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Abstract: Many thermodynamic models used in practice are at least partially empirical and thus require
the determination of certain parameters using experimental data. However, due to the complexity of
the models involved as well as the inhomogeneity of available data, a straightforward application of
basic methods often does not yield a satisfactory result. This work compares three different strategies for
the numerical solution of parameter estimation problems, including errors both in the input and in the
output variables. Additionally, the new idea to apply multi-criteria optimization techniques to parameter
estimation problems is presented. Finally, strategies for the estimation and propagation of the model
errors are discussed.

Keywords: regression; model adjustment; optimization

1. Introduction

Process engineering involves mechanistic models on different scales, ranging from pure-substance
over mixture properties up to models for different apparatuses and flowsheets. On each scale,
the corresponding model involves model parameters. Generally, these model parameters are not known a
priori, but must be determined such that the model predictions match measurements from experiments.
This procedure is designated as parameter estimation by model regression in the following. This work
describes recent progress that has been made in implementing least-squares regression approaches in an
industrially relevant context, including efficient error propagation from one scale (e.g., thermodynamic
mixture properties) to another (e.g., flowsheets described by the MESH equations).

Least-squares regression probably belongs to the most popular methods of parameter estimation.
The reason is that one can show that this method leads to the best parameter estimates assuming that the
ground truth is known and the experimental measurements are normally and independently distributed
around this ground truth (for more details, cf. the textbook [1]). However, these two assumptions are
never strictly fulfilled in practice: Neither the ground truth is known nor are the measurements normally
distributed. Thus, from a practical point of view, least squares can rather be considered as one possibility
to measure the distance between model prediction and experiment. Other measures for the distance
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adapted to special situations, such as strong deviations of the measured data from normal distribution
due to outliers, are known as well [2]. More recently, Bayesian parameter estimation has gained some
attention [3,4]. Here, however, we restrict ourselves to the least-squares approach, which in countless
situations has led to satisfactory parameter estimates (for a recent review, cf. [5]).

In the context of chemical engineering, three challenges are encountered when it comes to regression:
The first is that measurement errors are present not only in the measured quantities corresponding to
model predictions but also in those corresponding to the model inputs. The second challenge results from
multiple model outputs and their respective weights in the loss function of the regression: Ideally, weights
are obtained from the variances of the measurement errors [6], which are not known exactly. They can be
estimated as well, resulting in tedious iterative loops [3,6]. For the practitioner, however, weights have only
a limited physical meaning; the more important question is how well can the model describe a set of data
with different output quantities. Finally, the third challenge consists in propagating the error estimates of
the model parameters through different model scales, since these are usually implemented in different
environments with limited interfaces. Thus, methods are needed that encode the parameter estimates and
their errors obtained from the performed regression, e.g., for mixture properties from experiments in the
lab, such that these can be easily used by flowsheet simulators, which describe the properties of entire
processes. All three challenges are addressed in the present contribution.

In Section 2, we compare different methods to numerically solve parameter estimation problems
for highly nonlinear thermodynamic models for pure-substance and mixture properties. These could be,
for example, gE-models [7,8] or equation-of-state approaches such as PC-SAFT [9,10]. Further references
can be found in the textbook [11]. In conventional least-squares regression, it is assumed that measurement
errors occur only in the model outputs. Measurement errors in both model inputs and outputs
are accounted for by data reconciliation or errors-in-variables methods [12,13]. Data reconciliation
aims to correct the measurement errors by the incorporation of models for the process. Models at
different scales can be employed, ranging from simple models describing only parts of the process, e.g.,
the conservation of mass, to complex models, which are designed to describe the process completely. Data
reconciliation does not differentiate between input and output quantities. Therefore, data reconciliation
combined with parameter estimation can serve as an errors-in-variables model for parameter estimation.
Errors-in-variables methods lead to restricted nonlinear optimization problems, where the number of
equality constraints increases with the number of measured points. This can become a challenging
optimization problem, requiring advanced solvers which are capable of dealing with sparsity. In industrial
environments, such solvers are not always available. We therefore show how the constrained least-squares
optimization problem can be recast as an unrestricted problem. This idea originates in the work by
Patino–Leal [14,15]. Our contribution consists in an alternative derivation of this formulation and in a
comparison of the regression results from conventional least squares, error-in-variables least squares with
constraints, and the reformulation without constraints. Section 3 provides the comparison of the different
parameter estimation strategies for two specific thermodynamic examples.

The second challenge, related to a suitable choice of weights in a multivariate regression problem with
unknown variances of the measurements, is tackled in a multi-criteria framework in Section 4. An adaptive
scalarization scheme is used to choose the weights such that, in the case of conflicting regression objectives,
the resulting Pareto boundary is computed with the least numerical effort [16–18]. This approach has
been successfully applied to parameter estimation in the context of molecular simulations [19] and the
parametrization of equations of state [20]. In this work, the multi-criteria framework will be, to the best
of the authors’ knowledge for the first time, extended to the determination of process parameters of a
flowsheet simulation.

Finally, in Section 5, we discuss the third challenge dealing with error propagation. It is well known
that an estimate of the covariance matrix for the model parameters can be obtained from an analysis of
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the regression results [21,22]. In the present paper, we review different measures for the errors resulting
from this matrix. Furthermore, we propose a scheme allowing for efficient error propagation in the case
where the regression task has been performed in a model environment different from the one eventually
employing the parameter estimates. This situation frequently occurs in process engineering, since the
properties of pure substances and their mixtures are estimated from regression of thermodynamic models
to lab experiments and are then used by flowsheet simulators.

We would like to mention that all of the described algorithms were implemented in in-house tools of
the industrial partners with very specific interfaces. Therefore, employing existing commercial solutions
was not an option.

2. Parameter Estimation Approaches

The physical process involved in measuring an input–output relation can be described by the
regression model

yi = f (xi; β) + εi. (1)

Here, the measured value of the output yi is obtained by evaluating the model f (x; β) at the input
xi and adding an error εi, which is assumed to be normally distributed with zero mean and standard
deviation σyi . The model depends on the vector of parameters β ∈ RNβ , which are to be estimated from a
set of measured data {(xi, yi)|i = 1, ..., N}.

At this point, the input quantities xi may be considered as vectors of dimension Nx and yi, f , εi as
vectors of dimension Ny. If Ny > 1, we assume that the measurement errors εi are uncorrelated, i.e., σyi

is a diagonal Ny × Ny-matrix. This assumption is sufficient for many situations in practice, because the
measurements are performed by independent sensors not being correlated with each other. Since, in most
cases, estimates for the correlations of measurement errors are not available, we discard them for the sake
of a simpler notation.

If the model is a linear function of the parameters to be estimated, a linear parameter-estimation
problem has to be solved. This leads to a quadratic optimization problem and can, in principle,
be solved analytically. On the other hand, if the model depends nonlinearly on the parameters,
the parameter-estimation problem becomes nonlinear as well. In this case, a nonlinear optimization method
is required. In thermodynamics, many highly-nonlinear effects occur and, therefore, this work focuses on
nonlinear parameter estimation problems. The methods used can also be applied to linear problems.

2.1. Least Squares

The simplest and most common strategy for the estimation of model parameters from measured data
is the method of least squares. The approach consists in minimizing the sum of squared residuals, which
are defined as the differences between the measured values yi and the ones predicted by the model for the
corresponding measured inputs xi. It can be derived from the maximum-likelihood estimator under the
condition that all measurement errors are normally distributed and independent. The detailed derivation can
be found in numerous textbooks (e.g., [23]). Therefore, only a short summary is given here. The best values
for the model parameters β are calculated by maximization of the probability to obtain the measured dataset
{(xi, yi)|i = 1, ..., N}, leading to the optimization problem

min
β

sA, (2)

sA =
N

∑
i=1

(
f (xi; β)− yi

σyi

)2

. (3)
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For the multiple output case, the single terms of sA should formally be written as ( f (xi) −
yi)

T(σyi )−2( f (xi)− yi), whereas, for diagonal matrices, Equation (3) can be interpreted component-wise.
In the following, we employ the simpler notation. In Equation (1), the measurement error is assumed
to appear only in the model outputs, the errors of the input quantities σxi are not considered.
In thermodynamic applications (and many others), the differentiation between input and output
quantities is often only based on the formulation of the model. However, both quantities are subject
to measurement errors.

2.2. Reconciliation Formulation with Constraints

To include errors of input variables, a simultaneous data reconciliation and parameter estimation
problem is proposed [12,13], which is also known as the errors-in-variables model [14].

min
β,x′

sB, (4)

sB =
N

∑
i=1

[(
x′i − xi

σxi

)2

+

(
f (x′i ; β)− yi

σyi

)2
]

, (5)

where σxi denotes the errors of the input variables. However, the price for including the errors of the
input variables is high: Optimization solvers specialized for least-squares functions usually require
derivatives for every residual separately. Here, the introduction of N × Nx additional optimization
variables increases the size of the gradient from Nβ to (Nβ + N × Nx) and the number of residuals from
N × Ny to N × (Nx + Ny). The size of the Hessian matrix increases by the square of the factors. Most of
the additional entries are zeros, and it is possible to calculate the matrices efficiently. However, storing
them in memory efficiently is more difficult and requires to use solvers with implementations, which are
adapted to these structures.

As shown in Section 2.3, the problem can be reformulated and approximated to a form without
these additional variables but still including the errors of the input variables (see Equation (15)).
Before addressing this, we reformulate Equation (5) using constraints, which leads to a constrained
optimization problem

min
β,x′ ,y′

sB∗,

sB∗ =
N

∑
i=1

[(
x′i − xi

σxi

)2

+

(
y′i − yi

σyi

)2
]

(6)

s.t. 0 = f (x′i ; β)− y′i ∀ i = 1, ..., N. (7)

This version can directly be applied to implicit models and represents the first step in reducing the
number of optimization variables.

2.3. Reconciliation Formulation without Constraints

In Equation (6), the input and output variables are treated on equal footing, which is expressed by
collecting them in a single vector zi = (xi, yi), and the corresponding errors σzi into one diagonal matrix.
Furthermore, the quantity g is introduced as

g(z; β) = g(x, y; β) = f (x; β)− y. (8)
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This form has the additional benefit that it can be directly applied to models given only implicitly (i.e.,
g(x, y; β) = 0). Equations (6) and (7) with the substitution Equation (8) constitute a restricted least-squares
optimization problem, where the number of constraints scales with the number of measurements N.
For large N, advanced optimization solvers are necessary to solve this problem. In this section, a method
is presented that leads to an unrestricted optimization problem, which is equivalent to Equations (6)–(8).
This method is due to Patino–Leal [14,15]. In the original work, it was derived in a Bayesian framework.
Here, we present an alternative derivation based solely on the restricted problem (Equations (6)–(8)).
This reformulation relies on a linearization of the constraints in Equations (7) and (8), and is sketched
below. To remove the additional optimization variables from Equation (6), the constraints (i.e., the actual
model equations) are linearized with respect to the variables z′i around some point ξi:

min
β,z′

s,

s =
N

∑
i=1

(
z′i − zi

σzi

)2

=
N

∑
i=1

(
z′i − zi

σzi

)T ( z′i − zi

σzi

)
(9)

s.t. 0 = g(ξi; β) + (z′i − ξi)
∂g
∂z

(ξi; β) ∀ i = 1, ..., N. (10)

Note that, for linear models, the approximation is exact, and, for explicit models, the yi dependence is
already linear by definition of g. The impact of this approximation on the results strongly depends on
the accuracy of the approximation in the vicinity of the actual result, which in turn relies on the choice of
the point, which is used for the linearization. Now, while the number of optimization variables has not
been reduced yet, the minimization problem with respect to the z′ variables, for fixed parameter values
β, has a much simpler structure-quadratic objective function and linear constraints—and can be solved
analytically. It is very similar to the problems appearing in data reconciliation dealing with unmeasured
variables described, e.g., in [12]. The analytical solution is given by

z′i = zi −ViBT
i (BiViBT

i )
−1(gi + BT

i (zi − ξi)), (11)

with the abbreviations

Bi =
∂g(z; β)

∂z
|z=ξi , (12)

gi = g(ξi; β), (13)

Vi = diag((σzi )2). (14)

Inserting these results in the optimization problem in Equation (9) yields

min
β

sC,

sC =
N

∑
i=1

(gi + Bi(zi − ξi))
T(BiViBT

i )
−1(gi + Bi(zi − ξi)). (15)

This strategy can readily be applied to models with multiple inputs and outputs and even works
directly for implicit models. The values ξi = (xi, yi) are called linearization points and play a similar role
as the additional variables x′ in the reconciliation strategy given in Equation (5). However, in contrast to
Equation (5), the ξi are calculated within the evaluation of the residuals. For large problems, this is an
advantage compared to Equation (5), where, due to the introduction of a high number of extra optimization
variables, the optimization takes substantially longer. On the other hand, in Equation (15), the additional



ChemEngineering 2019, 3, 56 6 of 23

calculations are performed within the evaluation of the objective, and thus the numerical effort grows only
linearly with the number of data points.

Thus far, the reformulation leading to Equation (15) is based on an initial linearization of the
constraints. The optimal point for linearization of the constraints is the true value of the measured
quantities, because there the nonlinearity of the model does not play a role any longer. For reliable
measurements, the measured values are a reasonable approximation for the linearization points ξi = zi.
For different linearization points, the linearization has to be adapted in a fixed-point iteration after each
solution of the unrestricted problem Equation (15) in the following way [14,15]:

ξk+1
i = zi −ViBT

i (BiViBT
i )
−1(g(ξk

i ; β) + Bi(zi − ξk
i )), (16)

which is expected to converge reliably also in the presence of non-linearities.

2.3.1. Computational Aspects

Optimization algorithms specialized to least-squares problems [24] have been developed which offer
a significant gain in performance compared to conventional solvers which do not take advantage of the
least-squares structure. The performance is enhanced by deriving an approximation of the Hessian matrix
from the gradients of the individual terms instead of from the gradient of the sum of squares. The Hessian
of a quadratic expression contains the first and the second derivatives of the argument. Since the gradients
of the individuals terms are, in most cases, already calculated to determine the gradients of sA,B,C, this part
of the Hessian can be evaluated exactly without additional costs and only the part involving second
derivatives has to be approximated. Different methods to incorporate this information exist: Spedicato
and Vespucci [24] proposed specialized Hessian update strategies, whereas Schittkowski [25] reformulated
the individual objective terms as constraints and approximates the Hessian of the constraints individually.

Those specialized solvers usually rely on a sum of squares form of the objective function. The strategy
given by Equation (15) does not have this structure. It is, however, possible to reformulate the
objective function sC into a form consistent with standard least-squares algorithms. To this end, the QR
decomposition of the matrix DT

i BT
i = QiRi, with Di defined by Vi = DiDT

i , is introduced. Then, the inverse
matrix in Equation (15) can be obtained and the objective function can be equivalently written as

sC = ∑
i

vT
i vi, (17)

where the vectors vi are calculated by solving the linear system of equations

RT
i Ri ṽi = g(ξi; β) + Bi(ξi)(zi + ξi), (18)

vi = QiRi ṽi. (19)

The computational costs are only slightly increased, since Equation (15) requires a matrix inversion as
well. A detailed derivation is contained in Appendix A.

2.3.2. Linearization Points

A simple version of Equation (15) is to use the measured values zi as an approximation of ξi. However,
if one wants to use the optimal values for the linearization points ξi given in Equation (16), an additional
loop inside the residual evaluation is required, which leads to significantly more model evaluations.
One solution to this problem is to only use ξ0

i = zi as starting value in the first iteration of the optimization
(or whenever a misfit is detected) and the final value of the previous iteration otherwise. Then, Equation (16)
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may require only a small numbers of iterations, in the extreme case just one. For strongly nonlinear models
and parameter values far from optimal (or even physically reasonable) ranges, however, the convergence
may be limited. In such cases, it is preferable to start the optimization with the approximate formulation,
until reasonable parameter values are obtained.

An alternative formulation for the iteration in Equation (16) is

ξk+1
i = ξk

i + uk
i , (20)

Bi(ξ
k
i ; β)uk

i = −g(ξk
i ; β), (21)

||D−1
i (zi − ξk

i − uk
i )|| → min, (22)

with Vi = DiDT
i (as in the previous section). This requires an algorithm for the linear least-squares problem

with equality constraints given in Equations (20)–(22). QR decomposition is a typical component of such
algorithms, but it is no longer necessary to use it explicitly. The objective function sC of Equation (17) can
be calculated directly as vi =

zi−ξi
σzi . The derivation is provided in Appendix B.

3. Comparison of Parameter Estimation Strategies

To demonstrate the behavior of the different regression strategies presented in Section 2, two examples
from thermodynamic practice are discussed.

3.1. Example: Vapor Pressure

The standard DIPPR model for the vapor pressure of methanol was chosen as a first test model to
compare the different regression strategies. The measured dataset was provided by BASF SE and consists
of 40 data points for the (logarithmic) vapor pressure and the temperature. The model describes the
temperature dependence of the logarithmic vapor pressure according to

ln(p) = a +
b
T
+ c ln(T). (23)

Herein, a, b, and c denote the model parameters to be estimated, and pressure p and temperature T
are given in units of Pa and K, respectively. The model parameters were determined using four different
regression strategies with three different initial parameter values:

1. the ordinary least-squares strategy sA (Equation (3))
2. the reconciliation strategy sB (Equation (5))
3. the approximate error-in-variables model sC (Equation (17)) without linearization point optimization
4. the full error-in-variables model sC together with Equation (20) (sC∗)

The results are shown in Table 1. They include the observed run time of each regression run.
These values were obtained by taking the mean value of repeated micro-benchmark runs on a Windows
machine with an Intel Core i7-7700 CPU and 2 × 8 GB DDR4-2400 main memory. The parameter values
agree with each other within a few percent, except for the strategies sC and sC∗ for the third initial value.
The error was defined as the minimum value of the objective function sA,B,C,C∗ and therefore expected to
differ between the methods. Note that the highest error was obtained by sA, because all other methods
split the error between input and output. The reconciliation strategy sB required many iterations. However,
the approximate version sC yielded, except in one case, almost the same result with much fewer iterations.
The last strategy sC∗ agreed with the third one, but took the highest time in total, because of the additional
loop for the linearization points. For the third initial value, the last two strategies converged to a different
local minimum; however, the effect of the varying parameter sets on the model prediction was very small.
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The model predictions for the corresponding cases are shown in Figure 1. The difference between any two
predictions evaluated at the data points was smaller than 0.04 (i.e., below 0.5% of the absolute value). If only
the different strategies starting from the same initial point were compared, this bound reduced to 0.0003.
The fact that different parameter sets led to similar model predictions was related to the correlations between
the model parameters. The variation of one parameter was compensated by adjusting a correlated parameter,
and the parameters could not be independently estimated from the data. For this example, the ordinary
least-squares strategy (sA) already worked quite well, and we compared it with respect to the results and the
performance of the other methods. The strategy sB works well for sufficiently small problems, whereas the
error-in-variables strategy sC is also suited for larger problems. The last strategy sC∗ is useful for situations
where the approximation in sC does not work well and the problem size is too large for sB.

Table 1. Regression results for different methods and initial points.

Method Start a b c Iterations Error Time [ms]

Initial point
I 100.896 −7210.917 −12.44128 - - -
II 1 1 1 - - -
III 50 −5000 0 - - -

sA
I 44.5796 −5511.94 −2.87739 24 0.23211 2.35
II 44.581 −5512.01 −2.8776 19 0.23211 1.87
III 44.581 −5512.01 −2.8776 15 0.23211 1.49

sB
I 43.7994 −5471.03 −2.76444 192 0.107258 156.01
II 43.7992 −5471.03 −2.76441 179 0.107258 145.33
III 43.7991 −5471.02 −2.7644 169 0.107258 137.41

sC
I 43.7851 −5470.32 −2.76237 21 0.107503 11.93
II 43.7833 −5470.23 −2.76211 31 0.107503 17.37
III 34.8895 −5000.28 −1.47651 9 0.133713 5.37

sC∗
I 43.7985 −5470.98 −2.76431 29 0.107258 228.6
II 43.799 −5471.02 −2.76438 31 0.107258 239.06
III 34.8928 −5000.36 −1.477 10 0.133517 913.83

300 350 400 450 500
T [K]

8

9

10

11

12

13

14

15

16

ln
 p

 [P
a]

data
sC(I)
sC(III)
sC * (I)
sC * (III)

Figure 1. Regression results compared to data for regression runs with different initial parameters.
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3.2. Example: NRTL

For a second comparison of the different regression problem formulations, the NRTL model for a
water–methanol binary mixture was chosen. For this test, the simplest parameterization of the NRTL
model was used

GE

RT
=

2

∑
j=1

xj
S1j

S2j
, (24)

S1i =
2

∑
j=1

xjPjiτji, (25)

S2i =
2

∑
j=1

xjPji, (26)

Pji = exp
(
−ατji

)
, (27)

which has three parameters (α, τ12, τ21). Here, GE denotes the excess Gibbs free energy, which is normalized
by temperature T and gas constant R. The model has a single input x1, which is the mole fraction of
methanol in the liquid phase, and x2 = 1− x1 being the corresponding mole fraction of water is not
independent. The dataset, which already has been published in [17], contains the temperatures and the
molar fractions of methanol in the liquid and the vapor phase. Based on the extended Raoult’s law, from
these data activity coefficients ln γ1,2 = ∂GE/RT

∂xi
for both phases can be estimated. The regression was

performed using the differences between the logarithmic activity coefficients ln(γ1,2) estimated from
the experimental data and the model. Since the data contained no information about the measurement
errors, a standard deviation of σ = 4% was assumed for the activity coefficients. For the mole fractions,
the standard deviation was set to 4% for values above 0.1. Below this threshold, a constant standard
deviation of 0.004 was used. The parameter α was not optimized, but set to a fixed value of 0.3, since it
could not be reliably estimated from this dataset.

The results are summarized in Table 2, which contains the parameter values, the numbers of needed
iterations, and timing estimates obtained with the same settings as in Section 3.1. For all regression
calculations, the NLPLSQ solver [25] was used with a residual guess of 10 and accuracy settings of 10−6

and 10−9 (QP).

Table 2. Regression results and statistics for the NRTL example.

Method α τ12 τ21 Iterations Error Time [ms]

Initial - 1 1 - - -

sA 0.3 * −0.254835 1.10159 6 1290.34 174
sB 0.3 * −0.232939 1.07197 8 1132.79 58,870
sC 0.3 * −0.233823 1.07287 9 1127.48 820
sC∗ 0.3 * −0.234391 1.07364 9 1127.59 1050

*: The parameter α was not optimized.

Figure 2 shows the data together with the corresponding model predictions for all four strategies.
The model curves are very similar. The maximum of the absolute differences between the model predictions
evaluated at the data points was 0.013 (i.e., about 1% of the value of γ2 close to x1 = 1) and reduced to
0.003, if strategy sA was excluded.
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0.0 0.2 0.4 0.6 0.8 1.0
x1 [mol/mol]
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1.5

2.0
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1, 
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1 (measurement)
2 (measurement)

sA

sB

sC

sC *

Figure 2. Comparison of activity coefficients in the system methanol (1) + water (2) for the different model
parameters in Table 2, based on the investigated regression strategies.

As in the previous example, the results of all four strategies agree well with each other. While the
strategies sB, sC, and sC∗ use different objectives for the optimization to include the errors of input variables,
the results of these three strategies can be considered identical, and even sA was only slightly different.
The effect of the input-variable errors, for which homogeneous estimate of 4% was assumed, seemed to
be small in this example. In addition, the approximation used in sC was already sufficient, such that sC∗

did not yield an improvement. The time for all four strategies was much larger than in the first example,
because the dataset consists of 540 points. This was still feasible for method sB, but the difference in
speed compared to sC and sC∗ was much more significant here. Therefore, the methods sC and sC∗ are
better suited to handle cases appearing in practice that contain large datasets. Despite the large dataset,
the current model was rather small, since it used only one input variable, two output variables, and two
parameters. The size of the optimization problem in sB increased with the number of input and output
variables, so that much larger problems could easily occur.

In summary, all strategies to take input-variable errors into consideration agree well with each other,
and differ only slightly from the ordinary least-squares strategy. However, in general, when the input
errors are significant, deviations are expected. In cases where the ordinary least-squares strategy does
not yield satisfactory results or it is expected that significant input variable errors are present in the data,
the two other strategies are available as alternatives. The reconciliation strategy sB is simpler than sC and
sC∗, but its numerical effort grows for large-size problems.

4. Multi-Criteria Parameter Estimation

The regression approaches considered thus far, in Sections 2 and 3, strongly depend on the standard
deviations of the data. However, in practice, often the standard deviations of the measured data are not
well known or the measuring sensors might not be reliable. Thus, it is essential to know in how far the
estimated parameters depend on changes in the estimates of the variances. A solution to this problem
is provided by performing parameter estimation in a multi-criteria framework. Here, one can define
multiple sums of least squares as objectives to be minimized. In general, if the system is over-defined, not
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all objectives can be minimized simultaneously and the result is a set of Pareto optimal solutions, lying on
the so-called Pareto front [26].

Exploration of the Pareto front corresponds to a sensitivity analysis of the weights of the different sums
of squares. Thus, using a separate objective function for each data point, one performs a sensitivity analysis
of the standard deviations. If the number of data points is large, in practice, it is more advantageous
to group data points to only a few least-squares functions, e.g., according to their physical unit, order
of magnitude, or the reliability of their error estimates. This kind of grouping has been proven useful
in [19,20].

Furthermore, the Pareto front indicates how close the model can at all get to the data. As demonstrated
via an example in Section 4.2, this reveals valuable information about systematic deviations of single
measurement values from the model predictions, thus providing hints for possible gross errors. Finally,
as clarified in the Introduction, a statistically rigorous estimate of the variances would, for a multivariate
regression, involve solving an iterative loop between minimizing the residual sum of squares and
estimating the variances. Performing this iteration is completely avoided by calculating the Pareto
front, which contains all possible outcomes of the regression.

In this section, we focus on data from industrial process plants. However, the general method can be
applied to arbitrary parameter estimation problems. For instance, it could be used for the examples from
thermodynamics in Section 3 as well.

4.1. General Framework

In the following, we describe a general framework for multi-criteria parameter estimation using
process data. Model parameters can be fitted both to measured data from one and multiple datasets
(or experiments). In the context of industrial process data, multiple datasets correspond, e.g., to multiple
operating points. In general, two types of model parameters appear: β ∈ Rn which are independent of
the operating point and xp ∈ Rm, p = 1, . . . , NP, which depend on the operating point, where NP is the
number of operating points. Establishing the connection to Section 2, the parameters xp are associated
with the inputs xi in Equation (1). A single objective si, i = 1, . . . , N to be minimized takes the form

si =
NP

∑
p=1

NTi

∑
j=1

1
σ2

ij,p

(
fij(xp; β)− yij,p

)2 , (28)

where NTi denotes the number of measured quantities (or tags) and yij,p the measured value of tag j at
operating point p assigned to objective i, e.g., according to the physical unit with index i. The corresponding
standard deviation is denoted by σij,p whereas fij(xp; β) is the model prediction for quantity j attributed
to objective i. We can define several of these objectives summarized as s ∈ RN , and the multi-criteria
optimization problem to be solved reads

min
x1,x2,...,xNP ,β

s. (29)

Pareto optimal solutions of this problem can be obtained using scalarization algorithms [27–29],
which combine the objectives to a single scalar function, which is then passed to an optimization solver.
In the following, we employ an adaptive method provided by the sandwiching algorithm [16,30,31].
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4.2. Example: Distillation Column

We present the application of multi-criteria parameter estimation to a real-world industrial process.
This example depicts a distillation column which is part of a downstream separation process, operated by
LONZA AG at one of their production sites. The flowsheet is displayed in Figure 3.

1 (feed)

3

2 (product)

Figure 3. Flowsheet for the distillation column.

The column feed is a mixture of 15 known and some unknown components and the main product is
obtained at the top drain. The process model is implemented as a steady-state simulation in the flowsheet
simulator CHEMCAD. Here, the column consists of 53 stages. Available real process data are the total
flow rates of the three streams 1, 2, and 3 and the temperature measurements at stages 1, 2, 19, 38, 46, 52,
and 53. We adjusted the model to these data at a single operating point. The composition of the feed was
measured as well and, in the simulation, was fixed to these data. It was not practical to define a separate
objective for each measured quantity, since the interpretation of the results would become too involved.
Therefore, we defined (only) two objectives to be minimized, one least-squares function for the flow rates
and one for the temperatures:

f̄ =

√√√√1
3

3

∑
i=1

1
σ2

F

(
Fsim

i − Fmeas
i

)2, (30)

t̄ =

√√√√1
7

7

∑
i=1

1
σ2

T

(
Tsim

i − Tmeas
i

)2. (31)

Since reliable estimates for the standard deviations are not available, we set them to the default values
σF = 1 kg/h and σT = 1 ◦C. The so-defined objectives can then be interpreted as the average deviations
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between simulated and measured values given in units of standard deviations. The model parameters
to be adjusted are the total feed flow rate, the reflux ratio, the reboiler specification (given by the mass
fraction of the main product in the bottom drain), and a global value for the tray efficiencies of all stages.
Those optimization variables are summarized in Table 3.

Table 3. Model parameters to be fitted to process data.

Parameter Initial Value Lower Bound Upper Bound

Total feed flow rate [kg/h] 2330 2300 2550
Reflux ratio [-] 1.4 0.5 3

Reboiler specification [-] 0.0046 0.003 0.006
Tray efficiency [-] 0.7 0.5 0.95

The multi-criteria optimization problem was solved using the sandwiching algorithm [16,30,31]
together with the NLPQLP solver [32]. We obtained four Pareto points and the interpolated Pareto front is
shown in Figure 4.

1

2

3 4

20 40 60 80 100
3.8

4.0

4.2

4.4

4.6

4.8

5.0

f

t

Figure 4. Calculated Pareto front for the two objectives f̄ and t̄. The objectives can be interpreted as the
average deviations between simulated and measured values given in units of standard deviations.

One can clearly see that it is not possible to minimize both objectives simultaneously. Navigation on the
Pareto front shows the dependence of the resulting parameters on variations of the variances and allows then
to choose a set of model parameters which fit either the flow rates or the temperatures better. This decision is
beyond the scope of this work, since it has to be made relying on context knowledge and is therefore up to
the engineer who knows which measured data are more reliable and should be described better. To study
the contributions of the different measured points to the objectives, the residuals at the Pareto points are
displayed in Figures 5 and 6.
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Figure 5. Residuals for the flow rates at the calculated Pareto points.
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Figure 6. Residuals for the temperatures at the calculated Pareto points.

For all four Pareto points, the residuals of the temperatures showed systematic deviations for T52 and
T53 at the bottom of the column. They were in agreement with the observation that the corresponding
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temperature sensors at the real column did not work well and might have provided erroneous results.
Thus, our framework is well suited for the detection of such systematic deviations.

5. Error Estimates

Having discussed how model parameters can be estimated from data, we now present strategies
to quantify the errors of the obtained parameter values and corresponding model predictions [23].
Well-known error estimates are the parameter confidence regions, the parameter confidence intervals,
and the prediction bands. They are derived from a quadratic approximation of the least-squares function
sA,B,C around the optimal parameter values β̂. At this point, the linear contribution to the approximation
vanishes. From the quadratic contribution, the parameter covariance matrix C is obtained, which is a local
measure of the change in the model under variations of the parameters. The parameter covariance matrix
is the inverse of the Fisher information matrix (FIM), i.e., C = (FIM)−1, which is calculated by

FIM =
N − Nβ

s

N

∑
i=1

(
∂si
∂β

)(
∂si
∂β

)T
, (32)

where N and Nβ are the number of data points and model parameters, respectively. Here, s can be any
of sA,B,C defined in Equations (3) and (5), or Equation (17), and the si are the individual terms such that
s = ∑i s2

i . A more general form of the FIM for multiple outputs and differently structured data points is
given in Section 5.2. Before that, a short review of error estimates is given.

5.1. Confidence-Region Estimates

The parameter confidence region is a set in parameter space which contains the true parameter values
with a certain probability, the so-called confidence level α, e.g., 95%. It can be obtained by statistical
theory under the assumption that the data used for the regression are obtained from the model with
the true parameter values and an error which is independent and normally distributed (see Section 2).
The parameter confidence region is then given by [23]

(β− β̂)TC−1(β− β̂) ≤
Nβ

N − Nβ
F(Nβ, N − Nβ; α), (33)

where F(...; α) is the corresponding quantile of the FisherF distribution. This inequality describes an
ellipsoid centered at β̂, with main axes along the eigenvectors of C and proportional to the square root
of the corresponding eigenvalue. The orientation of the ellipsoid in space depends on the off-diagonal
elements of C.

The confidence intervals [23] provide the same information as the confidence region but for the
individual parameters. They are the projections of this ellipsoid onto the coordinate axes, multiplied by
the quantile of the StudentT distribution T(...; α) instead of the FischerF distribution

∆βi =
√

Cii
1

N − Nβ
T(N − Nβ; α/2). (34)

The confidence region and confidence intervals are illustrated in Figure 7 for a two
dimensional example.



ChemEngineering 2019, 3, 56 16 of 23

2 1 0 1 2
1

1.0

0.5

0.0

0.5

1.0

2

1 C11

2 C22
1

2

sin( ) = v12/v11

Figure 7. Illustration of confidence region and confidence intervals for a 2D example. λ1, λ2 are the
eigenvalues of the covariance matrix C. The confidence region is an ellipse, and the confidence intervals are
the projections of that ellipse onto the individual coordinate axes.

In the next step, based on the parameter errors, we can determine the error of the model evaluation.
The estimate for the error of the model prediction obtained from the confidence region is the prediction
band [23] (also called confidence band). It provides error estimates for the evaluation of the model at
arbitrary points

∆ f (x; β) =
Nβ

N − Nβ
F(Nβ, N − Nβ; α)

√
∂ f
∂β

T
C

∂ f
∂β

. (35)

It is also possible to calculate error estimates based on the confidence intervals of the individual
parameters. If the covariance matrix C is (close to) diagonal, i.e., the parameters are uncorrelated,
Equation (35) simplifies to

∆ f (x; βi) =

√√√√Nβ

∑
i=1

(
∆βi

∂ f
∂βi

)2
. (36)

On the other hand, if the covariance matrix cannot be assumed to be diagonal, an upper bound for
the error is given by

∆ f (x; βi) =

Nβ

∑
i=1
|∆βi

∂ f
∂βi
|, (37)

because the off-diagonal elements of the covariance matrix are always bounded by Cij ≤
√

CiiCjj.
Equations (36) and (37) are the typical formulas for error propagation. These estimates, however, are
very conservative in the case of large parameter correlations. The confidence intervals are practically the
projections of the confidence region onto the coordinate axes, since the quantiles in Equations (33) and (34)
differ only slightly numerically. Therefore, this approach corresponds to the approximation of an ellipsoid
by its bounding box (aligned to the coordinate system). For large parameter correlations, the confidence
region becomes more elongated and tilted away from the coordinate axes. In Figure 7, the area of the
bounding box is much larger than the area of the ellipse itself. The behavior gets more pronounced in
higher dimensions. This effect is demonstrated in Figure 8 for the DIPPR model described in Section 3.1
with three parameters. The prediction error band (Equation (35)) is magnified ten times to be even visible,
whereas the error propagation result (Equations (34) and (36)) is shrunk by the same factor to lie inside the
plot. The error estimate based on the confidence intervals is more than 100 times larger than the prediction
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band. As a result, for error propagation of correlated models, the prediction band method [23] should
always be preferred over the simple propagation of confidence intervals.

300 350 400 450 500
T [K]
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14

16
ln

 p
va
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r [

Pa
]

model
data
propagated error /10
prediction band x10

Figure 8. Errors of the model prediction based on regression results for the vapor pressure of methanol in
the ordinary least-squares approach. The shaded areas depict the 95% confidence regions for the model
prediction. Note that they are scaled by a factor of 10 in different directions for visibility reasons.

However, the error propagation formulas in Equations (36) and (37) are useful, when various models
are employed in one calculation. Different models are usually adjusted using different datasets and
by multiple independent regression procedures. Assume, that f, g, and h are models for three different
properties of a system, e.g., vapor pressure, heat capacity, and activity coefficients for a binary mixture.
Then, there may be a derived property that depends on all three of them F = F( f , g, h), and the error of F
resulting from all three parameter estimations is given by

∆F =

√(
∆ f

∂F
∂ f

)2
+

(
∆g

∂F
∂g

)2
+

(
∆h

∂F
∂h

)2
. (38)

If the parameters are correlated, Equation (37) can be applied. Correlations are expected, e.g., if f is
used in the parameter estimation for g or h, e.g., to transform some of the input data. It is also possible
to derive corresponding equations for cases where only some pairs are uncorrelated, by considering a
covariance matrix where some off-diagonal elements are non-zero.

5.2. General Form of the Fisher Information Matrix

Thus far, the formula for the Fisher information matrix given in Equation (32) is provided only for the
single output case. However, it can be easily extended to the multiple output case, as long as every data
point contains values for the output quantities. In process engineering, often multiple thermodynamic
models are employed in a single calculation. We, therefore, present a strategy for treating such generalized
situations in the parameter estimation process. When several inhomogeneous datasets are involved, this
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procedure is similar to missing-data problems [33]. However, this approach does not aim to replace the
missing data, but to use as many of the available data as possible.

First, consider M models fi(X j
i ; β), where X j

i is the subset of input quantities that are used by the ith
model measured at the jth data point. Models with multiple outputs are treated as multiple independent
single-output models which have the same set of input quantities. Then, let Ki be the subset of {1, ..., N}
which contains all those data points, where all of the X j

i and yi
j are measured, or equivalently the set of data

points that are useful for estimating the parameters of model i. Then, the total model for the parameter
estimation reads

yj
i = fi(X j

i ; β) + ε
j
i ∀ j ∈ Ki, i ∈ {1, ..., M}. (39)

The regression strategies given in Section 2 can be generalized to this model. To that end, the numbers
of inputs (Nx) and outputs (Ny) become dependent on the data point, but the equations provided are
independent of this fact. The generalization of the Fisher matrix reads

Fkl =
M

∑
i=1

∑
j∈Ki

1

σ
(i)2
j

∂ fi(X j
i ; β)

∂βk

∂ fi(X j
i ; β)

∂βl
, (40)

where σ
(i)
j denotes the corresponding standard deviation. A derivation based on probability theory is

contained in Appendix C.
Equation (40) is fully additive with respect to the model functions and the data points. However,

the formula contains the standard deviations of the measurements, which are rarely well-known. For the
parameter estimation, approximate values might be sufficient in cases where the optimal parameters are
not very sensitive to the standard deviations. For the error estimation, however, that is no longer true.
Therefore, it is popular to estimate a common standard deviation σ from the residual of the objective
function, σ = s

N−Nβ
, as done in Equation (32). If the standard deviations of the dataset depend on the

data points, then only a global scaling factor for all of them is estimated. The standard deviations σ
(i)
j in

Equation (40), however, depend on the data point j and the model i. If just a single correction factor is
estimated, the additivity of the Fisher matrix is violated, and the dependence of that factor on N and Nβ

is not clear. For this reason, the re-estimation of the standard deviation is performed separately for each
output using the corresponding number of data points and parameters.

Scaling the whole objective function by one (positive) scalar has no impact on the minimum value.
This is no longer the case when different terms of the objective function are scaled by different factors, as in
Equation (40). The correct approach would be to iteratively solve for optimal parameters and estimate the
standard deviations until self-consistency is reached. Assuming that the new estimates of the individual
output errors do not change their ratios by large amounts, we use the first iteration as an approximation to
the self-consistent one.

Another advantage of this approach is that the simultaneous regression of disjoint models on disjoint
datasets yields the same result as two independent calculations.

6. Conclusions

Different strategies to address parameter estimation problems that are relevant to applications in
process engineering in general and especially in thermodynamics have been discussed. The standard
least-squares approach is useful for simple situations with a univariate regression problem and
measurement errors in the outputs only, not in the inputs. Measurement errors in the inputs, however, lead
to constrained least-squares problems, where the number of equality constraints grows with the number
of measurement points. In this situation, the Patino–Leal formulation is a valuable alternative, since it
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transforms the constrained least-squares problem to a non-restricted optimization problem. We applied
both methods to thermodynamic regression examples.

Furthermore, we demonstrated that, for multivariate parameter estimation or reconciliation problems,
a multi-criteria approach yields substantial insight into how well a model can describe multiple responses
at all. To the best of our knowledge, this is the first time that the challenge of reconciling process variables
was treated within a multi-criteria setting. All the described algorithms were implemented with the
industrial partners.

A direction for further research is, e.g., to realize the propagation of the parameter errors from
thermodynamic models all the way up to a full flowsheet simulation of a real-world example. In addition,
benchmarking of the various parameter estimation strategies should be performed applying them to more
complex models.
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Appendix A. Patino–Leal in Least-Squares Form

The optimization problem given in Equation (15) is not a least-squares problem, but it can be
reformulated as such. To that end, each term of the sum is considered separately, so the index i can
be dropped. Furthermore, we consider only the case ξ = z, and the general case is obtained by replacing g
by g(ξk, β) + B(z− ξ).

Inserting the QR decomposition of the matrix DT BT = QR (with DDT = V) into an arbitrary term of
the sum in Equation (15) yields

gT(BVBT)−1g = gT(BDDT BT)−1g = gT(RTQTQR)−1g = gT(RT R)−1g. (A1)

The product of an inverse matrix with a vector, here z1 = (RT R)−1g, is calculated by solving a linear
system of equations

RT Rz1 = g. (A2)

The solution of a system of linear equations with a matrix which is the product of two triangular
matrices (R and RT) is straightforward

RTz2 = g, (A3)

Rz1 = z2. (A4)

Equation (A2) is well formed (if R has full rank), Equation (A3) is under-determined, and Equation (A4)
is over-determined. Thus, when solving Equation (A3), one has to choose the right solution to make
Equation (A4) solvable. Fortunately, the corresponding solution is the one with zeros in the last Nx

components, which is also the simplest one to calculate. Inserting into Equation (A1) yields

zT
1 g = zT

1 RT Rz1 = zT
2 z2. (A5)

This is already a least-squares formulation of Equation (15), but it is advantageous to insert QTQ in
between (although the number of terms in the objective function is increased). The reason for this step
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is the fact that the QR decomposition of a matrix is not unique and the signs of the diagonal of R can be
chosen freely. By inserting QTQ, the least-squares residuals become independent of that choice, which
might be important for convergence or if numerical gradients are used. Equation (A5) can be used for a
linearization point ξ 6= z as well, and the same QR decomposition can be employed to solve the system of
equations belonging to the matrix inversion in Equation (16).

Appendix B. Reformulated Exact Version

With the results of Appendix A, Equation (16) reads

ξk+1 = z− DQR(RT R)−1
(

g + B(z− ξk)
)

, (A6)

where g, B (including Q, R) are evaluated at ξk. Thus, we need to solve

RT Rz1 = g + B(z− ξk), (A7)

which is done in two steps, as in Appendix A. In addition, one can insert the decomposition of B to simplify
the equation. Then, the first triangular equation becomes

RTz2 = g + RTQT D−1(z− ξk), (A8)

and we collect the terms starting with RT on the left-hand side

RT(z2 −QT D−1(z− ξk)) = RTz3 = g. (A9)

For z3, the last Nx entries are no longer equal to zero. This is addressed below. First, insert the identity
QTQ = I:

RTQTQz3 = BDQz3 = BDz4 = Bz5 = g, (A10)

where
z5 = Dz4 = DQz3 = DQz2 − z + ξk. (A11)

Thus, the solution for z5 can be used to obtain z2 and then solve Rz1 = z2. Note that Equation (A10)
does not uniquely define z5 and a second equation is needed, which addressed below. However, it is not
necessary to solve for z1, since Equation (A6) only requires DQRz1,

DQRz1 = DQz2 = z5 + z− ξk, (A12)

and then Equation (A6) simplifies to

ξk+1 = z− (z5 + z− ξk) = −z5 + ξk. (A13)

Furthermore, the least-squares formulation is readily available, because now the definition of z2 is
equivalent to the one in Equation (A3) (except for the term on the right-hand side, which was assumed to
be zero there). Thus,

Qz2 = D−1(z5 + z− ξk) = D−1(z− ξk+1), (A14)
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and the objective function in least-squares form is obtained inserting z5

zT
2 z2 = (QT D−1(z5 + z− ξ))T(QT D−1(z5 − z + ξ) (A15)

= (z5 − z + ξ)T D−TQQT D−1(z5 − z + ξ) (A16)

= (z5 − z + ξ)TV−1(z5 − z + ξ). (A17)

Note that neither Q nor R is needed explicitly, since they are only auxiliary matrices to solve
Equation (A10). The only point left open is to make z5 unique. The matrix B is in general a n × m
matrix, where n is equal to the number of model equations or outputs, and m equals the dimension of
z (i.e., the number of inputs plus the number of outputs). Equation (A10) must be solved in a way that
Rz1 = z2 is still solvable (even though the solution is not explicitly used), which is the case if and only if
all components of z2 beyond n are zero(

QT D−1(z5 + (z− ξ))
)

i
= 0 ∀ i = n + 1, ..., m. (A18)

The first n entries of this vector are uniquely determined by Equation (A10), and among all possible
vectors the one with zeros in the last components has the smallest norm. Furthermore, multiplication by an
orthogonal matrix does not change the norm. Therefore, Equation (A10) together with

||D−1(z5 + (z− ξ))|| → min (A19)

forms a linear least-squares problem with equality constraints. This is the alternative iteration formulation
given in Equations (20)–(22).

Appendix C. Derivation of the Fisher Matrix

In probability theory, the Fisher information matrix is defined by the following expectation value

Fnm = E
[

∂ ln p
∂βn

∂ ln p
∂βm

]
, (A20)

where the probability density p for the entire dataset (under the assumption of independent data
points) reads

p(y|x) =
N

∏
j=1

pj(yj|xj). (A21)

Here, the probability density pj to obtain data point j given xj (assuming that the errors follow a
normal distribution) is given by

pj(yj|xj) = ∏
i∈K̄j

1
√

2πσ
(i)
j

e(y
j
i− fi(X j

i ;β))
2/(2σ

(i)2
j ), (A22)

where K̄j ⊆ {1, ...M} is the set of all models that can contribute to the point j and is connected to Ki by the
relation {(i, j)| i ∈ K̄j, j = 1, ..., N} = {(i, j)| j ∈ Ki, i = 1, ..., M}. The sets Ki are fixed, i.e., the selection of
measured quantities is fixed and not randomly distributed. This leads to

∂ ln p
∂βk

=
M

∑
i=1

∑
j∈Ki

yj
i − fi(X j

i ; β)

2σi2
j

∂ f j
i (X j

i ; β)

∂βk
, (A23)
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and

Fnm = E

[(
M

∑
i=1

∑
j∈Ki

yj
i − fi(X j

i ; β)

σi2
j

∂ fi(X j
i ; β)

∂βn

)

×
(

M

∑
k=1

∑
l∈Kk

yl
k − fk(Xl

k; β)

σk2
l

∂ fk(Xl
k; β)

∂βm

)]
. (A24)

Due to the linearity of the expectation value

Fnm =
M

∑
i=1

M

∑
k=1

∑
j∈Ki

∑
l∈Kk

E

[(
yj

i − fi(X j
i ; β)

σi
j

)(
yl

k − fk(Xl
k; β)

σk
l

)]

×
∂ fi(X j

i ; β)

∂βn

∂ fk(Xl
k; β)

∂βm

1
σi

j σ
k
l

. (A25)

The expectation value term is the correlation matrix of the measurement errors of the individual data
points, and is the identity matrix in cases where the measurement errors are uncorrelated. However, if the
dataset does not consist of direct measurement results but of values calculated thereof, the correlations
should be included. Under the assumption of independent measurement errors, Equation (A25)
simplifies to

Fkl =
M

∑
i=1

∑
j∈Ki

1
σi2

j

∂ fi(X j
i ; β)

∂βk

fi(X j
i ; β)

∂βl
. (A26)
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