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Abstract: Nanosized titanium dioxide (TiO2) nanoparticles were used for the photocatalytic reduction
of hexavalent chromium in the presence of formic acid. The photoreduction of Cr(VI) in the absence
of formic acid was quite slow. When formic acid was added in the chromium solution as the hole
scavenger, a rapid photocatalytic reduction of Cr(VI) was observed, owing to the consumption of hole
and the acceleration of the oxidation reaction. Furthermore, three commercial TiO2 nanoparticles
(AEROXIDE® P25; Ishihara Sangyo ST-01; FUJIFILM Wako Pure Chemical Corp.) were evaluated for
the photoactivity of reduction of Cr(VI).

Keywords: photocatalytic reduction; hexavalent chromium; nanosized TiO2; hole scavenger;
formic acid

1. Introduction

Chromium (Cr) is a regulated metal in groundwater as a pollutant [1]. The Cr contamination has
emanated from tanneries, dyeing, pigments, electroplating, metal finishing and so on [2]. The chromium
occurs in the oxidation states +3 and +6 in the environment. The oxidation state and speciation of
chromium are responsible for its toxicity in nature [3]. Cr(VI), with its carcinogenic and mutagenic
effects on living organisms, is the most toxic, relatively within the chromium species [4]. Therefore, a
significant stage in Cr(VI) pollution remediation is the reduction of highly toxic, soluble and easily
migrant Cr(VI) to approximately one hundred times less toxic, easier coordinated and precipitated
Cr (III).

Numerous chemical and physicochemical processes, such as ion exchange, chemical precipitation,
coagulation, membrane process, reduction and adsorption, have been traditionally proposed [5–7].
Among these technologies, the heterogeneous photocatalytic reduction process has become one of
the promising methods by virtue of cost-effectiveness, high catalytic performance and no secondary
pollution [8].

Thus far, in various semiconductor oxides, titanium dioxide (TiO2) has attracted enormous
attention for widespread environmental applications, due to its low-cost, stability, nontoxicity, optical
and electrical properties [9]. When nanosized TiO2 particles are irradiated with UV light (λ < 387 nm),
photo-induced electrons are generated and excited from the valence bond (VB) to the conduction
band (CB). While the photo-induced electrons are generally applied into reducing protons in water to
evolve H2 gas, in addition, these electrons can be used to remediate harmful contaminants by reducing
hexavalent Cr to a trivalent. Normally, the photocatalytic reduction is more positive for the standard
reduction potential of hexavalent Cr, compared with the conduction band of the photocatalyst, though
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several hundred mVs of overpotential are frequently required owing to mass transfer, kinetic and
ohmic losses [10].

Since the oxidation of water to oxygen is a kinetically slow process during the photocatalytic
reduction of Cr(VI) to Cr(III), the conversion rate of Cr(VI) generally proceeds very slowly [11].
The addition of hole scavengers during the photoreduction of hexavalent chromium could greatly
enhance the photocatalytic reduction of Cr [12,13]. First, it was reported by Sun et al. [14] that the
addition of formic acid was very effective for the improvement of photocatalytic Cr reduction with P25
TiO2. Next, Wang et al. [11] described that there was little positive effect of a formic acid scavenger
on the reduction of hexavalent chromium in an aqueous solution using TiO2, which was supplied
from Zhoushan Nano Company (China). Therefore, in the present work, the photocatalytic reduction
of hexavalent chromium with various commercial nanosized TiO2 in the presence of formic acid
was evaluated, and the photocatalytic activity of Cr reduction was discussed on the photocatalyst
properties, such as the specific surface area and particle diameter.

2. Materials and Methods

2.1. Photocatalysts and Chemicals

Three commercial TiO2 (AEROXIDE® P25; Ishihara Sangyo ST-01; FUJIFILM Wako Pure Chemical
Corp., Osaka, Japan) was used as received, without further purification. Basic information is as follows,
for AEROXIDE® P25: Anatase 75%, rutile 25%, specific surface area 50 m2

·g−1, mean particle size 25 nm;
for Ishihara Sangyo Kaisha, LTD, ST-01: Specific surface area 300 m2

·g−1, mean particle size 7 nm; for
FUJIFILM Wako Pure Chemical Corp., anatase form: Specific surface area 8.7 m2

·g−1, mean particle
size 230 nm [15]. Potassium dichromate, formic acid, sulfuric acid, acetone and 1,5-diphenylcarbazide
were purchased from FUJIFILM Wako Pure Chemical Corp., and were of analytical reagent grade. A
standard stock solution of Cr(VI) 1000 µg·mL−1 as K2Cr2O7 was obtained from FUJIFILM Wako Pure
Chemical Corp.

2.2. Photocatalytic Reduction of Cr(VI)

The Pyrex vessel reactor (inner capacity: 50 cm3) was used for the photocatalytic reduction of
hexavalent chromium ions in an aqueous solution. Typically, 20 mg of TiO2 photocatalysts were added
to 30 mL of 30 µg·mL−1 Cr(VI) aqueous solution in the reactor. Formic acid (0.30%) was added as the
hole scavenger into the solution. The pH was set to 3. Before the illumination, the suspension was
allowed to reach adsorption–desorption equilibrium with continuous and vigorous stirring for 30 min
in the dark. During the irradiation, the suspensions were still under continuous stirring. A black light
(Toshiba Lighting & Technology Corp., Tokyo, Japan, 15 W) was applied with a maximum emission of
about 352 nm as the light source, which was positioned on the side of the reactor. The light intensity
was measured by a digital UV intensity meter (USHIO, UIT-201) with a sensor (UV-365PD, 330~390 nm),
and a value of 0.25 mW·cm−2. The samples, withdrawn at each time interval, were centrifuged at
10,000 rpm for 10 min and their supernatant was subjected to the analysis of Cr(VI).

2.3. Analysis of Hexavalent Chromium

The residual concentration of Cr(VI) was measured with the nesslerization method using a
UV-visible spectrometry (AS ONE Corp., ASV11D) at λmax of 540 nm, according to the standard
method for the examination of water. First, a 1 mL portion of the solution was taken from the sample
and was subjected to centrifugation (12,000 rpm) for 5 min. The supernatant (300 µL) was sampled.
The solution (300 µL), 500 µL of sulfuric acid (2 mol·L−1) and 200 µL of 1,5-diphenyl carbazide (10 g·L−1)
were transferred into a 25 mL volumetric flask and diluted with pure water.
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3. Results and Discussion

3.1. Chromium(VI) Species with pH

Chromium (VI) species may be present in aqueous solution as chromate (CrO4
2−), dichromate

(Cr2O7
2−), hydrogen chromate (HCrO4

−), dihydrogen chromate (chromic acid, H2CrO4), hydrogen
dichromate (HCr2O7

−), trichromate (Cr3O10
2−) and tetrachromate (Cr4O13

2−). The last three ions
(HCr2O7

−, Cr3O10
2− and Cr4O13

2−) have been observed only in solutions of pH < 0 or at a chromium
(VI) concentration greater than 1 mol·L−1 [16]. Tandon et al. [17] have presented the influence of pH
on chromium (VI) species in solution and used the following equilibrium constant for describing
chromium speciation equilibria.

H2CrO4 � H+ + HCrO4
−, k1 = 0.18 (1)

HCrO4
−� H+ + CrO4

2−, k2 = 3.2 × 10−7 (2)

2HCrO4
−� Cr2O7

2− + H2O, k3 = 98 (3)

The total chromium (VI) concentration C can be expressed as follows:

C = [H2CrO4] +
[
HCrO4

−] + [CrO4
2−] + [Cr2O7

2−] (4)

The concentration of H2CrO4, that is, [H2CrO4], in a solution of pH and the total chromium (VI)
concentration C, was estimated by soling the quadratic equation.

C = [H2CrO4] +
k1[H2CrO4]

[H+]
+

k1k2[H2CrO4]

[H+]
2 +

k1
2k3[H2CrO4]

2

[H+]
2 (5)

The concentrations of Cr(VI) species can be derived from the following equations.

[HCrO4
−] =

k1[H2CrO4]

[H+]
(6)

[CrO4
2−] =

k1k2[H2CrO4]

[H+]
2 (7)

[Cr2O7
2−] =

k1
2k3[H2CrO4]

2

[H+]
2 (8)

Because the initial concentration of Cr(VI) was 30 µg·mL−1 (0.483 mmol·L−1) in the experiment,
the total chromium (VI) concentration C was set to 0.1 mmol·L−1 for the estimation of the chromium
(VI) species. The fractions of Cr(VI) species after the calculation with a computer are illustrated in
Figure 1.

Diphenylcarbazide appears as a sensitive and specific color reaction with hexavalent chromium
in mineral acid solution [18]. The pink colored chromophore is a chelate of chromium (III) and
diphenylcarbazone. Diphenylcarbazone is produced and simultaneously combines with chromium
when diphenylcarbazide is oxidized by hexavalent chromium [19]. The reaction may be speculated as:

CrO4
2− + 3H4L + 8H+ = [Cr(III)(HL)2]+ + Cr3+ + H2L + 8H2O (9)

where H4L is diphenylcarbazide:
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The stability of the complex formation was evaluated for the determination of residual hexavalent
chromium in the sample. The effect of the standing time on the absorbance of the resulted complex
between 1,5-diphenylcarbazide and Cr(VI) was studied, as shown in Figure 2. From the graph, the
absorbance of the complex was almost constant for 60 min. Therefore, the absorbance of the complex
was measured after 5 min of standing time, since it was stable from 5 min.
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Figure 2. Effect of standing time on the absorbance of the complex between Cr(VI) and
1,5-diphenylcarbazide. Cr(VI) concentration: Circle (blue) 10 µg·mL−1; square (red): 50 µg·mL−1.

3.2. Effect of Hole Scavengers

First, the photocatalytic reduction of hexavalent chromium with TiO2 in the aqueous solution was
investigated in the absence of a hole scavenger. The results are shown in Figure 3. It was noticed that
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the photocatalytic reduction efficiency of Cr(VI) with TiO2 without a hole scavenger was quite poor
and approximately 50% of Cr(VI) remained in the solution after the photocatalytic treatment, for 3 h.

Next, the influence of hole scavengers on the photocatalytic treatment of chromium (VI) with
nanosized TiO2 powders in the solution was investigated [20]. Ammonium formate and formic acid
were checked as the hole scavengers. These chemical substances could not act as reducing agents. The
results are illustrated in Figure 4. From the data, the addition of formic acid was very effective for the
photocatalytic reduction of Cr(VI) with nanosized TiO2 powders in an aqueous solution. On the other
hand, the occurrence of ammonium ions may disturb the consumption of the hole in the valence band
in TiO2 with the formate. Consequently, formic acid could be applied as the hole scavenger for the
photocatalytic reduction of chromium (VI) with nanosized TiO2 powders in water.
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3.3. Effect of Commercial TiO2 Type

The effect of different commercial TiO2 on the photocatalytic treatment of Cr(VI) with TiO2

nanoparticles in an aqueous solution, in the presence of a formic acid hole scavenger, was studied.
The commercial TiO2, AEROXIDE® P25, Ishihara Sangyo ST-01 and FUJIFILM Wako Pure Chemical
Corp. were used for the evaluation of the photocatalytic activity. The data are shown in Figure 5. The
maximum reduction rate of chromium (VI) was obtained with P25 TiO2.
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The relationship between the hexavalent chromium (VI) initial concentration Cr(VI) and
initial reduction rate (r) can be explained by Langmuir-Hinshelwood model for the heterogeneous
photocatalytic reduction process [21].

r =
d[Cr(VI)]

dt
= k

K[Cr(VI)]
1 + K[Cr(VI)]

(10)

where k and K are the kinetic rate constant of the surface reaction and the Langmuir-Hinshelwood
adsorption equilibrium constant, respectively. If 1 >> K[Cr(VI)], that is, the Cr(VI) concentration is
very low, Equation (10) can simplify to the pseudo-first-order kinetic law [22].

r =
d[Cr(VI)]

dt
= kK[Cr(VI)] = kobs[Cr(VI)] (11)

where kobs is the pseudo-first-order rate constant (min−1).
The primary reduction reaction can be considered to follow pseudo-first-order kinetics, according

to Equation (11). Integrating both sides in Equation (11) gives the following.

− ln
[Cr(VI)]
[Cr(VI)] 0

= kobst (12)

where [Cr(VI)]0 is the initial Cr(VI) concentration and t is the irradiation time.
So as to confirm the speculation, −ln(C/C0) was plotted as a function of the treatment time

(irradiation time). Because the liner relations were obtained in Figure 6 as expected, the reduction
kinetics of Cr(VI) solution could follow pseudo-first-order kinetics, which was consistent with the
Langmuir-Hinshelwood model, resulting from the low coverage in the experimental concentration
range (30 µg·mL−1). The kinetic parameters containing the rate constant, surface area-normalized rate
constant, correlation coefficient and substrate half-life are presented in Table 1.
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Figure 5. Effect of different commercial TiO2 on the photocatalytic treatment of Cr(VI) with nanoparticles
of TiO2 in an aqueous solution, in the presence of formic acid hole scavenger. Cr(VI) sample: 30 µg·mL−1

(30 mL); TiO2: 20 mg (0.67 mg·mL−1). Circle (red): Ishihara Sangyo ST-01; triangle (purple): AEROXIDE®

P25TiO2; diamond (green): FUJIFILM Wako Pure Chemical Corp.
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Figure 6. −ln(C/C0) versus irradiation time. Cr(VI) sample: 30 µg·mL−1 (30 mL); TiO2: 20 mg
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P25TiO2; green for FUJIFILM Wako Pure Chemical Corp. Without hole scavenger: blue for AEROXIDE®

P25TiO2.

The maximum photocatalytic reduction rate for hexavalent chromium was observed with Ishihara
Sangyo ST-01 nanosized TiO2 (mean particle size 7 nm). However, the highest rate constant, based
on the specific surface area normalization, was obtained with AEROXIDE® P25 TiO2. Therefore, it
was concluded from the surface area-normalized rate constant that the surface area of TiO2 can play
a significant role in the photocatalytic activity for Cr(VI) reduction in the presence of a formic acid
hole scavenger.

Table 1. Kinetic parameters for the photocatalytic reduction of Cr(VI).

Commercial TiO2
Specific Surface

Area (m2
·g−1)

kobs
(min−1)

Surface Area-Normalized
ksur (m2

·min−1·g−1)
R2 t1/2 (min)

FUJIFILM Wako 8.7 0.0031 3.6 × 10−4 0.999 224
AEROXIDE® P25 50 0.043 8.6 × 10−4 0.998 16.1

Ishihara ST-01 300 0.087 2.9 × 10−4 0.999 7.97
P25 (Without scavenger) 50 0.00058 0.12 × 10−4 0.999 1190

kobs: Pseudo-first-order rate constant; surface area-normalized ksur: kobs/specific surface area; R2: Correlation
coefficient; t1/2: substrate half-life.

3.4. Reaction Mechanism

The proposed mechanism for the photocatalytic reduction of hexavalent chromium on nanosized
TiO2 in the presence of formic acid is illustrated in Figure 7. The nanosized TiO2 with a bandgap of
3.2 eV can absorb the photons efficiently and be excited to form electrons in the conduction band (CB)
and holes in the valance band (VB) under the UV irradiation.

Because the point of zero charge (pzc) of the TiO2 particle is approximately equal to six as
TiIV–OH [23]. This means that, when the pH is lower than this value, the TiO2 surface becomes
positively charged as TiIV–OH2

+. From the estimation of Cr(VI) species as the function of pH, the
main chemical species for hexavalent chromium at pH 3 is HCrO4

−. Owing to the electrostatic
attraction between HCrO4

− species and nanosized TiO2 with a relatively large surface area, as well as
the facilitation of the proton under acidic conditions, adsorbed Cr(VI) on the surface of TiO2 can be
immediately reacted with electrons and be reduced to Cr(III). Because of the presence of formic acid, the
hydroxyl radical (•OH), which is produced from the holes and OH−, is able to be captured by formic
acid. This will produce reactive •CO2

−, which has a relatively negative redox potential, E0(•CO2
−/CO2)

= −1.9 V vs. NHE [24,25], compared with the redox potential for Cr(VI), E0(HCrO4
−/Cr3+) = 1.35 V vs.

NHE [26].
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TiO2 + hν→ TiO2 (eCB
− + hVB

+) (13)

H2O + hVB
+
→ •OH + H+ (14)

HCrO4
− + 7H+ + 3eCB

−
→ Cr3+ + 4H2O (15)

HCOOH + •OH→ •CO2
− + H3O+ (16)

HCrO4
− + •CO2

− + 5H+
→ Cr3+ + CO2 + 3H2O (17)

In the present case, formic acid provided a multifunctional role in accelerating the separation
of the holes and electrons, which was advantageous to the photocatalytic activity of nanosized TiO2

and produced reactive radicals (•CO2
−). Hence, Cr(VI) can be reduced to trivalent chromium with

nanosized TiO2 effectively. In the present work, the surface area of TiO2 may become an important
factor in the photocatalytic activity for reducing hexavalent chromium in the presence of a formic acid
hole scavenger.

4. Conclusions

The photocatalytic reduction of hexavalent chromium with nanosized TiO2 nanoparticles in the
presence of formic acid was investigated. The addition of the hole scavenger, formic acid, was very
effective for the enhanced photocatalytic reduction of Cr(VI) on nanosized TiO2 in an aqueous solution.
Furthermore, the influence of different commercial TiO2 on the photocatalytic treatment of Cr(VI) with
nanosized TiO2 in an aqueous solution, containing formic acid, was checked. As a consequence, the
photocatalytic reduction of hexavalent chromium with Ishihara Sangyo ST-01 nanosized TiO2 gave
better efficiencies, due to the specific surface area.
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