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Abstract: Solar thermochemical processes have the potential to efficiently convert high-temperature
solar heat into storable and transportable chemical fuels such as hydrogen. In such processes,
the thermal energy required for the endothermic reaction is supplied by concentrated solar energy
and the hydrogen production routes differ as a function of the feedstock resource. While hydrogen
production should still rely on carbonaceous feedstocks in a transition period, thermochemical
water-splitting using metal oxide redox reactions is considered to date as one of the most attractive
methods in the long-term to produce renewable H2 for direct use in fuel cells or further conversion to
synthetic liquid hydrocarbon fuels. The two-step redox cycles generally consist of the endothermic
solar thermal reduction of a metal oxide releasing oxygen with concentrated solar energy used as the
high-temperature heat source for providing reaction enthalpy; and the exothermic oxidation of the
reduced oxide with H2O to generate H2. This approach requires the development of redox-active and
thermally-stable oxide materials able to split water with both high fuel productivities and chemical
conversion rates. The main relevant two-step metal oxide systems are commonly based on volatile
(ZnO/Zn, SnO2/SnO) and non-volatile redox pairs (Fe3O4/FeO, ferrites, CeO2/CeO2−δ, perovskites).
These promising hydrogen production cycles are described by providing an overview of the best
performing redox systems, with special focus on their capabilities to produce solar hydrogen with
high yields, rapid reaction rates, and thermochemical performance stability, and on the solar reactor
technologies developed to operate the solid–gas reaction systems.

Keywords: hydrogen; solar energy; water-splitting; thermochemical; two-step cycles; redox materials;
metal oxides; solar fuel; solar reactor

1. Introduction

Solar thermochemical processes are efficient routes for converting high temperature solar heat
into valuable and sustainable chemical energy carriers (solar fuels). Thermochemical water-splitting
cycles consist of the thermal conversion of water into separate streams of hydrogen and oxygen via
a series of endothermic and exothermic chemical reactions. It is particularly attractive due to the
abundance, availability and low cost of the water feedstock. Endothermic reactions can be driven by
high-temperature concentrated solar thermal energy [1–4]. A thermochemical water-splitting cycle
operates at much lower working temperatures than direct water thermolysis while resulting in the
same global water decomposition reaction.

The interest in thermochemical water-splitting cycles boomed in the late 70s and early 80s with the
oil crisis [5–9], and most of the cycles were proposed for being combined with a primary nuclear energy
source, thereby imposing constraints on the operating temperature that should remain below 900 ◦C.
Although several hundred cycles have been proposed, only a few has been subjected to substantial
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research, and the demonstration of technical feasibility and potential for high efficiency has been
barely carried out. In previous studies dealing with screening and evaluation of thermochemical
cycles, the maximum cycle temperature level corresponded to the deemed optimum for an advanced
high-temperature Generation IV nuclear reactor (e.g. high-temperature gas-cooled reactor HTGR,
very-high-temperature reactor VHTR), i.e. about 850 ◦C [10]. Processes involving higher temperatures
were eliminated. A large research effort has mainly been focused on UT-3 and Iodine-Sulphur (I-S)
cycles [10–16], in which the primary energy input was the high-temperature heat released from an
advanced nuclear reactor (4th generation power station). These cycles have also been proposed in
combination with a solar energy source [17–22]. The medium temperature I-S and hybrid sulphur
(Westinghouse) cycles that may use either solar or nuclear heat have been examined (e.g., EU-projects
HYTHEC (FP6), HycycleS (FP7) and SOL2HY2 (FCH JU)). In particular, the solar decomposition
of H2SO4 above 850 ◦C involved in both cycles was studied [17]. Regarding the hybrid sulphur
cycle (Ispra Mark 11), sulphuric acid is decomposed in the first reaction at a high temperature to
generate sulphur dioxide and oxygen (that can be separated and valorized as byproduct). Sulphur
dioxide is then electrolyzed with water at about 80 ◦C in the second reaction forming hydrogen
and fresh sulphuric acid to be recycled back to the first reaction. This electrolysis step requires only
about one tenth of the electrical power needed for conventional water electrolysis, thereby reducing
the global process energy demand for hydrogen production, which is crucial for future industrial
technology commercialization. However, such complex cycles operating below 1000 ◦C usually involve
incomplete reactions or electrochemical steps (hybrid cycles), additional separation steps, hazardous
or corrosive reactants and/or products, which results in materials issues for reactor construction and
may compromise viable commercial process implementation.

Significant progress has recently been achieved regarding solar energy collectors and concentrators
while enabling to reach solar powers of several dozens of megawatts. In this context, more efficient
cycles with a lower number of steps should now be suited for operation in a broader range of
temperature from 1000 ◦C to 2000 ◦C. Short two-step solar-driven cycles are particularly attractive
owed to their operational simplicity favoring easier process scale implementation, thus offering the
potential for safe, low-cost, and large-scale production of H2 as a clean energy carrier [23,24]. The cycles
based on non-toxic metal oxides [25–29] using process heat at temperature above 1000 ◦C are the
simplest and most promising routes for solar H2 production.

The solar thermochemistry governing two-step water-splitting cycles involves metal oxide redox
reactions. In the first step driven by concentrated solar energy, the reduction of the metal oxide
leads to both oxygen release and material activation. In the second water-splitting step, oxidation
of the redox-active material (reduced valence state of the metal oxide) with water steam produces
hydrogen (Figure 1). A few redox cycles have been investigated for solar hydrogen production from
water-splitting. The generic two-step process that makes use of metal oxides redox pairs is based on
the following reactions:

High temperature reduction step (endothermic): MxOy→MxOy−1 +
1
2

O2 (1)

Hydrolysis step (exothermic): MxOy−1 + H2O→MxOy + H2 (2)

Such a cycling process presents noticeable advantages: (i) the upper cycle temperature (generally
in the range of 1200–1600 ◦C) is compatible with renewable concentrated solar energy; (ii) water and
heat are the only process inputs, hydrogen and oxygen the only chemical outputs; (iii) the produced
H2 and O2 streams are inherently separated by the different reactions; (iv) the other chemicals and
reactants are continually recycled in the closed cycle; (v) the produced H2 is pure for being directly
processed, for instance using a polymer electrolyte membrane fuel cell (PEMFC).

Conventional electrolysis, representing the state-of-the-art technology, also generates pure H2,
but this approach is limited by thermodynamic inefficiencies and has low overall energy conversion
efficiency as it requires first the generation of electricity (global energy conversion efficiency below
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20% when taking into account the electricity production efficiency). Thermochemical water-splitting
cycles are expected to reach higher efficiency than water electrolysis since their energy efficiency
is not impaired by the intermediate conversion of heat to electricity. Benchmark is the alkaline
water electrolysis using solar electricity generated by either photovoltaics (PV) or concentrating solar
power (CSP). With currently available technologies, the overall solar-to-hydrogen energy conversion
efficiency reaches 10–14%, when assuming 70% efficiency for electrolysis and 15% (PV) to 20% (CSP)
annual efficiency for solar-produced electricity [30]. On the other hand, direct thermal splitting of
water would require temperatures exceeding 2000–2500 ◦C to yield significant amounts of hydrogen.
Therefore, thermochemical cycles are proposed to lower the maximum process temperature to a
technical manageable level.
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Figure 1. Scheme of the two-step water-splitting cycle based on the MxOy/MxOy−1 system.

The cycles working in the temperature range of 900–2000 ◦C were not considered in previous
screening studies [10], because they were not practically compatible with the operating temperature of
advanced nuclear reactors. In contrast, they can be plainly considered for a coupling with concentrating
solar thermal as primary energy source. Therefore, a new screening, selection, and evaluation of the
most promising solar-driven thermochemical cycles for H2 production was conducted [28]. A database
including over 280 referenced thermochemical cycles was constructed at CNRS-PROMES laboratory
(France) from a detailed bibliographic survey to sort out the cycles previously proposed in the
literature. The developed database incorporates the detailed information on the processing conditions,
involved chemical reaction steps, bibliographic references data describing or referring to the cycles.
The numerous listed cycles can be classified into a restricted number of defined subcategories (sulphur,
iodine, chlorine, bromine, carbon, miscellaneous, hybrid). Objective screening criteria were defined
and applied to decrease the number of investigated cycles to a manageable number and to identify
potentially applicable solar-driven cycles.

Roughly 30 interesting cycles were selected for further investigations by using a set of defined
criteria: (1) upper temperature of the cycle for being compatible with solar concentrating systems,
(2) number of reactions and separation steps, (3) number of chemical elements, (4) nature of the
cycle (either purely thermal or hybrid thermo-electrochemical), (5) thermodynamics, (6) technical
operational feasibility of the cycle accounting for reaction kinetics and chemical conversion yields,
(7) expected cycle exergy efficiency, (8) availability and cost of process chemicals and reactants,
(9) corrosiveness, (10) presence of non-stationary solid reactants, (11) environmental safety and health
issues, (12) type/availability/cost and ease for implementing the separation steps. Chiefly, two and
three-step cycles were retained due to their ease of process implementation and integration that
should imply favorable process economics. In addition, these cycles basically involve low number of
reactions and separation steps (thereby lowering penalties associated with heat transfer limitations and
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products separation), available, low-cost, and safe (non-toxic) materials, and a heat input temperature
(900–2000 ◦C) compatible with concentrated solar energy.

The cycles that were eliminated did not respond to the above criteria, as it was the case for those
requiring very high temperatures (higher than 2200 ◦C) (MoO2/Mo, SiO2/SiO, WO3/W), hybrid cycles
involving an electrochemical step (Cu-Cl cycle [31,32]), cycles based on toxic (Cd, Hg, or bromide) or
corrosive compounds such as potassium hydroxide, cycles that necessitate advanced gas separation
techniques (such as membrane technologies), or cycles for which thermodynamics is not favorable
such as most cycles based on sulphates [33,34] or chlorine [35–38]. In addition, a method of exergy
analysis was developed to determine the exergy requirements and the global exergy efficiency of each
selected thermochemical cycle [28]. This method was used to compare the cycles and to identify the
main operations responsible for irreversibilities, which is a thermodynamic tool for future process
optimization. Energy efficiency analyses related to process implementation in large-scale solar tower
chemical plants were conducted [29] to estimate the global solar-to-hydrogen energy conversion
efficiency that was about 20% for iron and zinc oxide cycles using currently available data (including
the different heat losses taking place in the main process sub-systems comprising solar concentrating
system for solar energy collection, solar receiver and reactor, and chemical cycling process).

The research investigations regarding high-temperature cycles were mainly focused on
CdO/Cd [39], ZnO/Zn [40–76], SnO2/SnO [76–82], Mn2O3/MnO [83], CeO2/Ce2O3 [84–86], and
Fe3O4/FeO [87–95]. The utilization of mixed metal oxides (e.g. Zn-ferrite, Mn-ferrite, or Ni-ferrite
cycles [96–127]) decreases the temperature of the solar activation step (O2 release) while the reduced
oxide still remains active for the H2 generation step. Due to their promising growing interest,
increasing research activities devoted to the investigation of solar-driven two-step cycles (ZnO/Zn,
SnO2/SnO, Mn2O3/MnO, Fe3O4/FeO, ferrites, CeO2/CeO2−δ, perovskites) have been conducted mainly
in Switzerland (ETHZ, PSI [40]), Germany (DLR [122]), France (CNRS-PROMES [28]), USA (DOE
projects [53,54]) and Japan (Tokyo Institute of Technology [97] and Niigata University [114]).

The current studies are mainly related to thermochemical systems based on metal oxide redox
pairs as chemical intermediates. The two-step cycles commonly rely on volatile (ZnO/Zn, SnO2/SnO)
or non-volatile redox pairs (Fe3O4/FeO, CeO2/CeO2−δ, and mixed oxides). The products of the
high-temperature reduction reaction are in the gaseous state for the volatile oxide cycle category,
whereas redox reactions proceed in the condensed state for the non-volatile oxides.

2. Volatile Metal Oxide Cycles

2.1. ZnO/Zn Cycle

The ZnO/Zn cycle is classified as a volatile oxide cycle because the reduced zinc metal species
produced during the decomposition reaction (ZnO(s)→ Zn(g) + 1

2 O2) is released from the reactor as a
gaseous product. This system has been studied extensively and it is considered as one of the most
attractive candidate cycles for being coupled with a solar energy source at high temperature. ZnO can
be dissociated near 1800 ◦C in a solar reactor [58] and Zn is recovered at the reactor exit after rapid
quenching the gaseous products. The reported activation energies of the ZnO dissociation varied
in the range 312–376 kJ/mol [43,44]. The products recombination between Zn and O2 represents a
parasitic reverse reaction that limits the Zn yield from the solar step [49]. Above the Zn condensation
temperature, Zn recombination is controlled by diffusion of Zn(g) and O2 to the reactor walls [62].
The condensation of Zn vapor in the presence of O2 was studied by fractional crystallization in a
temperature-gradient tube furnace, which revealed that Zn oxidation is predominantly a heterogeneous
process and, in the absence of nucleation sites, Zn(g) and O2 can coexist in a metastable state [42].
Otherwise, quenching the products is necessary in order to avoid Zn re-oxidation, which brings
process irreversibility (energy losses) and may further introduce complexity issues during large-scale
application. The gas quenching aiming to alleviate Zn recombination issue (e.g., via the addition
of large amounts of inert gas) constitutes the main challenge of this redox cycle. A fast products
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quenching to cool the gas species down to below 900 ◦C (that corresponds to the Zn(g) condensation
temperature) is advocated [41,61]. The quenching efficiency is sensitive to the dilution ratio of Zn(g) in
a flow of inert gas [41]. Alternatively, an effective technique for in-situ Zn/O2 separation directly at high
temperatures may also be used to avoid recombination (electrothermal separation methods [128,129]).

The solar thermochemical reactor represents the main key component of solar processes involving
water-splitting cycles. A specific research effort must be thus dedicated to suitable reactor design
and optimization. The materials used for both the window and the cavity receiver must be carefully
chosen as they represent the most sensitive components of solar reactors that are commonly based
on either direct or indirect heating of the reactants using concentrated solar energy. Direct heating
provides efficient and rapid heat transfer directly to the reacting matter but such reactor technologies
must be designed so that to avoid particle deposition on the optical window (case of entrained
particles and particle-laden flow). Alternatively, indirect heating via a heat transfer wall requires
using high-temperature resistant refractory materials and may suffer from additional heat losses
due to indirect heat transfer. Conventional solar reactor designs usually make use of insulated
cavity-type blackbody receivers that allow obtaining almost isothermal conditions in the cavity volume
and high solar energy absorption efficiencies [57–61]. High-temperature resistant ceramic materials
(refractory) are usually employed for lining the inner reactor volume (including both cavity walls and
insulation materials).

Different solar reactor configurations designed for ZnO thermal dissociation have been explored
in the literature. The first simple type is based on the direct irradiation of a ZnO rod [44]. Such
a reactor involves a packed bed or a moving rod of ZnO placed behind a window at the focus of
a solar concentrating system. A number of drawbacks arise while operating such a process. First,
only the ZnO irradiated surface is solar heated, whereas the underlying ZnO remains at relatively low
temperatures, thus inducing radiative heat losses at the surface and temperature gradient through
the layer. The reactant surface area exposed to solar flux is weak when compared with a dispersed
particulate system, which results in relatively low reaction rates. High re-radiation losses also occur
because the reaction does not proceed at fast enough rate to absorb most of the incident solar energy.
This in turn reduces the process energy efficiency. Second, the necessary presence of a window requires
using a screening stream of inert gas at its surface, in order to both cool it and protect it from products
deposition. Any material or dust deposition on the window may result in opaque absorbing regions
and subsequent localized overheating and thermal stress, with a possible window melting. Another
developed reactor configuration consists of the rotating conical cavity receiver (“ROCA”). A 10 kW
prototype and 100 kW pilot were constructed and tested in a high-flux solar furnace [57–61]. The design
was based on a windowed cavity receiver that rotates at a high angular velocity. The cavity walls were
made of a refractory material (either ZrO2, HfO2, or ZnO itself). ZnO was fed in batch pulses by a
screw feeder, and the cavity rotation evenly dispersed the ZnO particles throughout the reactor on the
cavity walls. Incident solar radiation was absorbed through the window to heat the ZnO particles,
and products were swept by inert carrier gas into a cooling zone for rapid quenching. This reactor
concept is promising, but may face difficulties and barriers during scale-up. The limitations imposed
by the window that was protected by both water-cooling and inert gas purging, could result in a
significant decrease of process efficiency due to both conductive and convective heat losses, and energy
requirements for inert gas recycling. The cavity rotation further increases mechanical complexity to the
high-temperature chemical process, which presents significant engineering challenges and capital costs
issues upon scaling-up. Similar to other systems in which a layer of ZnO is directly heated, the lack
of particle separation, mixing, and agitation could hinder the kinetics due to heat and mass transfer
limitations. In light of the challenges to be faced by these still promising reactor prototype technologies,
the use of rapid reaction aerosol flow reactors was considered to obtain rapid ZnO decomposition
kinetics while still being scalable with existing chemical engineering technology [53–56]. The small size
of particles yields greater surface area for enhancing heat and mass transfer rates, and the increase of
this available area enhances the overall rate of surface processes. Such particles dispersed in a gas flow
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have been shown to reach extremely high heating rates, on the order of 105 K s−1, when exposed to a
nearby high temperature hot emitting surface because of their ability to efficiently absorb the radiative
heat flux from the surrounding hot walls. The increased heat and mass transfer rates in aerosol systems
fasten solid–gas reaction kinetics, lower the global residence time required for converting the particles,
and finally make such a solar receiver more efficient. Indirect solar heating of the particles stream
by infrared radiation emitted from the surrounding tube walls further eliminates the need for using
an optical window. However, low ZnO conversions were obtained (maximum 17%) and particulate
products deposition occurred on the walls [54].

The solid metallic Zn powder produced in the solar step may be used in either a fuel cell or
battery, or in the exothermal water-splitting reaction to produce pure H2 and regenerate ZnO that
can be recycled back to the solar step. The produced Zn is a solid that can be stored and fed to the
hydrolysis reactor during night time or cloudy periods. The H2 production step of the ZnO/Zn cycle
involves a surface hydrolysis reaction between solid Zn particles (or liquid molten Zn) and steam.
The Zn hydrolysis was performed and studied with steam bubbling through molten Zn at 500 ◦C [63],
but the reaction rate and Zn conversion were limited by the formation of a ZnO(s) layer around the
steam bubbles, thus preventing efficient contact between fresh reactants. The kinetic rates of such a
surface reaction are expected to be limited by mass transfer through either the gas boundary layer or
the developing ZnO film at the surface. To maximize reaction rates during the off-sun step of the cycle,
the use of particles with a high specific surface area is beneficial, thereby reducing the resistance to
mass transfer within the particle and through the developing ZnO film.

Most of previous studies focusing on Zn particles hydrolysis reaction have been carried out either
using commercial Zn powders [71,72] or Zn produced from solar carbo-thermal ZnO reduction [73].
The Zn conversion achieved in an aerosol flow reactor fed with both water vapor and commercial Zn
particles (average particle size of 158 nm) was about 24% at 540 ◦C with a gas residence time of about
0.6 s [67]. The reaction rate may become negligible because of a low-permeable ZnO layer growing
at the particles surface [71]. Non-isothermal thermogravimetric analysis (TGA) with Zn powder
dispersed on quartz wool showed that complete Zn conversion could be reached with longer residence
times. Regarding Zn obtained from solar carbo-thermal reduction, increasing the temperature of
injected steam flow from 200 to 550 ◦C increased the Zn conversion from 24% to 81% during the fast
reaction stage (observed from 400 ◦C) [73]. Besides, other studies on hydrolysis using an aerosol
flow reactor consisted of the intermediate Zn vaporization before steam quenching the Zn vapors to
co-produce both H2 and Zn/ZnO nanoparticles [64–69], but this process suffered from weak particle
yield at the outlet and significant particle deposition at the wall. The advantages of hydrolyzing
Zn nanoparticles are three-fold: (1) their high specific surface area inherently increases heat and
mass transfer, and reaction kinetics (2) their large surface-to-volume ratio favors their complete bulk
oxidation, and (3) their possible entrainment by a gas flow is suitable for allowing a simple, continuous,
and controllable feeding of Zn reactants and removal of ZnO products. The in-situ formation and
steam hydrolysis of entrained Zn nanoparticles in an aerosol (size: 70–100 nm) freshly produced
by vapo-condensation allowed reaching 70% H2 yield [64]. Ernst et al. [66] obtained up to 90% H2

yield with reactor temperatures in the range 627–1000 ◦C, however at the expense of weak particle
yield downstream.

Finally, steam hydrolysis of Zn-rich solar-produced nanopowder (synthesized in a high
temperature solar chemical reactor) results in complete Zn particle conversion at relatively low
temperatures (360–500 ◦C) [74]. Figure 2 shows the time course of Zn conversion during steam
hydrolysis. This conversion is obtained from the ratio between the amount of converted Zn and the
initial amount of Zn in the powder. The initial presence of ZnO clusters in the particles promotes
the Zn oxidation reaction. The complete Zn particle conversion during hydrolysis is due to both the
synthesis method and the involved mechanisms during the solar step, which allows the formation of
Zn-rich nanoparticles containing ZnO clusters dispersed in the bulk. The ZnO serves as nucleation
sites promoting further oxidation during the water-splitting step. Therefore, the solar-produced
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Zn nanoparticles containing a fraction of recombined ZnO show better reaction extent than pure
Zn particles.
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Figure 2. Reaction extents versus time for Zn hydrolysis during isothermal thermogravimetry at
different temperatures and steam mole fractions (H2O mole fraction of 4.4%, 7.0%, or 21%, I corresponds
to the time of steam injection at about 14 min) [74].

Assuming an endothermic ZnO decomposition reaction performed at 2000 ◦C,
the energy conversion efficiency of ZnO/Zn cycle reaches about 45% (equal to
HHVH2/∆HZnO(25 ◦C)→Zn(g)+0.5O2(2000 ◦C)) and the maximum exergy efficiency is 29% without
including any heat recovery [40] (defined as the ratio of chemical energy stored in the form of H2 at
ambient temperature to the solar power input, ηexergy = −∆G

◦

H2+0.5O2→H2O/Qsolar). Hence, the ZnO/Zn
redox system presumably represents one of the most favorable candidate cycles given its potential for
achieving both high energy and exergy efficiencies, although significant technical challenges are still
remaining and the development of alternative cycles is thus necessary.

2.2. SnO2/SnO Cycle

More recently, the new SnO2/SnO redox pair was proposed as an efficient system for two-step
water-splitting cycle [77,78] which shares many similar characteristics with the ZnO/Zn system,
including: (1) the formation of vapor phase products (volatile oxide) in the solar step, (2) the similar
temperature range required for thermal reduction (about 1600–1800 ◦C at atmospheric pressure), (3) the
need for dilution with neutral gas and quenching of the products in the solar step to avoid reverse
re-oxidation, and (4) the solar-driven synthesis of reduced SnO particles with nanometric size scale by
vapor condensation if a fast enough quenching is applied.

The SnO2/SnO two-step cycle thus belongs to the class of volatile metal oxide cycles, similarly to
ZnO/Zn. The only known cycle based on tin oxides was previously referenced as the “Sn-Souriau”
three-step cycle: (i) SnO2 → SnO + 1

2 O2; (ii) 2SnO → Sn + SnO2; (iii) Sn + 2H2O → SnO2 + H2.
Nevertheless, the concept of this cycle patented in 1972 [130] was not subjected to any experimental
validation to confirm its operational feasibility. Recently, reaction (ii) was proven to reach completion
at 600 ◦C after heating for 10 min under inert gas atmosphere to avoid SnO oxidation. Unfortunately,
metallic Sn cannot be separated from SnO2 by liquefying Sn as advocated in the original “Sn Souriau”
cycle, because the molten liquid phase of Sn does not form in the blend. The reaction (iii) generating
H2 from the Sn/SnO2 mixture issued from disproportionation reaction (ii) is slow and only partial at
600 ◦C (Sn conversion yield of 45% after 30 min). For the above mentioned reasons, this three-step
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cycle was not selected as a promising candidate. Instead, the following innovative SnO2/SnO two-step
cycle was proposed and assessed:

Solar reduction step: SnO2(s)→ SnO(g) +
1
2

O2 (endothermic, 1600 ◦C) (3)

Hydrolysis step: SnO(s) + H2O(g)→ SnO2(s) + H2 (exothermic, 550 ◦C) (4)

The first endothermic solid–gas reaction (∆H = 557 kJ/mol SnO2 at 1600 ◦C) consists of the high
temperature thermal reduction of tin(IV) oxide (stannic oxide) into tin(II) oxide (stannous oxide).
The required temperature for reaction (3) is suitable for the coupling with a concentrating solar thermal
energy source. The SnO product (Tm = 1042 ◦C, Tb = 1527 ◦C) is gaseous at the reaction temperature,
and SnO(g) is released along with O2. When the gas temperature drops at the reactor outlet, the gaseous
SnO vapors are condensed as nanoparticles via formation of nuclei and particle growth. As for ZnO
decomposition, this reaction is also favored by an oxygen partial pressure decrease (via vacuum
pumping or inert gas dilution) to limit the reverse recombination reaction with O2. The beneficial effect
of high dilution ratio or reduced pressure operation was demonstrated [49]. A detailed kinetic analysis
of the recombination reaction with O2 was performed. The kinetic parameters were determined for
both SnO and Zn recombination (global reaction order of about 1.5 corresponding to the reaction
stoichiometry, and activation energies of 42 kJ/mol for SnO and 35 kJ/mol for Zn [49]).

The second solid–gas reaction generating H2 consists in hydrolyzing SnO nanoparticles by steam
water. This moderately exothermic reaction (∆H = −49 kJ/mol at 500 ◦C) occurs above 450 ◦C at
atmospheric pressure, with both a satisfactory SnO oxidation rate and a final H2 yield over 90%.
The recovered stannic oxide, SnO2, is then recycled into the first reaction (solar reduction step), which
closes the cycle. The cycle H2 productivity assuming a complete reactant conversion is 166.3 mLH2/gSnO

at normal conditions, which equates to about 14.8 mgH2/gSnO (i.e., the H2 mass storage capacity of
SnO is 1.48 %). The potential applications of such metal oxide systems are related to the stationary or
portable generation of H2. SnO (or Zn) can be long-term stored and transported more easily and surely
in the form of solids than H2, which represents a potential H2 storage tank. In addition, the reduced
species are stable in air and the reactivity of SnO (or Zn) with steam water is not altered even after a
long storage period in ambient air. Therefore, on-demand H2 can be generated at the delivery site
when required.

Initially, the SnO hydrolysis was considered as an intermediate step of metallic Sn hydrolysis [131].
Subsequently, the kinetics for hydrolysis of solar-produced SnO particles (and solar Zn for
comparison), consisting of nanoparticles synthesized from solar thermal SnO2 reduction, was studied
in details [79–81]. Hydrolysis experiments were carried out to investigate the hydrolysis reaction in a
packed-bed reactor and to establish kinetic rate laws. Kinetic parameters encompassing activation
energies and reaction orders were determined (122 ± 13 kJ/mol and 2.0 ± 0.3 for SnO, and 87 ± 7 kJ/mol
and 3.5 ± 0.5 for Zn, respectively). The reduced SnO species react efficiently in the water-splitting
step to generate H2 in the range of 450–600 ◦C. The hydrolysis reaction showed a fast initial step at
the time of steam injection before the chemical conversion gradually leveled off, which is typical for
solid–gas reactions exhibiting a passivating oxide layer growing at the particle surface. The suggested
reaction mechanism is composed of a fast reaction-controlled regime during the initial step, followed
by a diffusion-controlled regime which increasingly strengthens while the oxide layer is formed at the
particle surface. The hydrolysis of solar SnO nanoparticles nearly approached completion (Figure 3),
while Zn hydrolysis was fast and reached complete H2 yield thanks to the nano-sized powders [79].
Further thermogravimetric investigations confirmed SnO conversion approaching 90% at 600 ◦C [80],
but competing reactions such as SnO disproportionation into Sn and SnO2 occurred concomitantly,
as evidenced by Mössbauer spectroscopy [81].
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Figure 3. Evolution of chemical conversion during SnO nanoparticles hydrolysis at different temperatures.

The global flow diagram of the thermochemical process integrating the two chemical cycle
steps (both solar reactor and hydrolyser) and the H2 utilization via fuel cell is shown in Figure 4.
The produced H2 is converted in an ideal fuel cell generating both electrical power (WFC = −237 kJ/mol
at 25 ◦C) and heat (QFC = −49 kJ/mol). The intrinsic energy conversion efficiency of the SnO2/SnO cycle
reaches about 42% accounting for the high heating value of H2 (HHVH2 = 286 kJ/mol). The maximum
solar absorption efficiency of a perfectly insulated black-body solar receiver is about 86% at T=1600 ◦C
(assuming a concentration ratio C = 5000 and a direct normal irradiation I = 1 kW/m2) [132]. Thus,
the amount of solar energy input (Qsolar) necessary to carry out the endothermic SnO2 reduction
reaction is about 795 kJ/mol, which then allows assessing the global process efficiencies of SnO2/SnO
cycle. The resulting global exergy process efficiency reaches about 29.8% at 1600 ◦C, which is similar
to ZnO/Zn cycle at 2000 ◦C.
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A lab-scale solar reactor prototype (Figure 5) was designed, operated, and simulated for application
to the solar thermal reduction of volatile metal oxides involved in the first step of thermochemical
cycles. This reactor features a windowed rotating cavity receiver, in which dispersed solid reacting
particles are continuously injected by a feeding system [46,47]. The volatile generated products are
subsequently recovered at the outlet as nanoparticles agglomerates in a downstream ceramic filter for
the subsequent hydrolysis step. The oxide particles injected and dispersed in the directly-irradiated
cavity under a controlled inert atmosphere serve simultaneously as both reacting species in the solid–gas
decomposition reaction and as radiative absorbers enabling homogeneous heating. The direct particles
irradiation provides efficient and rapid heat transfer to the reaction site, thus bypassing the limitations
imposed by indirect transfer of high-temperature heat via intermediate absorbing opaque walls.
The solar ZnO dissociation was successfully performed as a function of the cavity pressure and
inert carrier gas flow-rate, and the obtained Zn product yield in the collected powder reached
above 90%. The reaction extent (ZnO conversion) was highly dependent on the particle temperature
and the particle conversion increased markedly when the particle temperature slightly increased.
Likewise, the conversion increased when decreasing the initial diameter of fed particles according to
computational fluid dynamics (CFD) simulations of the reactive gas-particle flow. As a result, complete
reaction was predicted when the particles temperature exceeds 1927 ◦C for initial particle diameter
of 1 µm.
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Another optimised solar reactor, shown in Figure 6, was then designed enabling the
continuous measurement and monitoring of several operating parameters (evolution of temperatures,
O2 concentration at the reactor outlet, Figure 7), and the synthesis of significant amounts of solar Zn
and SnO nanopowders (active materials) for the exothermal hydrolysis step [48]. Scanning electron
microscopy (SEM) characterizations (Figure 8) show that these powders are composed of agglomerates
of nanoparticles (10–50 nm) with a high specific surface area (20–60 m2/g). This vertical-axis cavity-type
solar reactor (1 kW of thermal power absorbed) effects the reaction above 1600 ◦C at reduced pressure
(about 20 kPa) with the compressed oxide reactant injected at the cavity base by the means of an
ascending screw piston. This reactor was also used to determine the kinetics of the ZnO and SnO2

dissociation reactions by fitting reaction models with experimental data [50] thanks to an inverse
method involving the online diagnosis of outlet gas combined with a reactor model coupling heat
and mass transport phenomena, radiation, and chemical reaction. The activation energy of the oxide
dissociation reaction was determined to be 313 ± 31 kJ/mol for ZnO and 353 ± 18 kJ/mol for SnO2 [50].
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3. Non-Volatile Metal Oxide Cycles

The iron oxide-based (Fe3O4/FeO) two-step cycle is particularly attractive because it features
simple reactants and chemical steps (in comparison with nuclear-based cycles) and available safe
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reactants (resulting in lower irreversibility inducing potentially superior cycle energy efficiency).
Furthermore, it also involves non-corrosive solid materials involved in solid–gas reactions, and it
avoids the drawback of potential reverse recombination reaction with O2 during gas quenching
commonly encountered with volatile metal oxides such as zinc, tin or cadmium oxides [62,88]. A key
benefit relies on the fact that non-volatile iron oxide systems proceed with the continuous release and
removal of the evolved gaseous O2 from the condensed reacting phase during the solar reduction step,
thus promoting high reduction extents. The Fe3O4/FeO redox pair was originally proposed by
Nakamura [87]. This two-step cycle proceeds as follows:

Solar reduction step: Fe3O4(l-s)→ 3FeO(l-s) + 1/2O2 (5)

Hydrolysis step: 3FeO(s) + H2O(g)→ Fe3O4(s) + H2 (6)

The first high-temperature solar step (thermal reduction of Fe3O4) is highly endothermic (∆H◦ =

319.5 kJ/mol), whereas the second low-temperature step (FeO hydrolysis) is slightly exothermic (∆H◦=
−33.6 kJ/mol). The amount of solar energy theoretically needed to produce 1 mol of H2 corresponds to
the summation of the sensible energy required to heat 1 mol of Fe3O4 from 600 ◦C to 2100 ◦C (446.51 kJ),
the endothermic reduction enthalpy (242.84 kJ), and the energy required to heat and vaporize water
from 25◦C to 600 ◦C (64.9 kJ) [126]. On the basis of these temperature levels and the HHV of H2

(286 kJ/mol), the theoretical energy conversion efficiency of Fe3O4/FeO cycle is 37.1%.
The high-temperature solar thermal reduction of magnetite to wüstite theoretically proceeds at

temperatures above 2200 ◦C under 1 bar (according to Gibbs free energy variation) [133]. In addition
to stoichiometric FeO, thermodynamics predicts the formation of non-stoichiometric wüstite phases
(Fe1−yO such as Fe0.947O) (Figure 9). The thermal reduction of magnetite has been experimentally
studied [88–94] and demonstrated by using a 2 kW (thermal power) parabolic solar concentrator.
The reduction of magnetite was only noticeable at temperatures above the Fe3O4 melting point
(1597 ◦C). Tofighi et al. [89,90] showed that a 0.8 g sample reached 80% conversion after 5 min at
2000 ◦C in an Ar atmosphere (the conversion in air only reaches 40%). Because of the high temperature
thermal treatment, the Fe3O4 reduction occurs concomitantly with a slight material vaporization.
Weidenkaff et al. [92] reported that the exothermic hydrolysis reaction of wüstite with steam water is
influenced by the non-stoichiometry, structure and morphology of the parent wüstite phases and by
the reaction temperature. The water-splitting hydrolysis reaction using FeO is favorable only below
800 ◦C (when ∆G◦ < 0) and the theoretical FeO conversion decreases with increasing temperature
according to thermodynamics (Figure 10).
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Figure 10. Thermodynamic equilibrium composition of the Fe-O-H system (3 mol of FeO, 1 mol of
H2O, N2 atmosphere, P = 1 bar).

Besides, the complete thermal reduction of hematite (Fe2O3) into wüstite was achieved in a
high-temperature solar reactor operated at 1600 ◦C and 0.1 bar under inert gas atmosphere [93].
The oxygen-releasing reaction proceeds via the formation of the molten oxide and it requires about
2 min to reach completion, which confirms previously reported results. Further TGA experiments
confirmed that wüstite formation starts near the Fe3O4 melting point (Figure 11). The reduced oxide is
thus recovered as a hardened structure that cannot react with water efficiently and the milling of the
solar-reduced material into a fine powder is then necessary to carry out the subsequent hydrolysis step.
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Figure 11. Thermogravimetric analysis TGA (mass loss signal in mg) and differential thermal analysis
DTA (heat flow signal in microvolt) of Fe2O3 under Ar atmosphere.

A quantitative gas analysis of the amount of H2 evolved was performed in a continuous way
to determine the reaction kinetics and chemical conversion of wüstite hydrolysis. A conversion of
83% was measured regarding the hydrolysis reaction at 575 ◦C of non-stoichiometric solar-produced
wüstite (Fe(1−y)O) milled into a fine powder (particle size of 30–50 µm) [93]. The hydrolysis kinetics is
dependent on the oxide material physical properties, reaction temperature, and particle size (Figure 12).
The reaction rate decreases with time because of the formation of a low permeable oxide layer (Fe3O4)
at the particles surface, which then grows with time and hinders the reaction. The hydrolysis reaction
of particles is governed by two successive controlling phenomena: the fast steam oxidation of the
external surface of particle followed by steam diffusion inside the particle pores. The maximum
initial hydrolysis reaction rates were achieved for solar-produced wüstite, enabling a bulk hydrogen
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production at the beginning of the reaction with steam corresponding to the rapid oxidation of the
surface area. The higher reaction rates obtained with solar FeO-rich powders are due to the formation of
non-stoichiometric wüstite phases (Fe1−δO with δ close to 0.05) during the solar synthesis step. Indeed,
solar thermal processing of materials is commonly characterized by high heating and quenching rates
favoring formation of defects and cation vacancies in the lattice structure, in turn yielding materials
with high contents of non-stoichiometric phases, as validated by thermodynamics predicting the
formation of different non-stoichiometric wüstite phases at high temperature. In summary, wüstite
hydrolysis is hindered by the formation of a Fe3O4 diffusion barrier and the use of fine particles,
obtained for instance from an intermediate mechanical particle grinding step, is needed to improve the
particle conversion extent. In contrast, the two-step iron oxide cycle (Fe3O4/FeO) involves low cost and
abundant chemical compounds and could potentially become an attractive option for large-scale H2

production in future solar processes, thus requiring the design, demonstration and scale-up of efficient
and reliable solar reactor technologies.

ChemEngineering 2019, 3, x FOR PEER REVIEW 14 of 28 

 

of the external surface of particle followed by steam diffusion inside the particle pores. The maximum 
initial hydrolysis reaction rates were achieved for solar-produced wüstite, enabling a bulk hydrogen 
production at the beginning of the reaction with steam corresponding to the rapid oxidation of the 
surface area. The higher reaction rates obtained with solar FeO-rich powders are due to the formation 
of non-stoichiometric wüstite phases (Fe1−O with  close to 0.05) during the solar synthesis step. 
Indeed, solar thermal processing of materials is commonly characterized by high heating and 
quenching rates favoring formation of defects and cation vacancies in the lattice structure, in turn 
yielding materials with high contents of non-stoichiometric phases, as validated by thermodynamics 
predicting the formation of different non-stoichiometric wüstite phases at high temperature. In 
summary, wüstite hydrolysis is hindered by the formation of a Fe3O4 diffusion barrier and the use of 
fine particles, obtained for instance from an intermediate mechanical particle grinding step, is needed 
to improve the particle conversion extent. In contrast, the two-step iron oxide cycle (Fe3O4/FeO) 
involves low cost and abundant chemical compounds and could potentially become an attractive 
option for large-scale H2 production in future solar processes, thus requiring the design, 
demonstration and scale-up of efficient and reliable solar reactor technologies. 

 

 
Figure 12: Evolution of chemical conversion rates during continuous FeO hydrolysis producing H2 as 
a function of the temperature (FeOc: commercial FeO, FeOs: solar-produced FeO) [93] 

Regarding other metal-oxide redox systems, most of them are not feasible practically because 
they require a too much elevated temperature during the solar reduction step (G°<0 for T>2200 °C 
in the case of MoO2/Mo, SnO2/Sn, TiO2/TiO2−x, MgO/Mg, or CaO/Ca redox pairs). In contrast, the non-
volatile systems such as Co3O4/CoO and Mn3O4/MnO redox pairs exhibit a low reduction temperature 
(902 °C and 1537 °C in air, respectively), but the hydrolysis step is not thermodynamically feasible 
(thermodynamic calculations predict H2 yields below 1% for two-step cycles involving these oxides 
[35,133]). 

In order to lower the maximum temperature of the solar reduction step, ferrite cycles were 
alternatively proposed [97,98]. Oxygen deficient with cation excess Ni-Mn spinel ferrites 
(Ni0.5Mn0.5Fe2O4− with  indicating the oxygen deficiency of the spinel) were proven to be capable for 
both water-splitting below 800 °C and regeneration (oxygen release) above 800 °C [98]. However, the 
low water-splitting capability of the (Ni,Mn)-ferrite system was arising from their small content in 
activated oxygen deficiency (oxygen vacancies) reached in the solid [96]. Strategies for improving the 
amount of oxygen vacancies in solid compounds have thus been investigated. 

The partial substitution of iron by nickel [115], manganese [95], cobalt [114], aluminum-copper 
[113] or zinc [103–111] in the Fe3O4 spinel structure forms mixed iron oxides of general formula 
(Fe1−xMx)3O4. This ferrite can be reduced at much lower temperatures than those required for Fe3O4 

Figure 12. Evolution of chemical conversion rates during continuous FeO hydrolysis producing H2 as
a function of the temperature (FeOc: commercial FeO, FeOs: solar-produced FeO) [93].

Regarding other metal-oxide redox systems, most of them are not feasible practically because
they require a too much elevated temperature during the solar reduction step (∆G◦ < 0 for T > 2200 ◦C
in the case of MoO2/Mo, SnO2/Sn, TiO2/TiO2−x, MgO/Mg, or CaO/Ca redox pairs). In contrast,
the non-volatile systems such as Co3O4/CoO and Mn3O4/MnO redox pairs exhibit a low reduction
temperature (902 ◦C and 1537 ◦C in air, respectively), but the hydrolysis step is not thermodynamically
feasible (thermodynamic calculations predict H2 yields below 1% for two-step cycles involving these
oxides [35,133]).

In order to lower the maximum temperature of the solar reduction step, ferrite cycles
were alternatively proposed [97,98]. Oxygen deficient with cation excess Ni-Mn spinel ferrites
(Ni0.5Mn0.5Fe2O4−δ with δ indicating the oxygen deficiency of the spinel) were proven to be capable
for both water-splitting below 800 ◦C and regeneration (oxygen release) above 800 ◦C [98]. However,
the low water-splitting capability of the (Ni,Mn)-ferrite system was arising from their small content in
activated oxygen deficiency (oxygen vacancies) reached in the solid [96]. Strategies for improving the
amount of oxygen vacancies in solid compounds have thus been investigated.

The partial substitution of iron by nickel [115], manganese [95], cobalt [114], aluminum-copper [113]
or zinc [103–111] in the Fe3O4 spinel structure forms mixed iron oxides of general formula (Fe1−xMx)3O4.
This ferrite can be reduced at much lower temperatures than those required for Fe3O4 thermal
reduction (thus avoiding melting), while the reduced phase (Fe1−xMx)1−yO is still capable to perform
water-splitting [95]. Allendorf et al. [127] reported detailed thermodynamic analysis applied to ferrites
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(MFe2O4, with M = Co, Ni, or Zn). Their results point out that the use of ferrites is beneficial because
the thermal reduction step is thermodynamically more favorable in comparison with pure iron oxide
(Fe3O4). Thermodynamics also indicates that Ni-ferrite shows the most favorable combination of both
thermal reduction and hydrolysis reaction.

Among many feasible cycles, the Zn/Fe3O4 system was able to react with H2O to form H2 and
ZnFe2O4 (Zn-ferrite) at 600 ◦C [103,104]. Nevertheless, to form metallic Zn during the O2-releasing
step, either lowering the O2 partial pressure or cooling the gas mixture was necessary to avoid metallic
Zn oxidation, as for the ZnO/Zn cycle [110]. It was further shown that the H2 production reaction can
be carried out by using both ZnO and Fe3O4 to split water, which is thus more attractive since the
O2-releasing step does not require any quenching step and can simply proceed in air at 1500 ◦C [105].

3 ZnO + 2 Fe3O4 + H2O→ 3 ZnFe2O4 + H2 T = 600–8000 ◦C (7)

3 ZnFe2O4→ 3 ZnO + 2 Fe3O4 +
1
2

O2 T = 1500 ◦C (8)

As previously observed for the Fe3O4/FeO system, mixed iron oxides may similarly undergo rapid
deactivation during thermochemical cycling due to coarsening and sintering of the iron oxide particles.
The use of refractory ceramics as stable supports can help to alleviate material sintering, and enhance
H2 productivity without deactivation through cyclic reaction. Hence, the ferrite particles were
supported on monoclinic ZrO2 fine particles (m-ZrO2) that provide a good resistance to agglomeration
(densification) and sintering at the working temperatures of 1000–1400 ◦C, because m-ZrO2 features a
higher melting point than ferrite while being chemically inert to ferrite material at high temperatures.
As a result, repeatable and stable thermochemical performance during two-step water-splitting cycles
was demonstrated by using active ZrO2-supported ferrite particles [114–117].

In addition, partially-stabilized tetragonal zirconia (t-PSZ) and yttria-stabilized cubic zirconia
(c-YSZ) can also be used as an inert support [112,118]. Thermochemical cycling involving Fe-YSZ
particles is suitable to alleviate the iron oxides sintering or melting at high temperatures thanks to the
incorporation of active Fe ions into the YSZ crystal lattice, thus resulting in enhanced and reproducible
thermochemical performance of the cyclic reaction. The suggested mechanism was based on the fact
that the YSZ support can react with particles of ferrite at temperatures above 1400 ◦C in an inert
atmosphere, in turn forming a solid solution. For Fe3O4/c-YSZ (ZrO2 doped with over 8 mol% of
Y2O3), the following mechanism was proposed [118]:

(1) Formation of Fe2+-YSZ at 1400 ◦C (under N2):

x/3Fe3O4 + YyZr1−yO2−y/2→ Fe2+
xYyZr1−yO2−y/2+x + x/6O2 (9)

(2) Water-splitting at 1000 ◦C (60 min.) and thermal reduction at 1400 ◦C (30 min.):

Fe2+
xYyZr1−yO2−y/2+x + x/2H2O→ Fe3+

xYyZr1−yO2−y/2+3x/2 + x/2H2 (10)

Fe3+
xYyZr1−yO2−y/2+3x/2→ Fe2+

xYyZr1−yO2−y/2+x + x/4O2 (11)

In parallel to the fundamental research on the abovementioned redox working materials,
a number of solar chemical reactor concepts have been designed and developed. These include
reactors incorporating multi-channel honeycomb structures [122–124] and ceramic foams coated with
ferrite [117,118], rotary-type reactors [120,126], and fluidized beds [119].

Further advances on ferrite-based systems have been proposed in the collaborative EU-project
HYDROSOL (coordinated by APTL/CERTH from Greece) aiming to operate the complete redox cycle
in a single solar receiver/reactor [124]. This reactor features multi-channeled ceramic (siliconized
and recrystallized SiC) honeycomb structures coated with active redox materials (iron oxide-based)
capable for both water-splitting at 800 ◦C and regeneration at 1300 ◦C (temperature-swing cycle).
This operational technique using a fixed reactant integrated inside the reactor avoids the need of
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continuous particle feeding and collection at the process outlet (no solid flow). The monolithic
ceramic structure acts as an efficient volumetric solar absorber. The whole cycling process can be
achieved in a single solar energy receiver/converter and it approaches a configuration similar to that
encountered in automobile exhaust catalytic converters. The water steam flowing inside the ceramic
structure oxidizes the reduced activated material producing pure hydrogen. Then, the material must
be reduced during the regeneration step by increasing the solar receiver temperature, allowing a
cyclical operation in a single reactor. Various compositions of M-Zn-doped iron oxides (M=Mn or
Ni) with a spinel or wüstite phase structure were synthesized via aerosol spray pyrolysis (ASP) and
combustion self-propagating high-temperature synthesis (SHS) [124,125], and then used as coatings on
the monolith [122]. A pilot-scale (100 kW) solar reactor equipped with two parallel ceramic monolithic
supports operating in opposite modes was then developed for quasi-continuous H2 production [123].
The favored redox systems are zinc- and nickel/zinc-based ferrites. The reaction scheme in the case of
zinc can be written as follows:

ZnFe2+
yFe3+

2−yO4−y/2 + xH2O→ ZnFe2+
y−x/2Fe3+

2−y+x/2O4−y/2+x + xH2 (12)

ZnFe2+
y−x/2Fe3+

2−y+x/2O4−y/2+x→ ZnFe2+
yFe3+

2−yO4−y/2 + x/2O2 (13)

Gokon et al. [117,118] proposed and tested ceramic foam materials made of MgO-partially
stabilized Zirconia (MPSZ). The porous foam was coated with both c-YSZ and Fe3O4 particles
(Fe3O4/YSZ/MPSZ foam device) and it effectively absorbs solar radiation due to the large specific
surface area. The H2 generation from Fe3O4/YSZ/MPSZ foam devices is associated with the redox
transition of Fe2+-Fe3+ ions in the YSZ lattice. The deactivation of Fe3O4 due to high-temperature
sintering can be alleviated because the active Fe2+ ions remain in the YSZ lattice. The same ceramic
foams were used with coatings made of NiFe2O4/m-ZrO2 powders that exhibit the highest reactivity
among the ferrite/zirconia systems.

Diver et al. [126] developed a concept of counter-rotating ring receiver/reactor/recuperator (CR5)
enabling efficient sensible heat recovery during cyclic reactions to reach acceptable thermal efficiencies.
The solar-driven heat engine is composed of a stack of counter-rotating rings to which are attached fins
made of an active metal oxide ceramic. While the rings rotate, the metal oxide material moves alternately
through a high temperature solar reduction zone and a lower temperature water-splitting zone. Since
the fins counter-rotate, sensible heat can be internally recovered, thus reducing the overall energy
input requirements for the aim of improving efficiencies.

Kaneko et al. [120] also developed a similar concept of rotary-type solar reactor integrating Ni-Mn
ferrite loaded on a YSZ support.

Gokon et al. [119] proposed and tested a solar reactor for two-step water-splitting using m-ZrO2

supported NiFe2O4 particles processed in an internally circulating fluidized bed. The ferrite particle
conversion of approximately 45% was reached upon 1 kW of input simulated power supplied by
Xe-beam irradiation. The proposed solar reactor concept was considered to be suited for being
associated with beam-down optics [134].

Finally, the two-step cycle based on cerium oxides (CeO2/Ce2O3) was first demonstrated in
2006 by Abanades and Flamant [84], consisting of two chemical steps: (1) solar reduction, 2CeO2→

Ce2O3 + 1/2O2; (2) hydrolysis, Ce2O3 + H2O → 2CeO2 + H2. CeO2 was first reduced into Ce2O3

during material melting over 2000 ◦C under inert atmosphere at reduced pressure (10–20 kPa),
which induced also a partial sublimation of CeO2. The reduced material was pounded into powder
(50–150 µm) for the hydrolysis tests. Then, an efficient reaction of Ce2O3 with water producing H2 was
observed with a rapid and complete oxidation of Ce(III) oxide below 500 ◦C. The high reactivity of
Ce2O3 with steam (3 mmolH2/gCe2O3) was shown to be the main interest of the CeO2/Ce2O3 cycle.
This observation opened the door to a new research area related to the mixed oxide cycles containing
cerium oxides [135,136]. Similar to ferrite cycles, the targeted result is the significant decrease of the
reduction temperature of Ce(IV) into Ce(III) species, while taking advantage of the high reactivity
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of Ce(III) species with water (and/or CO2). Early studies on ceria-based materials synthesis and
physicochemical characterization at CNRS-PROMES laboratory (France) showed that binary systems
such as CeO2-ZrO2 solid solutions can be promising candidates for two-step water-splitting.

The thermodynamic and kinetic properties of ceria can be altered by doping its fluorite structure
with transition metals and rare earth metal oxides [135–154]. Indeed, ceria is an active compound used
in many catalytic systems, and it is attractive due to its thermal stability (good resistance to sintering)
and ability to exchange oxygen via storing and releasing oxygen reversibly. This oxygen mobility is
mainly restricted to the material surface unless the ceria is modified by adding another oxide, such as
typically zirconia, which favors the material bulk reduction thanks to enhanced oxygen diffusion rates.
However, oxidation thermodynamics of Zr-substituted systems are not as favorable as for pure ceria.
The addition of dopants in ceria fluorite structure (MxCe1−xO2, where the added metal M is commonly
a trivalent cation like Y3+, La3+, Gd3+, Sm3+, Pr3+, Sc3+ or tetravalent cation like Zr4+ or Hf4+) shows a
favorable impact on the thermodynamics of ceria reduction, and this approach has been extensively
investigated for improving the ionic conductivity of solid oxide fuel cells, which is directly linked to the
extent of oxygen vacancies. The addition of dopants has been shown to enhance the reduction extent
at low oxygen partial pressure when compared with un-doped ceria (at the expense however of lower
oxidation capability with water). Hence, the introduction of dopants such as Zr [145–154], Sm [139] and
transition metals oxides (MOx with M = Mn, Ni, Fe, Cu) [135,140,141] has been extensively explored
for applications in solar-driven thermochemical redox cycles, as an efficient means to enhance the
thermodynamic driving force of the O2-releasing reduction reaction at lower temperatures. However,
it should be noted that trivalent dopants do not improve significantly the thermochemical performance
of ceria because they do not present any meaningful increase of the fuel production or improvement of
the thermal stability.

The deviation from oxygen stoichiometry (δ in CeO2−δ), otherwise known as the oxygen storage
capacity, is directly related to the maximum amount of H2 capable of being generated during oxidation.
While the oxygen exchange capability of ceria is lower compared to iron oxide-based cycles, sintering
is less problematic because the melting point is considerably higher. Different research works have
evidenced the high promise of ceria for application to solar fuel production according to the redox cycle
represented in Figure 13, using various ceria microstructures and morphologies including dispersed
powders [140–149], three-dimensionally ordered macroporous (3DOM) powders featuring templated
macro-scale porosity [154,155], porous structured monoliths [137–139], porous felts or fibers [156,157],
or reticulated porous foams [158–160]. The morphologies enabling both enhanced available geometric
surface area and bulk interconnected pore system that facilitate the mass transport of reacting species
to and from the oxidation sites, are the most suitable for rapid fuel production. Optimized materials
shaping is thus required to provide a good solar absorptivity favoring homogeneous heating, along
with a high specific surface area favoring solid–gas reactions. A long-term thermal stability is also
required for the considered ceria structures regardless of the involved shaping method. However,
the material shaping process represents an additional step required for the preparation of tailored
materials and for their incorporation in suitable solar reactors, which could have an impact on the
process economics.
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Figure 13. Cycles based on nonstoichiometric oxides (substituted ceria) for syngas production.

The amount of O2 released during the reduction step (oxygen non-stoichiometry, δ) at 1400 ◦C
and the associated reduction yield depend significantly on the presence and amount of Zr introduced
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in the materials [149]. The reduction yields of the materials (Ce3+/Cetotal) range from 6% for pure
un-doped ceria to 28% for 50%-Zr in Zr-substituted ceria during the first cycle. By increasing the Zr
amount in ceria, the reduction yield increases linearly. This result points out the beneficial effect of Zr
addition in promoting Ce4+ reduction (Figure 14). In contrast, the presence of trivalent dopants has no
noticeable effect on the material reducibility and hydrogen production yield.
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function of the Zr content [149].

Given that Zr4+ cation is not reducible, the gravimetric amount of O2 released per unit mass of
material (thus the potential H2 production) evolves differently compared to the ceria reduction yield.
The materials with Zr content over 25% are the most suitable compounds in term of oxygen availability
and mobility. The Figure 15 represents the evolution of the O2 amount released from the ceria materials
during the reduction step as a function of the Zr content. In contrast to the evolution of the reduction
yield (Figure 14), the gravimetric amount of O2 released tends to reach a plateau above roughly 25% of
Zr content. The quantity of oxygen released reaches a threshold because a balance settles: the reduction
yield is indeed increased whereas the number of reducible cation (Ce4+) in ceria/zirconia solid solution
is concomitantly decreased when increasing the Zr content.
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The steam hydrolysis of the Zr-substituted ceria powders was also studied as a function of the
reaction temperature (850 ◦C, 950 ◦C, and 1050 ◦C) for 25%-Zr content and a reduction temperature in
the previous step of 1400 ◦C. The H2/O2 ratio increases with temperature and equals two at 1050 ◦C
with a final amount of H2 produced of 240 µmol/g (Figure 16). The kinetic parameters based on
Arrhenius law have been identified from these isothermal experiments and the obtained activation
energy was found to be 51 kJ/mol for the hydrolysis reaction [145].
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More recently, perovskites of the form ABO3−δ have emerged as a new attractive class of
nonstoichiometric oxides that are widely unexplored for thermochemical cycles [161–173]. These
oxygen-deficient materials exhibit interesting characteristics concerning oxygen storage capacities and
transport properties through oxygen vacancies formation. Dopants can be substituted on both A and
B cation sites, and thus the number of potential material configurations is substantially greater than
for ceria-based systems. Elevated water-splitting activity has been demonstrated in La1−xSrxMnO3−δ

materials, so-called LSM (lanthanum strontium manganite) perovskites (Figure 17) [166], and
H2 fuel production performance comparing favorably to that of CeO2 has been evidenced in
Sr- and Mn-substituted LaAlO3 [173], with H2 productions (up to around 300 µmol/g with
SrxLa1−xMnyAl1−yO3−δ for one cycle with thermal reduction at 1350 ◦C and oxidation at 1000 ◦C) that
are only slightly lower than those measured for Zr-substituted ceria. The controlled introduction of Sr
into LaMnO3 allows for tuning the redox thermodynamics in the La1−xSrxMnO3 compositional series.
Decreasing the amount of substituted Sr in LSM enhanced the re-oxidation yield at the expense of a
lowered final reduction extent (lower δ), thus decreasing the global amount of generated H2. The rate of
hydrogen production decreased when increasing Sr content, confirming that the intermediate materials
formulations offer the most favorable combination of redox properties with trade-off between reduction
and oxidation thermodynamics. The observed evolution of the Mn oxidation state during cycles in
manganite perovskites implied that partial re-oxidation of Mn3+ into Mn4+ occurred, thus highlighting
the activation of Mn4+/Mn3+ redox pair in the perovskites (whereas it is not active in Mn2O3/Mn3O4).
Based on the possible number of doping schemes, series of even more attractive materials certainly
remain to be discovered.
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4. Conclusions

The hydrogen production from water-splitting using solar-driven thermochemical redox cycles
based on metal oxide reactions is an attractive route for sustainable and carbon-neutral solar fuel
generation. Such cycles involve endothermic reactions that make use of concentrated solar radiation as
external heat source for supplying high-temperature process energy. Thermochemical water-splitting
processes efficiently convert concentrated solar energy into storable and transportable clean fuels.
Concentrating high-flux solar technologies including solar towers and parabolic dishes are already
applied at large-scale for commercial electricity and power generation. They may be further coupled
to chemical reactors for solar fuel production with potential solar-to-fuel energy conversion efficiencies
exceeding 20–25%. Therefore, thermochemical redox cycles should represent an attractive pathway for
solar fuels production at competitive costs while further outperforming benchmark water electrolysis
process using solar electricity generated by photovoltaics (PV) or concentrating solar power (CSP).

In contrast to the direct thermolysis of H2O above 2500 ◦C, thermochemical water-splitting
cycles proceed at lower maximum operating temperatures and produce both H2 and O2 in separate
steps, thereby avoiding their recombination and bypassing the need for high-temperature and
costly downstream gas separation. Promising systems under investigation include two-step cycles
based on metal oxide redox pairs. The feasibility of solar chemical reactor technologies for the
thermal dissociation of volatile oxides (ZnO, SnO2) was demonstrated and the necessity to operate at
reduced pressure under low oxygen partial pressure or to implement gas quenching was especially
highlighted to avoid recombination between reduced species and oxygen, and to reach significant
oxide conversions. Non-volatile metal oxides cycles (Fe3O4/FeO, CeO2/Ce2O3, Ce- and Fe-based mixed
oxides, and perovskites) can be operated with continuous removal/separation of the evolved O2 from
the condensed reduced phase during the solar reduction step, so that high reduction extents/rates
may be expected without requiring any quenching step. The reduction step proceeds with the
material remaining in the condensed state and the evolved O2 can be released and swept by a flow
of inert gas, thus avoiding recombination issues. Non-stoichiometric oxides (CeO2−δ, ABO3−δ) have
been considered for decreasing the temperature of the reduction step below 1400 ◦C, in turn alleviating
material sintering and implying enhanced performance stability and cyclability. In contrast to the zinc
and tin-based systems, ceria and perovskites remain in the solid state with their crystalline structure
maintained stable throughout. Identification of materials formulations with improved redox activity,
high oxygen transport and exchange properties, and long-term stability over extended cyclic operation
under concentrated solar irradiation is required, as well as their relevant shaping as 3D porous
structures capable to absorb concentrated solar radiation while offering large available geometrical
surface area for the solid/gas reactions. Such materials can be integrated in monolithic solar reactors
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with enhanced efficiency and scalability for future application, in which O2 and H2 are produced by
temperature-swing cyclic operation through sequential reduction and oxidation steps. Development
of solar reactors incorporating heat recuperation between the reduction and oxidation steps is also
challenging to help improving the overall energy conversion efficiency. The current scientific and
technical challenges for developing clean and efficient H2 production processes based on innovative
two-step cycles are thus related to various research areas involving materials science and chemistry,
solar reactors and process engineering.
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