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Abstract: This paper considers the process of multicomponent distillation. It is shown that energy
consumption (per mole of mixture being separated) depends monotonously on efficiency if the
capacity is constant and separation is reversible. Authors suggest the technique for selection of
distillation sequence for which the total energy consumption in the cascade of columns reaches its
minimum. This sequence is determined by values of thermal coefficients. Coefficients themselves
depend on temperatures in the reboiler and condenser. This paper offers the algorithm for the
calculation of these coefficients.

Keywords: distillation; multicomponent mixture; thermal coefficient; separation sequence;
maximum capacity; minimum energy consumption

1. Introduction

The analysis of multicomponent distillation is not a novel field of science and is covered in many
sources (for example References [1–4]), yet it contains many unsolved or partially solved problems. One
of the most important problems of multicomponent distillation is the estimation of minimum energy
consumption for the process and separation and calculation of separation sequence corresponding to
this consumption.

Molar fractions and boiling points for each component are assumed to be known, so the
composition of ingoing and outgoing streams are given. At a first glance, the energy consumption
depends only on compositions, if one will not consider the irreversibility factors. It would be true for
processes consuming mechanical or electrical energy, such as membrane separation or centrifugation.
But for processes consuming the heat energy, such as distillation or simple evaporation, it is not true.
The energy consumption in this case depends on temperatures of streams and these temperatures are
determined by the choice of separation sequence.

For choosing the optimal separation sequence many authors suggest ad hoc heuristics without
any justification. An example of such a heuristic is “at the first stage the lightest component must be
separated” or “at the first stage the component with the maximum molar (mass, volumetric) fraction
must be separated”. Our current paper tries to present rigorous methods for choosing the optimal
separation sequence.

At first we will consider the unit fractionating column under some assumptions and will find
the relationship between the energy consumption, capacity and separation order. Then we will write
the inequality determining the choice of the separation order such that on every stage the energy
consumption is minimum if the process is reversible. We will show that the efficiency of the column
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depends on its reversible efficiency monotonously, so the optimum separation order for the cascade of
columns must not differ from the one obtained for a “reversible cascade.”

2. Limiting Capabilities of a Multicomponent Fractional Distillation Columns

We will consider a model of a simple distillation column where one stream of the heat energy
enters the reboiler and another one leaves the condenser.

There are main assumptions made in this paper are as follows:

1. Mass transfer on a plate or in a packing section is equimolar and the fluid stream changes
abruptly at the feed point.

2. At every plate or packing section the pressure and the temperature of the fluid and the vapor
streams are equal (they differ from one plate to another).

3. Diffusion effects between consequent plate are negligible.
4. The enthalpy of outgoing streams is being transferred to the incoming ones and the irreversibility

of this process is negligible.
5. The stream of the mixture being separated comes to the column at the plate where the temperature

of the liquid stream is equal to the one of the feed and the entropy generation due to the mixing of
streams with different compositions is negligible (It is not quite clear whether this last assumption
is always acceptable. This question is the subject of the current research).

The process of separation of multicomponent mixture into two fractions in a distillation column
is characterized by the following parameters:

1. Molar fractions of components in the feed stream xFi, boiling points T0
i and molar latent heats of

vaporization ri, i = 1, . . . , n (at standard conditions). It is assumed the from i < j follows that
T0

i < T0
j .

2. The composition of products: the distillate xDi and the bottom product xBi.
3. Parameters of a column: pressure P, temperature in reboiler TB, temperature in condenser TD

(Figure 1). These values depend on a chosen separation order.
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Figure 1. Schematics of a binary distillation column.

If compositions of outgoing and incoming streams are fixed, these streams are proportional to
each other. This means that any of the liquid streams can be taken as the objective one. We will take
the feed stream gF as the objective stream. In this case the efficiency of the column is the ratio of the
feed stream and the stream of a heat q+ supplied to the reboiler of a column.
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Thermodynamic Balance Equations for Binary Distillation and Relationship Between Energy Consumption and
Capacity of Column

At first we need to write down the balance equations for matter, energy and entropy [5,6],
assuming that the heat of mixing is negligible:

gFxFi − gFεxDi − gF(1 − ε)xBi = 0, i = 1, 2, .... (1)

q+ − q− + gF ∑
i

hFi − gF ε ∑
i

hDi − gF (1 − ε)∑
i

hBi = 0, (2)

gF ε ∑
i

sDi + gF(1 − ε)∑
i

sBi +
q−
TD

− gF ∑
i

sFi −
q+
TB

= σ ≥ σmin. (3)

Here σ > 0 is the entropy generation in a column, hi—molar enthalpy, si—molar entropy of the
i-th component.

The fraction of upper product is

ε =
xFi − xBi
xDi − xBi

, i = 1, 2, .... (4)

streams of the feed and products have temperatures TF, TD and TB correspondingly.
We will assume that a column is adiabatic, so q+ = q− = q.
From (2) and (3) one can obtain:

q = gF
TB

TB−TD

[
∑i(sFiTD − hFi)− ε ∑i(sDiTD − hDi)−

−(1 − ε)∑i(sBiTD − hBi)
]
+ σ + TBTD

TB−TD
= q0 + σ TBTD

TB−TD
.

(5)

The first addend in the right hand side of (5), denoted as q0, is the energy consumption for a
reversible process (when heat and mass transfer is infinitely slow, that is, the column is infinitely large).
This value depends only on properties of incoming and outgoing streams and it is proportional to gF.
The second addend corresponds to the irreversible losses of energy.

Taking into account that the difference (hi − TDsi) for every component is equal to its chemical
potential µ at T = TD, we obtain the relationship between the heat stream and the capacity of
the column:

q = gF
TB

TB−TD

[
ε ∑i µi(TD, xDI) + (1 − ε)∑i µi(TD, xBi)− ∑i µi(TD, xFi)

]
+

+σ TBTD
TB−TD

.
(6)

Chemical potential is calculated as

µi(T, P, xi) = µi0(P, T) + RT ln xi, i = 1, 2, ..... (7)

Because the chemical potential at every plate of the column corresponds to equal temperature
and pressure, their difference does not contain the value µi0(P, T). This difference depends only on the
composition of fluid streams so, the right hand side of (6) can be written as:

q = gF

TB
TB − TD

[
WF − εWD − (1 − ε)WB

]
+

σTDTB
TB − TD

=
p0

ηc
+

σTD
ηc

. (8)

Here
Wji = −RTD

[
xilnxi + (1 − xi)ln(1 − xi)

]
(j = F, D, B) (9)

is the work of a reversible separation of one mole of the j-th stream into pure components and the
expression in square brackets in (8) is the work of a reversible separation of one mole of the feed
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stream with the corresponding molar fraction xF into two streams with molar fractions xB and xD at
the temperature TD. We will be denoting this value as AG. The value

ηc = (1 − TD/TB) (10)

is analogous to the Carnot efficiency.
Assuming that the entropy generation in (8) is zero, we obtain the lower (reversible) estimate for

the energy consumption of the fractional distillation: q0 = gFWG
ηc

. A reversible fractionating column
can be idealized as a heat engine with the hot source having the temperature TB and the cold sink
having the temperature TD. This engine produces the power of separation p0 = gFWG.

3. Optimal Separation Sequence for Multicomponent Fractional Distillation

Cascade of Two Binary Distillation Columns

We consider the system of two reversible fractionating columns, separating the feed stream into
three fractions, the composition of which is given. The value of the reversible separation power
p0 = gFWG is also given. It does not depend on a separation sequence but the efficiency and fraction
of power per column γ depend on this sequence. The problem is to choose the optimal sequence from
two possible ones, so the total energy consumption will be minimal. Because the energy consumption
is proportional to the capacity, we assume that gF = 1. We denote the efficiency of the first column as η1

and the efficiency of the second one as η2. The separation sequence, when the most volatile component
(MVC) is being separated at the first stage, is called the direct one and the sequence, when the least
volatile component is being separated at the first stage, is called the indirect one.

We assume that the first column of the direct sequence produces the fraction γ1 of the total power
and the second column produces the fraction (1 − γ1) of this power. For the indirect sequence these
values are denoted as γ2 and (1 − γ2).

The direct sequence is preferable if

γ1

η1,23
+

1 − γ1

η2,3
<

γ2

η12,3
+

1 − γ2

η1,2
. (11)

The left hand side (lhs) of (11) is proportional to the energy consumption per mole for the direct
sequence and the proportionality coefficient is 1

WG
. The right hand side (rhs) of this inequality is

proportional to the energy consumption per mole for the indirect sequence. The comma between
indices corresponds to the composition of a mixture being separated. So η1,2, η2,3 are efficiencies of a
separation of the mixture of the first and second or the second and third components correspondingly
at the second stage.

If the inequality (11) has the opposite sign, the indirect sequence will be preferable. Efficiencies in
this inequality are determined by the ration of boiling points of components. For the first stage of the
direct sequence it is the ratio of T1 to T23, the boiling point of the mixture of the second and the third
component. For the second stage of the direct sequence it is the ratio of T2 and T3. The left hand side
and right hand side of (11) determine the thermodynamic difficulty of a separation. We will denote
them as C1,23 for the direct sequence and as C12,3 for the indirect one.

The inequality (11) allows one to compare values of reversible energy consumption for any chosen
separation sequences and states that the optimal sequence is the one for which the difficulty C is
the lowest (the reversible efficiency in this case is maximal). The following necessary condition of
optimality is true: If the separation sequence corresponds to the minimal energy consumption, then for every
two-column cascade in the whole system its partial sequence must be chosen in the way that minimizes the
value of C.
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For three-component mixture with the vector of molar fractions x1, x2, x3 the condition (11) can
be rewritten as:

[x1 ln x1 + (1 − x1) ln(1 − x1)]
T23−T1

T23
+

+[x2 ln x2 + x3 ln x3 − (1 − x1) ln(1 − x1)]
T3−T2

T3
>

> [x3 ln x3 + (1 − x3) ln(1 − x3)]
T3−T12

T3
+

+[x2 ln x2 + x1 ln x1 − (1 − x3) ln(1 − x3)]
T2−T1

T2
.

(12)

Here T12 and T23 are bubble points of mixtures of corresponding components. The following
chain of inequalities is true:

T1 < T12 < T2 < T23 < T3. (13)

In the specific case when the ratio of boiling points depends only on compositions of fractions
adjacent to the point where separation is made η12 ≈ η1, η23 ≈ η2 and condition (11) is
especially simple:

(γ1 + γ2 − 1)
(

1
η1

− 1
η2

)
< 0. (14)

In this case the following Rule is true: If the first column of the cascade has the highest capacity,
the separation sequence must be chosen in the way in which the efficiency of one stage is greater than the one of
next stages.

Because boiling points of fractions are going closer when the number of stage increases,
the efficiency decreases from the first stage to the last one.

In the most of cases, the sign of the first factor in left hand side of (14) is positive, because the feed
stream for the first column is greater than feed streams of succeeding columns.

We will show that for a three-component mixture the function

F = γ1 + γ2 − 1 (15)

is positive when molar fractions of components are non-zero.
The sign of F (15) is equal to the sign of

F0 = (1 − x1 − x3) ln(1 − x1 − x3)− x1 ln x1 − x3 ln x3. (16)

Derivatives of this function

∂F0

∂x1
= ln

1 − x1

1 − x1 − x3
,

∂F0

∂x3
= ln

1 − x3

1 − x1 − x3
(17)

are positive for non-zero molar fractions of components and become zero when x1 = 0 or x3 = 0.
The function F0 reaches its minimum on coordinate axes and its minimal value is zero.

So, for every two-column cascade, the rule of the decrease of the efficiency is true,
when temperatures in a reboiler and a condenser are determined only by compositions of fractions
adjacent to the point at which the separation is made.

Cascade of Three Binary Distillation Columns

For a cascade consisting of three distillation columns we must choose one sequence of three
possible variants: 1(234); (12)(34); (123)(4). The difficulty of the separation can be computed for every
sequence:

C1(234) = C1,234 + (1 − x1)min[C2,34; C23,4],
C(12)(34) = C12,34 + (x1 + x2)C1,2 + (x3 + x4)C3,4,
C(123)4 = C123,4 + (1 − x4)min[C1,23; C12,3].

(18)

The optimum sequence corresponds to the minimum of (18).
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4. Parametrization of the Column Capacity as the Function of the Energy Consumption

Take a closer look on the total entropy generation as a function of the capacity of the column.
This allows one to use the Equation (8) and obtain the relationship between the capacity and the
energy consumption.

We assume that the heat transfer in the reboiler and condenser is governed by the linear law:

q = βB(T+ − TB) = βD(TD − T−), (19)

where T+ and T− are temperatures of heating vapor and cooling fluid correspondingly and βB, βD are
coefficients of heat transfer in the reboiler and the condenser. Kinetics of heat transfer at every plate or
each packing section are described by

gi(y, y0) = k

[
µi(T, y0

i )− µi(T, yi)
]

T
. (20)

Here yi is the vapor molar fraction of the i-th component, corresponding to the operating line,
y0

i is its equilibrium vapor fraction, µi are chemical potentials, k is the effective coefficient of a mass
transfer, T is the temperature on a plate.

Reference [6] gives the expression for the entropy generation as a function of the energy
consumption:

σmin = q2

([
1

βBTBT+
+

1
βDTDT−

]
+

[
2 ∑

i

(xDi − xBi)

kr2
i

])
. (21)

After substituting this expression into (8) one can obtain the expression for the boundary of the
reachable set of a column:

g ≤ bq − aq2, (22)

where b and a are characteristic coefficients that are functions of column properties:

a =
[ 1

βB TBT+
+

1
βD TDT−

+ 2 ∑
i

(xDi − xBi)

kr2
i

] TD
WG

, (23)

b =
TB − TD
TBWG

=
ηc

WG
. (24)

The coefficient b is the reversible efficiency of a column. It is equal to the ratio of its
thermal (Carnot-like) efficiency and reversible work of separation. The coefficient a determines
the irreversibility of transfer processes within a column. The possibility of such parametrization allows
one to reveal the relationship between the efficiency of a reversible column and the efficiency of an
irreversible one.

The efficiency of a column is a function of characteristic coefficients:

η =
g
q
= b − aq. (25)

It follows from (25) that the efficiency reaches its maximum b = ηrev in a reversible process,
when values of gF and q vanish. The operating region of the boundary of the reachable set corresponds
to such values of q for which the capacity of a column does not decrease. This region is bounded by
the value q∗ = b

2a .
Introducing the relative heat stream q0 = q

q∗ and substituting it into (25) instead of q one can obtain

η = b(1 − 0, 5q0). (26)
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It means that within the operating region (0 < q0 ≤ 1) the efficiency of an irreversible column
depends monotonously on the efficiency of a reversible column. For the operating mode with
the maximal capacity the former is equal to the half of the latter. This fact allows us to state that
recommendations about the choice of a separation sequence made for reversible columns are true
for irreversible ones. If every column in the cascade is working at its maximal capacity, the energy
consumption will be approximately two times larger than its reversible estimate.

It is worth to note that the reversible efficiency b depends only on temperatures in the reboiler
and the condenser and the composition of the feed flux but the irreversibility coefficient a depends
also on the latent enthalpy of vaporization of MVC and kinetic coefficients of heat and mass transfer.

The right hand side of (22) can be good approximation to the relationship between the capacity of
the column and its energy consumption. Characteristic coefficients can be determined experimentally
and recomputed using (23), (24) if some process’ parameters change. If q1, g1 and q2 > q1, g2 > g1 are
measured values of the energy consumption and the capacity of a column within its operating region,
then characteristic coefficient can be calculated using:

a =
g1q2 − g2q1

q2
2q1 − q2

1q2
, b =

g1q2
2 − g2q2

1
q1q2

2 − q2q2
1

. (27)

Complete Separation

Now we analyse the case of the complete separation when there are no components that are
present in both upper and lower products. In this case:

ε =
ν

∑
i=1

xFi, 1 − ε =
n

∑
i=ν+1

xFi. (28)

Taking into account that xDi = xFi/ε and xBi = xFi/(1 − ε), we rewrite the expression for the
molar work of the separation as

WG = −RTD(ε ln ε + (1 − ε) ln(1 − ε)), (29)

so the value of the energy consumption per mole of the mixture being separated is equal

qm =
1
b
= − 1

ηc
RTD(ε ln ε + (1 − ε) ln(1 − ε)). (30)

5. Computation of the Thermal Efficiency

To compute the value of the thermal efficiency, one must use some procedure to compute
temperatures in the reboiler and the consender. Here we present one possibility to do this.

The temperature in the condenser is usually taken as TD = 323 K, so the cooling liquid is the
water at the temperature 300 K. To adjust this temperature the pressure within the column must be
changed for every mixture.

The composition of the vapor stream yD and the liquid one xD within the condenser are related to
each other through the value of vapor-liquid equilibrium ratio KiD. These values depend on properties
of the i-th component, the temperature TD and the pressure P:

yDi = xDiKiD(TD, P). (31)

Because the molar fraction of every component in the vapor phase at the equilibrium is equal to
the ratio of its partial pressure PiD to the total pressure P, we can write

KiD(TD, P) =
P0

i (TD)

P
. (32)
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Here, the partial pressure PiD(TD) is defined as the product of the pressure of the vapor of a pure
component P0

iD(TD) and its molar fraction in the liquid phase.
We consider the VLE in the upper part of a column. The composition of the stream coming out of

the condenser is determined by the composition of the vapor y in one. The composition of the liquid
stream within the condenser is determined by y, the pressure P and the temperature TD

xD =
yD

KD(TD, P)
. (33)

Because ∑i xDi = 1, one can write, using (32), (33):

P =
1

n
∑

i=1

xDi
P0

i (TD)

. (34)

The same way, one can find the value of the temperature within the reboiler TB, using the value
of P and compositions of corresponding streams:

P =
n

∑
i=1

xBiP0
i (TB). (35)

The Equation (35) is highly non-linear and can be solved only numerically but since its right hand
side is monotonous with respect to TB, it has only one real root.

In the case, when components are ideal liquids, one can use the Antoine equation [7] to calculate
vapor pressures of components:

P0
i (T) = 10

(
Ai−

Bi
T+Ci

)
, (36)

where Ai, Bi and Ci are empirical coefficients widely presented in various sources. If components are
not ideal liquids, one must use more complex equations for this task [4].

The algorithm of computation of the thermal efficiency is following:

1. The temperature in the condenser TD, compositions of the feed and product streams xF, xD, xB
and Antoine equation coefficients Ai, Bi, Ci are given for every component.

2. The total pressure is computed using the VLE Equation (34). Necessary values of the vapor
pressure for every component are computed using the Antoine Equation (36).

3. The VLE equation for the reboiler (35) is solved numerically to find TB.
4. Values of TD and TB are substituted into (10)

Example 1. Two-Component Mixture

We consider the separation of the mixture mentioned in Reference [4], using the data
from Reference [8], summarized in the Table 1. We will find the value of KT , using the
above-mentioned algorithm.

Table 1. Data for Example 1.

Component xF xD xB A B C r, kJ/mole

Benzene 0.4 0.95 0.1 4.01814 1203.835 −53.226 33.9

Toluene 0.6 0.05 0.9 4.07827 1343.943 −53.773 37

1. The temperature in the condenser in given TD = 323 K. Properties of the feed and product
streams are given in the Table 1.

2. Partial pressures of pure components are computed using (36).

P0
1 (TD) = 10(4.01814− 1203.835

323+53.226 ) = 6.58 bar.



ChemEngineering 2019, 3, 69 9 of 11

P0
2 (T) = 10(4.07827− 1343.943

323+53.773 ) = 3.25 bar.

The total pressure is computed using (34)

P = 1
0.95
6.58+

0.05
3.25

= 6.26 bar.

3. The VLE equation for the reboiler is (35):

6.26 = 0.1 · 10
(

4.01814− 1203.835
TB+53.226

)
+ 0.9 · 10

(
4.07827− 1343.943

TB+53.773

)
.

Solving it for TB we obtain TB = 351 K.
4. The value of the thermal efficiency is equal to (10):

ηc =
351 − 323

351
= 0.08.

Example 2. Multi-Component Mixture

We consider the process of the separation of the mixture mentioned in Reference [4]. The data
are taken from Reference [8] and summarized in the Table 2. We will find the value of KT , using the
above-mentioned algorithm.

Table 2. Data for Example 2.

Component xF xD xB A B C r T0, K

Methane 0.26 0.435 0 3.9895 443.028 −0.49 8.5 111.65

Ethane 0.09 0.15 0 4.50706 791.3 −6.422 9.76 184

Propane 0.25 0.41 0.01 4.53678 1149.36 24.906 16.25 231

n-Butane 0.17 0.005 0.417 4.35576 1175.581 −2.071 22.4 272

n-Pentane 0.11 0 0.274 3.9892 1070.617 −40.454 26.5 309

n-Hexane 0.12 0 0.299 3.45604 1044.038 −53.893 31 341

1. The temperature in the condenser in given TD = 323 K. Properties of the feed and product
streams are given in the Table 2.

2. The total pressure is computed using (34):

P = 36.35 bar.

3. Solution of the VLE equation for the reboiler is:

TB = 425 K.

4. The thermal efficiency is

ηc =
425 − 323

425
= 0.24.

6. Results

The paper shows using thermodynamic balance equations that for the fractional distillation of
ideal mixtures the estimate of its capacity as a function of the energy consumption has a form of
concave upward parabola. This function is characterized by only two parameters: one is the reversible
efficiency and another is the irreversibility coefficient. These parameters determine the maximum
capacity of a column and its efficiency in such operating mode. We have shown that the efficiency
of an irreversible column increase monotonously as a function of the efficiency of a reversible one.
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The efficiency corresponding to the operating mode with maximum capacity is equal to the half of the
reversible efficiency. This fact allows one to use exceptionally simple rule for selection of optimum
separation sequence for multicomponent distillation: “If the first column of the cascade has the highest
capacity, the separation sequence must be chosen in the way in which the efficiency of one stage is
greater than the one of next stages.”
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writing—review and editing, I.S. and A.B.; translation, I.S.; supervision, A.T.
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Notation
x — molar fraction of component in the liquid phase;
y — molar fraction of component in the vapor phase;
T — temperature, K;
g — material stream, mole/s;
ε — fraction of the upper product;
r — molar latent heat of vaporization, J/mole;
h — molar enthalpy, J/mole;
s — molar entropy, J/(mole·K);
q — heat stream, W;
σ — entropy generation, W/K;
µ — chemical potential, J/mole;
R — gas constant, 8.31 J/(mole·K);
W — work of a reversible separation, J/mole;
p — power, W;
η — efficiency;
γ — fraction of the total power;
C — thermodynamic difficulty of a separation;
β — heat transfer coefficient, W/K;
k — mass transfer coefficient, mole2·K/(J·s);
a — irreversibility coefficient, mole·s/J2;
b — reversible efficiency, mole/J;
K — VLE equilibrium ratio;
P — pressure;
A, B, C — Antoine equation coefficients.

Indices
i, j — corresponding to the i-th or j-th component;
F — corresponding to the feed stream;
B — corresponding to the reboiler;
D — corresponding to the condenser;
+ — corresponding to the heating fluid;
− — corresponding to the cooling fluid;
0 — corresponding to some standard or ideal condition;
min — minimum value;
c — Carnot (for ex. Carnot efficiency);
G — corresponding to streams of matter (for ex. work of separation);
rev — reversible;
∗ — optimum or bounding value;
m — molar (when there is ambiguity);
overline — total (for ex. pressure);
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