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Abstract: In this study, a directly irradiated, milli-scale chemical reactor with a simple nickel catalyst
was designed for dry reforming of methane for syngas. A milli-scale reactor was used to facilitate
rapid heating, which is conducive to combating thermal transience caused by intermittent solar
energy, as well as reducing startup times. Milli-scale reactors also allow for a distributed and modular
process to produce chemicals on a more local scale. In this setup, the catalyst involved in the reaction
is located directly in the focal area of the solar simulator, resulting in rapid heating. The effects of
mean residence time and temperature on conversion and energy efficiency were tested. The process,
which is intended to store thermal energy as chemical enthalpy, achieved 10% thermal-to-chemical
energy conversion efficiency at a mean residence time of 0.028 s, temperature of 1000 ◦C, and molar
feed ratio of 1:1 CO2:CH4. A significant portion of the thermal energy input into the reactor was
directed toward sensible heating of the feed gas. Thus, this technology has potential to achieve
solar-to-chemical efficiency with the integration of recuperative heat exchange.

Keywords: solar thermochemical; dry reforming of methane; syngas; solar reactor; catalysis

1. Introduction

Development of a practical, long-term energy storage may be the greatest roadblock to utilization
of renewable, yet intermittent energy sources, like wind and solar, in the industrial and transportation
sectors. In order to foster a sustainable and robust energy future, it is important to develop an efficient
method to convert solar energy into liquid fuels or higher value chemicals. Dry reforming of methane
(DRM, Equation (1)) is not only a highly endothermic reaction that can store solar thermal energy, but it
is a method to reform natural gas into CO and H2 (syngas) for use in various industrial processes such
as Fischer-Tropsch synthesis—a process that can be used to synthesize long-chain hydrocarbons such as
diesel, gasoline, or jet fuel from syngas [1–3]. Syngas can also be burned directly as higher heating value
fuel gas. Either way, DRM has potential to upgrade the calorific value of the chemical constituents up to
30% [1]. If the DRM reaction is driven by non-fossil-based energy, this would translate to a 30% reduction
in fossil carbon emissions from transportation and industries that consume syngas-derived products.

CO2 + CH4 
 2H2 + 2CO, ∆H298K = 247 kJ/mol (1)
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In recent years, much effort has been put into the development of catalysts for dry reforming of
methane [1,3–6]. Nickel- and noble metal-based catalysts are commonly used and have demonstrated
good catalytic properties for the DRM reaction [1,7].

Different sources can be used to supply energy to the reaction: electrical energy [8], thermal
energy from combustion [9–13], or thermal energy from solar concentration such as parabolic dishes
or heliostat fields [14–16]. Solar energy is a desirable energy input because it is clean and sustainable
compared to other energy sources. In recent years, solar energy has been applied to methane reforming
reactions [14,17–22]; however, dry reforming has not been performed in a miniaturized solar reactor
(or a reactor driven by simulated solar energy).

One of the first reports of solar-driven dry reforming is reported in the work of Diver et al. [22].
This work details the use of a heat pipe system integrated with a solar furnace to run the dry reforming
reaction. This system combined solar energy and electric heat to achieve the desired temperature.
Although not purely solar-driven, it is one of the early introductions of integrating solar energy into
the dry reforming reaction.

Another version of an early solar-driven dry reforming reactor is from the work of Anikeev et al. [21].
This system also uses a solar furnace system, and it can reach 650 ◦C to 850 ◦C using only solar energy.
This reactor design is similar to that used in the work presented here, however, Anikeev et al. [21] use a
greater mass loading of catalyst and a larger receiver area.

Michalsky et al. demonstrated DRM using a perovskite membrane reactor [20]. In this scheme,
the CO2 and CH4 flow on different sides of the membrane. One advantage of this concept is the
inherent separation of products; however, the rate of syngas production is limited by the mass loading
of perovskite in the reactor, which makes heat distribution using solar energy difficult.

A solar-driven reactor for non-catalytic reformation is implemented by Klein et al. [19]. Carbon
black particles entrained in the reactor feed gas at a C:CO2 ratio of 0.5:100 improve heat transfer and
provide a surface for the reaction to proceed. However, high temperatures—up to 1450 ◦C—are needed
to improve the rate of reaction as no metal catalyst is present. The authors also note that methane
tends to decompose readily in their system at temperatures lower than necessary for reformation.

A study by Yu et al. [18] also utilizes actual sunlight to produce syngas. The authors devise a
packed bed reactor with nickel catalyst to facilitate the reaction. Their study shows that with 6 L/min
total flow rate, a 19.7% energy conversion efficiency is achieved. They also note that significant energy
loss to the environment restricts their system performance.

A recent effort out of the Pacific Northwest National Laboratory (PNNL) using a microreactor
mounted in a solar parabolic dish reached 69% energy efficiency in steam reforming of methane, which
corresponds to a 20% calorific upgrade [14–16]. This illustrates the potential of combination solar
thermal energy and microscale technologies to achieve effective heat and mass transfer.

The motivation of solar-driven dry reforming is to upgrade the energy content of the feed
stream using clean energy. Here, a milli-scale reactor was designed, fabricated, and tested to study
the effect of mean residence time, temperature and CO2:CH4 feed ratio under simulated sunlight.
The miniature nature of the reactor was motivated by the inherent advantage of the microscale: a larger
surface-area-to-volume ratio, which enables greater heat and mass transfer. This work contributes to the
understanding of energy efficiency, conversion, and heat transfer in future solar-driven microreactors.

2. Materials and Methods

2.1. Catalyst Preparation

An 80 wt % Ni content porous pellet was synthesized to serve as the catalyst. The high Ni content
served two purposes: (1) it allowed the pellet to form a sintered, cohesive structure once calcined; and (2)
by being highly reactive, it limited the amount of inert mass which consumed thermal energy from the
solar simulator. A quantity of 2 g nickel powder (325 mesh, 99.9% pure) was mixed with 3% graphite
(325 mesh, 99% pure) and 20% Al2O3 powder (50–200 µm, Brockmann I), crushed and pressed into a
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13 mm die. The pellet, which came out of the die, was approximately 13 mm in diameter and 5 mm thick.
This pellet was calcined in a muffle furnace in air at 1000 ◦C for 5 h where it was oxidized into nickel
oxide. Graphite was oxidized away to create pores. SEM-EDX mapping showed uniform distribution of
all species (see Figure 1). When the pellet was put in the focal zone of the reactor, 5% H2 in balance Ar
was used to activate the catalyst at 600 ◦C. Activation was assumed complete when the H2 level had
recovered to a steady value and the H2O signal had reduced to its background level as indicated by the
QGA mass spectrometer. This duration was typically around 10–15 min.
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Figure 1. SEM-EDX mapping of catalyst.

2.2. Reactor Design

The reactor design is shown in Figure 2. The main body was made up of stainless steel SS 316.
An inner porous ceramic insulation (Buster M-15, Zircar Zirconia, Florida, NY, USA) was added inside
the reactor to reduce heat loss and provide the passage of the gas to the outlet. This insulation layer
allowed for SS 316 body to be used, as the temperature of the metal was far from its melting point.
In fact, the silicone o-rings did not melt and remained intact. The transparent window on top of the
reactor allowed radiation to enter. Two silicone o-rings were placed above and below the window to
seal the reactor. The insulating layer mentioned above also helps to keep the seal cool. A top stainless
steel plate was bolted to the body to compress the o-rings and seal the reactor. A cavity for the catalyst
pellet was created in the inner insulation directly above the inlet tube and directly below the window,
where concentrated solar energy was focused. The gas flow proceeds upward through the inner ceramic
tube, and through the porous catalyst pellet before reversing direction through the porous insulation
and annular space between the metal body and the inner ceramic tube. A concession of this design is
that there is the possibility of gas bypassing the catalyst pellet. The heating of the pellet occurs via direct
radiation through the window, while the gas is heated via passing through the hot pellet.

ChemEngineering 2018, 2, x FOR PEER REVIEW  3 of 12 

from the solar simulator. A quantity of 2 g nickel powder (325 mesh, 99.9% pure) was mixed with 3% 
graphite (325 mesh, 99% pure) and 20% Al2O3 powder (50–200 μm, Brockmann I), crushed and 
pressed into a 13 mm die. The pellet, which came out of the die, was approximately 13 mm in 
diameter and 5 mm thick. This pellet was calcined in a muffle furnace in air at 1000 °C for 5 h where 
it was oxidized into nickel oxide. Graphite was oxidized away to create pores. SEM-EDX mapping 
showed uniform distribution of all species (see Figure 1). When the pellet was put in the focal zone 
of the reactor, 5% H2 in balance Ar was used to activate the catalyst at 600 °C. Activation was assumed 
complete when the H2 level had recovered to a steady value and the H2O signal had reduced to its 
background level as indicated by the QGA mass spectrometer. This duration was typically around 
10–15 min. 

 
Figure 1. SEM-EDX mapping of catalyst. 

2.2. Reactor Design 

The reactor design is shown in Figure 2. The main body was made up of stainless steel SS 316. 
An inner porous ceramic insulation (Buster M-15, Zircar Zirconia, Florida, NY, USA) was added 
inside the reactor to reduce heat loss and provide the passage of the gas to the outlet. This insulation 
layer allowed for SS 316 body to be used, as the temperature of the metal was far from its melting 
point. In fact, the silicone o-rings did not melt and remained intact. The transparent window on top 
of the reactor allowed radiation to enter. Two silicone o-rings were placed above and below the 
window to seal the reactor. The insulating layer mentioned above also helps to keep the seal cool. A 
top stainless steel plate was bolted to the body to compress the o-rings and seal the reactor. A cavity 
for the catalyst pellet was created in the inner insulation directly above the inlet tube and directly 
below the window, where concentrated solar energy was focused. The gas flow proceeds upward 
through the inner ceramic tube, and through the porous catalyst pellet before reversing direction 
through the porous insulation and annular space between the metal body and the inner ceramic tube. 
A concession of this design is that there is the possibility of gas bypassing the catalyst pellet. The 
heating of the pellet occurs via direct radiation through the window, while the gas is heated via 
passing through the hot pellet. 

 
Figure 2. Reactor design. The catalyst pellet is placed at the top of the inner tube near the top of the 
porous alumina insulation. On the right figure, gas flow (blue arrows) enters from a center tube, flows 
through the catalyst, and then exits (red arrows) in the annular space between the inlet tube and the 
outer (exit) tube. 
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porous alumina insulation. On the right figure, gas flow (blue arrows) enters from a center tube, flows
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2.3. Solar Simulator and Thermal Test

The experimental setup is displayed in Figure 3. The high flux solar simulator consists of a single
6.5 kW Xenon arc lamp (Osram XBO 6 kW HS XL OFR, Osram, Munich, Germany) and a truncated
ellipsoidal reflector. The apparatus has a water-cooled flux mask with 1 × 1 cm square opening
indicated by the red circle in Figure 2. Light passes through the opening and is delivered to the receiver
located underneath the mask. More information about the solar simulator design and flux calibration
procedure can be found in the work by L’Estrange et al. [23].
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In situ temperature measurements were impractical during reactive testing as a result of the small
dimensions, so a preliminary test of the thermal behavior of the milli-scale reactor was performed.
A K-type thermocouple was placed into the reactive zone of the reactor, under the transparent window.
The reactor was placed in the focal area underneath the mask. Temperature was obtained under
representative gas flow (0.7 slpm) of inert at different power levels of the solar simulator. Based on this
thermal test, the reaction temperature at 50%, 60%, and 70% lamp power level were approximated
to be 900 ◦C, 1000 ◦C, and 1100 ◦C, respectively, shown in Figure 4. The thermal test result was used
as a reference for reactive testing. Reaction temperatures were kept above 800 ◦C to reduce carbon
deposition [3].
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Figure 5 shows a preliminary test of the transient thermal behavior of the milli-scale solar reactor.
Temperatures were measured, as a function of time, after turning on the solar simulator at 100% lamp
power level and showed a fast heating rate approximately 1020 K/min.
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2.4. Experimental Apparatus and Design

The test loop of solar thermal dry reforming system is shown in Figure 6. The apparatus consists
of the solar simulator, reactor, gas systems including mass flow controllers (Alicat, Tucson, AZ, USA),
and a HIDEN HPR-20 Residual Gas Analyzer Mass Spectrometer (RGA, Warrington, UK) with a
Faraday detector. Ar, CO2, CH4 (with purities 99.999%), and H2 mixture (5.000% H2 in Ar) were used
in the reaction. At each reaction temperature (900 ◦C, 1000 ◦C, and 1100 ◦C), the CO2, CH4 and Ar ratio
(3:3:1, 2:4:1, 4:2:1) and mean residence time (0.280 s, 0.0560 s, 0.0280 s, 0.019 s, 0.014 s) were studied.
Effluent gases were passed through a heat exchanger/condenser cooled using process cooling water
(ca. 10 ◦C). At no point were any liquids observed. The effluent gas compositions were continuously
flowed and monitored by the RGA.
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3. Results and Discussion

3.1. Carbon Balance and Hydrogen Balance

A carbon balance and a hydrogen balance were performed for each test by comparing elemental
flowrates before and after reaction. Representative balances for an exemplary reaction condition are
shown below in Figure 7. In the carbon balance, the outlet flow rate ratios of CH4, CO2, and CO are
determined by using a calibration curve where the flow rate ratio of a given species relative to an argon
reference flow is related to the signal ratio between the two species. In practice, when a signal ratio is
computed, the calibration curve can be used to determine the flow rate ratio. Since the flow rate of
inert argon is known, the flow rate of the species of interest can be easily determined by multiplying
the flow rate ratio by the known flow rate of argon. These outlet flows are then multiplied by the
stoichiometric coefficient for carbon (in this case 1:1 for all species), summed, and compared to the
total amount of carbon added (from CO2 and CH4). Similarly, in the hydrogen balance, outlet flows
of H2 and CH4 are determined. The flows for each species are then multiplied by the stoichiometric
coefficient for hydrogen (i.e., 2 for H2 and 4 for CH4), summed, and compared to the total amount fed
(assuming hydrogen originates solely from CH4).
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DRM has several side reactions including water gas shift (2), methane cracking (3), and the
Boudouard reaction (4):

CO + H2O 
 CO2 + H2 (2)

CH4 
 C + 2H2 (3)

2CO 
 C + CO2 (4)

The missing hydrogen might be accounted for by generation of H2O during the reaction, which
would likely have been condensed out of the product gas before analysis. On the other hand, small
amounts of carbon black are observed on the catalyst pellet post reaction, but the amount is too small
to be observed in the carbon balance. Although black color is known to improve light absorption,
carbon formation is undesired as it deactivates the catalyst.

3.2. Conversion

Conversion (X, %) for CH4 and CO2 was calculated using the following two expressions,

XCH4 =

.
nCH4,in − .

nCH4,out
.
nCH4,in

× 100% (5)

XCO2 =

.
nCO2,in − .

nCO2,out
.
nCO2,in

× 100% (6)

where XCH4 and XCO2 are conversion for CH4 and CO2, respectively;
.
nCH4,in and

.
nCO2,in represent the

molar flow rate of CH4 and CO2 at the inlet respectively;
.
nCH4,out and

.
nCO2,out are the molar flow rate

of CH4 and CO2 at the outlet, respectively. The following parametric study investigated the effect of
mean residence time (MRT) and temperature on conversion.

3.2.1. Effect of Mean Residence Time (MRT) and Temperature on CO2 Conversion

The effect of mean residence time and temperature on CO2 conversion at a constant CO2:CH4

ratio (1:1) is displayed in Figure 8 and shows that CO2 conversion increases with increasing mean
residence time. Here, MRT refers to the estimated average time within the reaction zone (heated
catalyst pellet) as determined by dividing this volume by the volumetric flow rate. The figure also
shows that conversion increases with temperature.
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amounts of carbon black are observed on the catalyst pellet post reaction, but the amount is too small 
to be observed in the carbon balance. Although black color is known to improve light absorption, 
carbon formation is undesired as it deactivates the catalyst. 

3.2. Conversion 

Conversion (X, %) for CH4 and CO2 was calculated using the following two expressions, 

4 4
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4
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where 
4CHX  and 

2COX  are conversion for CH4 and CO2, respectively; 
4CH ,inn  and 

2CO ,inn  represent 

the molar flow rate of CH4 and CO2 at the inlet respectively; 
4CH ,outn  and 

2CO ,outn  are the molar flow 

rate of CH4 and CO2 at the outlet, respectively. The following parametric study investigated the effect 
of mean residence time (MRT) and temperature on conversion. 

3.2.1. Effect of Mean Residence Time (MRT) and Temperature on CO2 Conversion 

The effect of mean residence time and temperature on CO2 conversion at a constant CO2:CH4 
ratio (1:1) is displayed in Figure 8 and shows that CO2 conversion increases with increasing mean 
residence time. Here, MRT refers to the estimated average time within the reaction zone (heated 
catalyst pellet) as determined by dividing this volume by the volumetric flow rate. The figure also 
shows that conversion increases with temperature. 

 
Figure 8. Effect of MRT on CO2 conversion at different temperatures for a 1:1 CO2: CH4 ratio. Figure 8. Effect of MRT on CO2 conversion at different temperatures for a 1:1 CO2:CH4 ratio.

3.2.2. Effect of MRT and Temperature on CO:H2 Ratio

The effect of residence time and temperature on the syngas composition for a 1:1 CO2:CH4 feed
ratio is shown in Figure 9. Higher temperatures and longer residence times resulted in lower CO:H2
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ratios approaching 1:1, which aligns well with the product ratio of dry reforming, indicating that the
reaction is closer to thermodynamic equilibrium. Trends at lower temperatures and shorter residence
times indicate higher CO:H2 ratios.
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3.3. Energy Efficiency

Energy efficiencies were calculated from the following Equations (7)–(11). Total flux (Wflux, W/cm2)
is measured by flux mapping with a Vatel TG1000-1 flux meter mounted to the reaction stage. Total
thermal energy input (

.
Qsolar, W) is assumed to be the measured total flux times the focal area (A, cm2).

Energy used for preheating the inlet gases is defined as sensible heat (
.

Qsensible, W). Energy used for
driving the reaction is defined as reaction energy (

.
Qreaction, W). Thermal-to-chemical energy conversion

efficiency is calculated through Equation (11),

.
Qsensible = ∑ ngas∆Hgas(Treaction − Troom) (7)

.
Qreaction =

.
nCH4,inXCH4 ∆Hreaction (8)

.
Qsolar = Wflux Aflux (9)

ηsensible =

.
Qsensible

.
Qsolar

× 100% (10)

ηreaction =

.
Qreaction

.
Qsolar

× 100% (11)

where
.
ngas is the molar flow rate for all the gases,

.
nCH4,in is the molar flow rate for CH4 at the

inlet, XCH4 is the conversion of CH4, ∆Hgas and ∆Hreaction are the enthalpy for different gases and
enthalpy of the DRM reaction, respectively, Treaction and Troom are the reaction and room temperature,
respectively, and ηsensible and ηreaction are the percentage of energy for preheating the gases and driving
the reaction, respectively.

The energy conversion efficiency is plotted against mean residence time and temperature in
Figure 10. In general, higher temperatures lead to higher energy efficiency regardless of the mean
residence time. However, the mean residence time shows an interesting optimum for each temperature
at 0.028 s (2X in the graph). Long residence times lead to the energy demand for endothermic reaction
being poorly matched (i.e., too small) with the high rate of thermal input. The highest conversions
achieved are at the longest residence times (see Figure 8) and corresponded to the lowest efficiency
(Figure 10). Conversely, at the shortest residence time of 0.014 s efficiency suffers as the reaction did
not proceed to a high conversion as shown in Figure 8).



ChemEngineering 2018, 2, 50 9 of 12

Figure 11 shows energy usage of the reactor under the reaction conditions operating at the optimal
conditions for thermal-to-chemical efficiency (CO2:CH4 1:1 ratio and 0.0280 s MRT). The figure shows
that energy used by the reaction is approximately 10% of the total energy input. Based on the inlet
flowrates, it is estimated that 30% of the incoming thermal energy is used to preheat the gas. The energy
efficiency can be further improved by better insulation and integration of gas recuperator into the
reactor. High temperature gas recuperation, such as that implemented by PNNL [14–16] in their solar
steam reforming reactor, shows a substantial improvement in energy efficiency (69%). This is largely
due to the gas recuperation which enables the inlet gas to be fed to the reactor at temperatures closer
to the reaction temperature. Thus, energy input is directed toward chemical conversion rather than
sensible heating. In comparison to other work in dry reforming, Anikeev et al. report 30% efficiency
for a similar bayonet (concentric tube) reactor [21], while Yu et al. report just under 20% efficiency for
a reactor featuring a tube array [18]. In the work presented here, the efficiency may also be improved
by minimizing gas bypass which circumvents the catalyst. The remainder of the energy savings would
be from decreasing the radiative and convective losses from the system, in addition to facilitating a
faster flowrate whereby the thermal demand of the kinetics matches the solar intensity.
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Figure 10. Effect of mean residence time (MRT) and temperature on overall thermal efficiency for
conversion of thermal energy into chemical energy. Here, X corresponds to a MRT of 0.14 s. CO2 to
CH4 feed ratio was 1:1 in all cases. For the other data sets, the number in front of the ‘X’ represents the
multiples of the residence time (e.g., 20X corresponds to a residence time that is 20-fold longer).
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Scale up of the reactor would involve scaling the incident surface for flux to enter the reactor.
A more highly engineered catalyst surface with higher surface area would allow for greater catalyst
effectiveness and energy efficiency.

3.4. Catalyst Morphology

Figure 12 shows the before reaction and after reaction SEM images of the catalyst. Although the
two images are at different levels of magnification, there is apparent sintering between particles in
both cases, though slightly more pronounced in the post-reaction image.
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4. Conclusions

Solar-driven dry reforming of methane is an effective and sustainable method to upgrade the
energy content of methane and carbon dioxide. The experimental results presented here demonstrate
dry reforming of methane in a directly irradiated, milli-scale chemical reactor to have acceptable energy
efficiency—around 10%—and moderate rates of conversion. Most importantly, the reactor achieves a
rapid heating rate in excess of 1020 K/min, demonstrating a key advantage of small, modular reactors.
The majority of the flux is targeted directly onto the catalyst, which is a key advantage of the high
surface-area-to-volume ratio of a miniaturized reactor. However, in the current design, a large portion
of the energy is used for sensible heating of the gas. Adding a more effective heat exchanger and better
insulation will reduce heat loss and greatly improve the energy efficiency. These results provide a
platform for the next-generation reactor design featuring integration of a microscale feature for hot gas
heat recuperation.
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