomass such as agricultural residuals [1]. This renders the term “waste”, in the
context of biomass processing terminology, obsolete, as each production stream has the potential to
be converted into a by-product or energy rather than waste [2]. Especially lignin, as one of the three
main components of lignocellulosic biomass, is currently underutilized and mainly used as an energy
source, whereas it is anticipated to improve the economics of a biorefinery [3].

A biorefinery approach involves multi-step processes in which the first step, subsequent to the
feedstock selection, typically involves treating the biomass to pre-separate the main components
and to make it more amenable for further processing [4]. This step is conventionally referred to as
pretreatment. To facilitate the lignin utilization, a pretreatment process yielding lignin with little
changes in the chemical structure is favored. Compared to other pretreatment technologies, the
organosolv process, used in this work, extracts relatively pure, low-molecular-weight lignin from
biomass. This lignin shows a minimum of carbohydrate and mineral impurities and facilitates lignin
applications with a higher value than heat and power generation [5].
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Lignin is a highly irregularly branched polyphenolic polyether, consisting of the primary
monolignols, p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, which are connected via
aromatic and aliphatic ether bonds [6]. Even by using only one type of raw material in a lignocellulosic
biorefinery, the growth environment, harvesting method, and storage can increase the inherent biomass
property of heterogeneity [7].

The mentioned variability in the composition and structure of feedstocks poses one of the most
significant challenges to the industrial-scale processing of lignocellulosic materials [6]. Therefore,
in-situ process monitoring of the pretreatment and the lignin concentration is essential for an adaption
of process parameters and a constant product quality. However, traditional wet chemistry methods
are expensive and time-consuming, requiring several days for a full composition analysis, which is a
timeframe clearly incompatible with on-line process monitoring [8].

In addition to the lignin concentration, degradation products generated during the pretreatment
process such as furfural, hydroxymethylfurfural (HMF), and acetic acid are of interest. The furans
originate from the dehydration of hexose and pentose sugars, whereas the acetic acid originates from
the cleavage of the acetyl substitutions from xylan, and both are of particular importance for the
toxicity in yeasts [9–11]. A low concentration of these inhibitors is therefore favored for subsequent
fermentation processes and needs to be monitored. These components can be measured by HPLC in a
time frame of hours, which is inappropriate for on-line process monitoring [12].

Therefore, spectroscopic methods are anticipated to be used to gain real-time composition results.
The widely used and powerful spectroscopic method UV-Vis was applied in this work. However,
several degradation products exhibit interfering UV spectra [13,14] and consequently, simple linear
regression models (using data only from a single wavelength) are not successful. Therefore, the
multivariate linear partial least-squares (PLS) regression [15] was chosen. PLS models have been
developed for the estimation of the concentrations of lignin, acetic acid, HMF, and furfural from
UV-Vis data. The strategy of repeated double cross validation (rdCV) was applied to obtain calibration
models with an optimum complexity (optimum number of PLS components) and to obtain a realistic
estimation of the prediction errors [16].

Five different data blocks were used to investigate the feasibility of this measurement method
for wheat straw organosolv extracts which contain a multitude of inevitable impurities interfering
with the spectral results. The data blocks contain increasing amounts of impurities starting from pure
component spectra, synthetic extracts, and organosolv extract spiked with pure components to neat
organosolv extracts from different pretreatment temperatures. In a first step, the single blocks are
investigated separately in terms of the prediction performance of the PLS models derived from the
block data. In a second step, the obtained calibrations from block 1 are applied to the data blocks with
reference analyzed neat extracts. Furthermore, the validity of the models for varying pretreatment
temperatures is investigated. Finally, the influence of a decreased number of calibration samples is
investigated, thus reducing the effort for making calibration models for different process conditions.
The main focus of this work is, however, on monitoring the pretreatment process at nearly constant
process parameters.

2. Materials and Methods

2.1. Materials

The wheat straw used was harvested in 2015 in lower Austria and stored under dry conditions
until use. The particle size was reduced in a cutting mill, equipped with a 5-mm mesh, before
pretreatment. The dry composition of the straw was 16.1 wt % lignin and 63.1 wt % carbohydrates
consisting of Arabinose, Glucose, Mannose, Xylose, and Galactose. Ultra-pure water (18 MΩ/cm) and
Ethanol (Merck, Darmstadt, Germany, 96 vol %, undenatured) were used in the organosolv treatment
and additionally sulfuric acid (Merck, 98%) in the precipitation of lignin.
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Acetic acid (Sigma-Aldrich, St. Louis, MO, USA, 99.7%), HMF (Sigma-Aldrich, 99%), and furfural
(Sigma-Aldrich, 99%) were used for the preparation of synthetic extracts and pure component spectra.

2.2. Organosolv Pretreatment

The organosolv pretreatment was conducted in a 1 L stirred autoclave (Zirbus, HAD 9/16) using
a 60 wt % aqueous ethanol mixture as the solvent under consideration of the water content in the straw.
The wheat straw content in the reactor based on dry straw was 8.3 wt %. The reactor was heated to
160 ◦C, 180 ◦C, or 200 ◦C within 45 min and held at this temperature for 15 min. After these 60 min of
treatment, the reactor was cooled to room temperature. The solid and liquid fractions were separated
using a hydraulic press (Hapa, HPH 2.5) at 200 bar and a centrifuge (Sorvall, RC 6+) at 30,074× g for
20 min.

2.3. Reference Analysis and Synthetic Extract

The organosolv extract was analyzed for concentrations of lignin and the degradation products
acetic acid, HMF, and furfural by a Shimadzu LC-20A “prominence” HPLC system with a Shodex SH-G
guard column and a Shodex SH1011 column at 50 ◦C, with 0.005 M H2SO4 as the eluent. Acetic acid
was determined via a refractive index detector, furfural, and HMF via a UV-Vis detector. The lignin
content was determined following the NREL LAP “Determination of Structural Carbohydrates and
Lignin in Biomass” [8] using the dry matter of the extract obtained at 105 ◦C.

Lignin for pure component measurements and spiking material was precipitated from the extract
using a sulfuric acid/water mixture at pH 2 as the antisolvent. The particles were separated from
the suspension after precipitation by centrifugation. The bottom product was purified by repeated
sonication, centrifugation, and replacement of the supernatant with water. The freeze-dried lignin
was finally analyzed in terms of its lignin and carbohydrate content via the method mentioned before.
The purified lignin had a lignin content of 94.4 wt %.

Subsequently, five different sample sets were prepared and UV-Vis spectra were recorded,
resulting in the data blocks which are summarized in Figure 1. All samples were measured in a
60 wt % aqueous ethanol solution. The reference concentrations of all components in the five data
blocks are shown in the Supplementary Material in Tables S1–S5.
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2.4. UV-Vis Spectroscopy

UV-Vis spectra were recorded with a Spectrophotometer UV-1800 (Shimadzu, Kyoto, Japan) in a
wavelength range of 190–450 nm using a spectral resolution of 1 nm. The organosolv extracts were
diluted from 1:250 to 1:1000 in 60 wt % aqueous ethanol and measured in 100-QS cuvettes (Hellma
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Analytics, Müllheim, Germany) with a 10 mm path length at room temperature. As the background,
60 wt % aqueous ethanol was used and internally subtracted from the sample spectra. Absorbance
values were exported from the spectrophotometer software UV-Probe 2.62 (Shimadzu, Japan) and
subsequently used for chemometric calculations.

2.5. Chemometrics

Data pre-processing and analysis was carried out in the open source software “R” [17].
Different packages were used for various data treatments. For calibration models, the package
“chemometrics” [18] was used. Derivatives were calculated with the package “prospectr” [19], and the
“pls” package [20] was used to apply the chemometric models to validation samples.

The spectral data from the UV-Vis measurements were reduced to a wavelength range of 200 nm
to 450 nm in order to remove noise below a wavelength of 200 nm. The wavelength reduced and
not pre-processed data is further referred to as raw data and directly used for PLS. Additionally,
three data pre-processing methods were applied before PLS. The first and second derivative of the
spectral data was calculated using a Savitzky–Golay filter with a window size of 5 and a second
polynomial order. Furthermore, a pretreatment method for a linear regression prediction method for
furfural and HMF described by Martinez et al. [21] was modified and applied. This method uses the
difference of the absorbance at wavelength 284 nm and 320 nm in order to determine furfural and HMF.
In this work, the method was adapted by normalizing the spectral data to the absorption at 284 nm
and 320 nm, respectively, and the two normalized spectra were subtracted and applied in the PLS.
This pre-processing method is further referred to as ∆284/320 nm. Details of these datasets are shown
in Tables S6 and S7 of the Supplementary Materials. Matrix X (n × m) for PLS has n = 6, ..., 30 rows
(samples, spectra) and m = 247, ..., 251 columns (variables, absorbances or preprocessed absorbances).

PLS regression was combined within the strategy of repeated double cross validation (rdCV),
more specifically to all pretreated data sets and to the raw data, separately for each block and separately
for the four components lignin, acetic acid, furfural, and HMF. The rdCV is a strategy for optimizing
the complexity of regression models and for a realistic estimation of prediction errors when the model
is applied to new cases that are within the population of the data used [16,22]. It includes two nested
cross-validation (CV) loops and a repetition loop. In the repetition loop, the dataset is randomly split
into calibration sets and test sets. The inner CV loop uses the calibration set, divides it randomly into a
training and validation set, and estimates the optimum complexity of the model. The outer CV loop
uses the test set, applying the optimized model from the inner CV loop, and results in predicted values
(ŷ) for the test samples. An essential feature of rdCV is the separation of model optimization and
model performance tests. Each repetition of rdCV yields a test set predicted ŷ value for each sample
from which the performance criterion SEP is calculated.

SEP is the standard deviation of the prediction errors for test set samples, short “standard error of
prediction” (SEP), defined as:

SEP =

[
∑(yi − ŷi − bias)2

(z − 1)

]0.5

, i = 1, . . . , z (1)

The target value of the modelled property for sample i is denoted by yi, the predicted value by ŷi.
The bias is the arithmetic mean of the prediction errors (yi − ŷi); z is the number of test set cases used.
SEP is an appropriate measure for the prediction performance if the prediction errors are normally
distributed; a 95% tolerance interval for predicted values is ±2 SEP.

Repeating the double CV 50 times gives 50 estimations of SEP (from varying random splits into
sets), allowing a reasonable comparison of different data sets. A more detailed explanation of the rdCV
is shown in Filzmoser et al. [16].

The optimal number of PLS components resulting from the rdCV was applied for PLS models
derived from certain complete data blocks, and these models have been applied to data blocks
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with increasing amounts of impurities. Thus, the prediction accuracy for external samples could be
estimated using the SEP and bias values as indicators.

For reduction of the calibration complexity, two different approaches were investigated:
(1) calibration with lignin-spiked organosolv extracts (data block 3) and (2) calibration with
reference-analyzed organosolv extracts (data block 4). For the first approach, the number of calibration
samples from data block 3 was gradually decreased and the resulting calibration model was applied to
data block 4. In this way, the minimum number of calibration samples was estimated. The calibration
samples from block 3 were randomly chosen and the procedure was repeated 100 times for each
calibration sample size. For the second approach, rdCV was applied to data block 4 and the number
of samples was randomly chosen with a repetition of 5 for each calibration sample size. The second
approach was therefore not applied to external samples.

3. Results and Discussion

3.1. Single Component Spectra

In a first step, the UV-Vis spectra of the pure components lignin, acetic acid, furfural, and HMF
were investigated. The spectra of the pure components are shown in Figure 2. The positions of the
minima and maxima in these spectra are mostly different in the four substances.
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Figure 2. UV-Vis spectra of the pure components measured in 60 wt % aqueous ethanol. Spectra of
lignin, HMF, and furfural were measured at concentrations of 10 mg/L and acetic acid at 1 g/L.

Separated and purified lignin from a wheat straw organosolv pretreatment process shows the
least specific spectra due to its heterogeneous molecular structure. However, maxima at 203 nm and
274 nm, as well as a minimum at 258 nm, are present. Acetic acid has a specific maximum at 206 nm,
but shows a very low absorbance in comparison to the other three components. For example, the
absorbance coefficient at 203 nm has a value of 78.8 L/g cm and 0.607 L/g cm for lignin and acetic acid,
respectively. HMF shows slightly shifted maxima and minima to a higher wavelength when compared
to furfural. Maxima appear at 227 nm and 275 nm for furfural and at 228 nm and 284 nm for HMF.
The minima are at 206 nm and 241 nm for furfural and 211 nm and 244 nm for HMF. The absorbance
coefficients are in the same order of magnitude as lignin.

The absorbance coefficients are of special interest since the concentrations of the single components
vary considerably. Applying organosolv pretreatment conditions used in this work, the share of the
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components is roughly 82%, 18%, 0.1%, and 0.1% for lignin, acetic acid, HMF, and furfural, respectively.
However, these shares can change significantly when pretreatment parameters are changed.

3.2. Validation of the Calibration

To validate the possible application of UV-Vis spectrometry in combination with PLS, the data
blocks 1 to 4 were characterized in terms of their prediction errors as obtained from rdCV [16].
The interferences and impurities regarding a certain component are gradually increased from data
block 1 to data block 4. This gives an indication of the influence of the inevitable impurities in processes
with natural raw materials on the prediction ability of each component. Only the data of each data
block is investigated and no connection between the data blocks was made.

The quality of the calibration was evaluated by the resulting SEP values. The results of all
combinations of pre-processing and analyzed components are shown in Table 1.

Table 1. Standard error of calibration of data blocks 1 to 4.

Block
No. Component Standard Deviation

Calibration Set Raw Data 1st Derivative 2nd Derivative ∆284/320 nm

1

Lignin 9.35 0.62 ± 0.075 0.56 ± 0.14 1.7 ± 0.30 na 1

HMF 2.85 0.026 ± 0.0056 0.020 ± 0.0043 0.53 ± 0.43 na 1

Furfural 2.96 0.45 ± 0.36 0.46 ± 0.37 0.69 ± 0.54 na 1

AcOH 308 17 ± 7.0 43 ± 28 201 ± 51 na 1

2

Lignin 8.28 0.23 ± 0.018 0.26 ± 0.017 0.62 ± 0.075 6.5 ± 0.30
HMF 0.290 0.073 ± 0.0041 0.076 ± 0.0066 0.21 ± 0.030 0.30 ± 0.022

Furfural 0.290 0.081 ± 0.0083 0.085 ± 0.0085 0.24 ± 0.033 0.31 ± 0.032
AcOH 5.84 6.5 ± 0.38 6.6 ± 0.40 7.0 ± 0.36 6.5 ± 0.39

3

Lignin 8.85 0.42 ± 0.041 0.57 ± 0.091 2.40 ± 0.81 5.2 ± 0.31
HMF 0.00291 0.00052 ± 0.00011 0.0025 ± 0.000090 0.0028 ± 0.00014 0.0026 ± 0.00015

Furfural 0.00316 0.00058 ± 0.00014 0.0027 ± 0.00014 0.0033 ± 0.00052 0.0034 ± 0.00023
AcOH 0.591 0.11 ± 0.022 0.50 ± 0.018 0.58 ± 0.028 0.53 ± 0.031

4

Lignin 8.08 0.80 ± 0.048 0.85 ± 0.056 1.6 ± 0.32 7.3 ± 0.27
HMF 0.00223 0.00044 ± 0.000016 0.00045 ± 0.000015 0.00088 ± 0.00016 0.0021 ± 0.000073

Furfural 0.00750 0.0028 ± 0.00011 0.0029 ± 0.00011 0.0035 ± 0.00031 0.0073 ± 0.00030
AcOH 1.75 0.11 ± 0.0049 0.12 ± 0.0061 0.27 ± 0.045 1.6 ± 0.060

1 not applicable due to absorbance values of zero at 320 nm.

In terms of the data preprocessing, the raw data exhibit the smallest SEP in most cases.
The pre-processing method ∆284/320 nm gives the poorest calibration performance, e.g., with lignin
SEPs 28.3, 12.6, and 9.2 times higher compared to the raw data for block 2, 3, and 4, respectively.
The first derivative data shows results similar to the raw data, whereas the second derivative gives
increased SEP values. All components in block 1 can be quantified with an SEP less than 16% of the
standard deviation of the component concentrations in the calibration data set when the raw data is
used for rdCV.

The low prediction performance for acetic acid in blocks 1 and 2 can be explained by the low
absorption coefficient, and low concentrations in block 2.

The range of the SEPs of block 3 and 4 of selected data is presented by boxplots in Figure 3.
Data blocks 3 and 4 show the highest amounts of impurities and represent real process conditions.
The second derivative as the pre-processing method shows, in all cases, higher SEP and a wider range
compared to the raw data. Furthermore, the first derivative shows comparable SEPs in the case of
lignin in block 3 and 4, as well as for HMF, furfural, and acetic acid in block 4. These results clearly
indicate that the applied pre-processing does not improve the calibration models. Consequently, only
the raw data have been used throughout the following investigations.
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To compare the influence of impurities in the calibration samples, the standard deviation of the
concentrations in the calibration sets was divided by the SEPs, which is necessary to compare the
different concentration ranges in the data blocks. The values are shown in Figure 4, where high ratios
indicate a good predictability. Lignin shows the overall best predictability, indicated with ratios of
at least 10 in all four data blocks. The decreased value in block 4 compared to block 3 might arise
from errors in the reference method since lignin determination still remains a challenging task [23].
HMF, as a pure component, offers a very high predictability with a ratio of up to 109.6, but decreases
significantly when impurities are present, to values of 4.0, 5.6, and 5.1 for block 2, 3, and 4, respectively.
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Furfural shows a low predictability as a pure component with a ratio of 6.6 and decreases further
when predicted in the spiked extracts of block 3 with a value of 5.4. In block 4, a ratio of 2.6 was
reached. Highly variable results can be seen for acetic acid due to the low absorbance coefficient,
which is roughly a factor of 100 lower compared to the absorbance coefficient of the other components.
Acetic acid as a pure component shows a good predictability with a ratio of 18.3, but is not predictable
in block 2. The maximum acetic acid concentrations present in data block 1 and 2, however, are
significantly different with 1000 mg/L and 15 mg/L, respectively. In data block 3, the predictability
increases compared to block 2 and block 4 shows a similar value to block 1.
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The optimal model complexity (and optimal number of PLS components) was determined via
rdCV; for details, see [16,24]. The results are summarized in Table 2. The low values between 1 and 4
indicate high correlations between the used variables.

Table 2. Optimal number of PLS components in block 1 to 4 for the components lignin, acetic acid,
HMF, and furfural of the raw data derived by rdCV.

Block No. Lignin AcOH HMF Furfural

1 2 1 3 1
2 2 1 3 3
3 2 4 4 4
4 1 1 1 1

The reference vs. predicted concentrations for HMF as obtained by rdCV for the data blocks 1
to 3 are shown in Figure 5. The concentration range of the calibration data set gradually decreases
from block 1 to 3. Blocks 2 and 3 show high variations of the SEP values in the applied 50 repetitions
(indicated by the grey crosses). Especially the concentrations in block 3 are low and close to the
detection limit of the spectrophotometer, which might explain, in combination with the increased
amount of impurities, the declining predictability.

Figure 6 shows rdCV results of all components for the calibration with neat diluted extracts from
block 4. Calibrations for all components show a high correlation between predicted and reference
values, with correlation coefficients of 0.995, 0.980, 0.923, and 0.998 for lignin, HMF, furfural, and acetic
acid, respectively. It can be stated, that within given data set, a high predictability and accuracy can
be reached.
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3.3. Model Application

The conventional methods for the composition analysis of organosolv extracts are labor intensive
and time consuming. It is therefore favorable if this analytical effort can be at least minimized in the
calibration step of the PLS model. The preparation and measurement effort for the data blocks 1 to
3 increases, respectively. The application of pure component spectra in the data block is therefore
favorable in terms of labor input.

We investigated the applicability of calibration models made from data blocks 1 to 3 to the neat
organosolv extracts from data block 4. The resulting SEP and bias values are given in Table 3. While the
bias values are near zero within the CV in the calibration, significant values appear for the external test
data, indicating systematic errors. Decreasing bias values from block 1 to block 3, respectively, can be
seen, especially for HMF and AcOH, induced by the increasing amounts of impurities in the calibration
samples. If using an appropriate correction for the bias, a calibration model from block 3 might give an
option for calibration with decreased effort compared to the use of several reference-analyzed extracts.

Table 3. SEP and bias values of the application of calibrations from data blocks 1 to 4 to data block 4.

Lignin HMF Furfural AcOH

Calibration
Block

SEP
(mg/L)

Bias
(mg/L)

SEP
(mg/L)

Bias
(mg/L)

SEP
(mg/L)

Bias
(mg/L)

SEP
(mg/L)

Bias
(mg/L)

1 0.779 0.467 0.767 1.35 0.134 −0.197 1108 1954
2 0.874 0.603 0.0942 −0.0378 0.305 0.628 1.81 4.89
3 1.16 −1.80 0.00690 0.0128 0.00386 0.00420 0.160 0.336

The application of PLS models for lignin made with data of block 1, 2, and 3 to data block 4 is
shown in Figure 7. All three calibration models show a good predictability; however, an increasing
systematic deviation can be seen from block 1 to block 3, corresponding to increased impurities in the
calibration samples. Calibration with pure component samples is therefore recommended.
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3.4. Influence of the Pretreatment Temperature

Changing pretreatment temperatures can strongly affect the concentrations and shares of the
investigated components lignin, acetic acid, furfural, and HMF. Figure 8 shows the concentrations of
the four components in the undiluted extract. Increasing pretreatment temperature shows a significant
effect on the carbohydrate degradation products HMF and furfural. HMF increases from 1.64 mg/L to
5.93 mg/L when increasing the pretreatment temperature at a constant treatment time from 160 ◦C
to 200 ◦C. Furfural shows a similar behavior, with the concentration increasing from 4.25 mg/L to
42.5 mg/L with increased treatment severity from 160 ◦C to 200 ◦C.
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Figure 8. Average concentrations and spans of the components lignin, acetic acid, HMF, and furfural in
the undiluted organosolv extracts at different pretreatment temperatures.

Ideally, a calibration model obtained from samples from a certain pretreatment temperature can be
applied for a wide range of pretreatment temperatures. However, changing component concentrations
and interferences might affect the prediction results. In order to investigate the limitations of the
calibration obtained from samples at a pretreatment temperature of 180 ◦C, this calibration was applied
to data block 5, which consists of samples from pretreatment temperatures 160 ◦C and 200 ◦C.

Figure 9 shows the reference vs. the predicted concentration values of lignin, HMF, furfural, and
acetic acid. In organosolv extracts with a pretreatment temperature of 160 ◦C, all components can be
predicted with an SEP of 0.321 mg/L, 0.0000533 mg/L, 0.000832 mg/L, and 0.0227 mg/L for lignin,
HMF, furfural, and acetic acid, respectively. The 200◦C samples in comparison show considerably
higher SEP values of 0.990 mg/L, 0.00300 mg/L, 0.0331 mg/L, and 0.322 mg/L for lignin, HMF,
furfural, and acetic acid, respectively. The determination of lignin and acetic acid is somewhat less
influenced by the pretreatment temperature compared to HMF and furfural.
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Figure 9. Application of the calibration model of data block 4 to data block 5 for (a) lignin, (b) HMF,
(c) furfural, and (d) acetic acid. The pretreatment temperatures are given. SEPs and bias values are
given as combined values for 160 ◦C and 200 ◦C and individually for each temperature. The regression
line is in a blue color, and the 45◦ line is shown in black.
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3.5. Reduction of the Calibration Effort

In case of alternative raw materials or strongly changing process conditions, a new calibration
is unavoidable. Therefore, a minimal number of reference measurements and calibration efforts is
favorable. In order to investigate the minimum amount of necessary calibration spectra, the number of
used spectra was stepwise reduced and resulting calibration models were applied to data block 4.

Two approaches for a reduction of the effort of lignin calibration were chosen: (1) utilization
of spectral data from block 3 and application to block 4; and (2) calibration with reference-analyzed
samples from block 4 for calibration and application to the same block via rdCV. The first approach
is preferred since only a single lignin reference analysis is necessary. However, the lignin must be
precipitated and purified before spiking of the sample. The second approach does not require lignin
precipitation, but a larger number of samples and lignin analyses.

The results of the two approaches are shown in Figure 10. A significant increase of the SEP range
appears with a decreasing number of calibration samples. Approach one shows a lower average and
range of the SEP compared to approach two. However, the second approach includes error of the
reference analysis. In contrast, the first approach is only based on one lignin reference analysis and
tends to display systematic errors. Therefore, the higher SEP span for the second approach might be
based on the error of the reference analyses. However, both methods can be applied with a reduced
number of calibration samples, depending on the prediction needs.
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4. Conclusions

The combination of UV-Vis spectroscopy and partial-least squares regression was successfully
used for the prediction of the components lignin, acetic acid, HMF, and furfural in organosolv
pretreatment extracts from wheat straw in a lignocellulosic biorefinery. The focus was on the
monitoring of the pretreatment process. Five different data blocks with increasing amounts of
impurities were investigated in order to evaluate the influence of the inevitable impurities. Lignin
showed a good prediction accuracy with SEPs ranging from 0.23 to 0.80 mg/L in concentration ranges
of 2.83–23.6 mg/L to 0.2–30 mg/L. Impurities showed a low influence on the results when data from
reference-analyzed and lignin-spiked extracts were evaluated. The considerably lower concentrated
carbohydrate degradation products HMF and furfural show a lower prediction accuracy compared to
lignin; however, they still exhibited a good potential for monitoring of the process. The SEPs for these
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two components were in the range of 0.00044 to 0.45 mg/L for a concentration range between 0.01 and
10 mg/L.

In order to investigate a possible simplification of the calibration procedure, different data blocks
with an increasing reference analysis effort were applied to neat and reference-analyzed extracts, which
resulted in a good predictability for lignin and acetic acid, but shows the necessity for a correction
factor for HMF and furfural if the calibration is not conducted with reference-analyzed extracts.
Furthermore, the validity range of the calibration was investigated in terms of different pretreatment
temperatures which affect the concentrations, especially that for HMF and furfural, remarkably. While
the predicted values obtained with a calibration developed with samples obtained from 180 ◦C
pretreatment temperatures are in good agreement with samples from a 160 ◦C pretreatment, rather
high deviations were found for samples from a 200 ◦C pretreatment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2305-7084/2/4/45/s1,
Table S1: Reference concentrations in data block 1, Table S2: Reference concentrations in data block 2, Table S3:
Reference concentrations in data block 3, Table S4: Reference concentrations in data block 4, Table S5: Reference
concentrations in data block 5, Table S6: Overview of datasets used for PLS modeling after different pre-processing
methods of Block 1, Table S7: Overview of datasets used for chemometric modeling after different pre-processing
methods of Block 2 to 5.
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