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Abstract: Layered double hydroxides (LDHs) are a class of materials with useful properties associated
with their anion exchange abilities for a wide range of materials’ applications including adsorbent,
catalyst and its support, ceramic precursor, and drug carrier. In order to satisfy the requirements
for the detailed characterization and the practical application, the preparation of LDHs with varied
composition and particle morphology has been examined extensively. The versatility of the preparation
methods led LDHs with varied composition and micro/macroscopic morphology, which makes the
application of LDHs more realistic. In the present review article, synthetic methods of LDHs are
overviewed in order to highlight the present status of the LDHs for practical application.

Keywords: layered double hydroxide; co-precipitation; homogeneous precipitation; morphosynthesis;
hydrothermal reaction; nanoparticles; mechanochemistry

1. Introduction

Layered double hydroxides (LDHs) are one of layered materials whose structure is composed
of brucite (Mg(OH2)) like layers stacked with interlayer anion. A part of the divalent cations in the
brucite like sheet are replaced by trivalent ions, giving positively charged sheets, and to compensate
the positive charge, anions occupy the interlayer space as shown in Figure 1. The chemical formula
of LDH is expressed as [M2+

1−xM3+
x(OH)2]x+(An−)x/n·yH2O, where M2+ and M3+ are divalent and

trivalent metal cations in the sheet, respectively, x is the ratio of M3+: (M2+ + M3+), and An− is the
interlayer anion. The flexibilities of the chemical composition (combination of various M2+ and M3+)
make LDHs useful for versatile applications. Accordingly, the preparation, characterization, and
application of LDHs have been reported [1–9]. Application of LDHs in such areas as catalysts [10–15],
catalyst’ supports [16], electrode [17–20], ion exchanger/adsorbents [21], pharmaceutics [22–25], drug
carriers [15,26–30], and so on has been proposed so far. In order to optimize materials’ performances,
efforts have been made to vary the composition as well as the particle morphology of the LDHs and
their intercalates.

The particle size and size distribution are important parameters to affect materials’ performances.
For example, nanometer sized particles are useful for bio-related applications such as drug carrier [31–37].
Rheology of LDH suspension, which has been studied for the application as paints and for the
preparation of polymer nanocomposites, is affected by the particle size [38–40]. Fabrication of LDH films
has been investigated for electrochemical and photochemical applications [41–46]. These nanoscopic
particle morphologies and micro/meso/macroscopic hierarchical architectures have been designed
based on the sophisticated synthetic strategy and careful optimization of the reaction conditions. In the
present review article, attention will be focused on the synthetic methods and their correlation with
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aqueous solution (normally acidic) containing M2+ and M3+ ions until pH of a mixture reached to 
suitable value for the target LDHs, was commonly used [33,50–59]. Co-precipitation at low 
supersaturation with constant pH was done, where aqueous solution of metal salts and a basic 
solution were simultaneously added to a container containing deionized water to maintain the 
suitable pH for the precipitation of the target LDHs [60–66]. Precipitation at high supersaturation is 
also possible, where an aqueous solution containing M2+ and M3+ ions was directly added to the 
solution of NaOH [67–77]. LDHs thus formed were obtained as aggregates of nanometer size 
particles with hexagonal platy shape. 

Since the change in pH is a dominant step for the LDH precipitation, the method of pH control 
has been examined. We have reported a way to raise pH of the starting solution of metal salts by 
using OH− form of anion exchange resin as the base supply to prepare well-defined particles of 
LDHs successfully [78,79]. The synthetic procedures are as follows; aqueous stock solution of 
MgCl2∙6H2O and aqueous solution of AlCl3∙6H2O were mixed (Mg:Al ratio = 3:1). To this solution 
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the original Cl− form of ion exchange resin with NaOH solution. The mixture was continuously 
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2. Co-Precipitation from Homogeneous Solution

2.1. Co-Precipitation by the Addition of Base

Co-precipitation of LDHs from aqueous solutions containing divalent and trivalent metal cations
by the addition of such bases as aqueous NaOH is a fundamental and the most common method
for the synthesis of LDHs with various composition [47–49]. Co-precipitation has been used for the
preparation of various type LDHs and their intercalation compounds. The obtained products were
generally finite crystallites (nanometer scale) with broad particle size distribution, and aggregation of
the particles were seen.

The precipitation has been done in several different sequences of mixing. Conventional titration,
which a basic aqueous solution (NaOH, KOH, or NH4OH) was slowly added to an aqueous solution
(normally acidic) containing M2+ and M3+ ions until pH of a mixture reached to suitable value for the
target LDHs, was commonly used [33,50–59]. Co-precipitation at low supersaturation with constant
pH was done, where aqueous solution of metal salts and a basic solution were simultaneously added
to a container containing deionized water to maintain the suitable pH for the precipitation of the
target LDHs [60–66]. Precipitation at high supersaturation is also possible, where an aqueous solution
containing M2+ and M3+ ions was directly added to the solution of NaOH [67–77]. LDHs thus formed
were obtained as aggregates of nanometer size particles with hexagonal platy shape.

Since the change in pH is a dominant step for the LDH precipitation, the method of pH control
has been examined. We have reported a way to raise pH of the starting solution of metal salts by
using OH− form of anion exchange resin as the base supply to prepare well-defined particles of LDHs
successfully [78,79]. The synthetic procedures are as follows; aqueous stock solution of MgCl2·6H2O
and aqueous solution of AlCl3·6H2O were mixed (Mg:Al ratio = 3:1). To this solution was added
OH−, which release from ion exchange resin. The OH− was prepared by the titration of the original
Cl− form of ion exchange resin with NaOH solution. The mixture was continuously shaken at room
temperature. During the reaction, pH increased as a result of the anion exchange of the resin between
Cl− and OH−. After the reaction, the removal of ion exchange resin from suspension of product was
easily by filtration. The TEM images (Figure 2) showed the finite size of the MgAl-LDH prepared
using ion exchange resin as an alkaline source. Hexagonal platy particle with the lateral size of ca. 50
nm and narrow particle size distribution were observed. The suspension of the product was stable
for several days due to the small particle size. The anion exchange resin has been used as an alkaline
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source for the preparation of ZnAl-, NiAl-, CuAl-, and CoAl-LDHs. The obtained products were platy
particles with the lateral size less than 100 nm.

Li and his co-workers revealed that the effect of pH on the formation of the nitrate type NiAl-LDH
using co-precipitation at constant pH method [80]. The results obviously showed that NiAl-LDH
formed at pH 4 to 13 and larger amount of nitrate anions were found in LDH at lower pH value (pH
= 4). Carbonate anions started to be incorporated into LDH at pH higher than 4 due to the higher
solubility of CO3

2− at relatively higher pH, indicating the effect of pH on the incorporation of anions
in LDH.
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Figure 2. TEM image of nanometer size hydrotalcite prepared using ion exchange resin. Reproduced
with permission from reference [81].

Recently, we have reported the syntheses of LDHs from concentrated solutions of the starting
materials as an important option of bulk syntheses for the practical application [49]. The characteristics
of the LDHs obtained and their synthetic conditions were summarized in Table 1. Briefly, the aqueous
solution of mixed MgCl2·6H2O and AlCl3·6H2O with the total metal concentration of 1.0 M (Mg:Al ratio
= 3) (one of the highest concentration so far) was added by the 6.4 M NH4OH solution to precipitate
MgAl-LDH under atmospheric pressure and room temperature followed by aging. As a result of
high concentration of starting metal solution use, large productivity of single phase chloride type
MgAl-LDH (approximately 10 g from 160 mL solution) with the well-defined platy particles of ca. 50
nm were obtained without the need of inert atmosphere to suppress the formation of CO3

2− type LDHs.



ChemEngineering 2019, 3, 68 4 of 22

Table 1. Characteristics of the MgAl-LDHs obtained from concentrated solution of metal salts and the synthetic conditions.

Synthetic Condition LDH Characteristic
Ref

[Mg2+ +
Al3+] (M)

M2+/M3+

Ratio
Base [Base]

(M)
Mixing Condition Aging Condition Product Amount

(g from 100 mL)
Interlayer

Anion
Particle Morphology

T (◦C) Atmosphere T (◦C) Time (h) Atmosphere Shape Size

0.9

2

NaOH and
Na2CO3

2.0

<35

Air

65

18

Air 5.9–7.1

CO3
2−

Poorly dispersed unshaped
aggregates 0.5 µm [82]

3 25
200 Air (closed

container)
5.9 Poorly dispersed well-defined

hexagonal plate 1 µm [48]

300 5.9 Well-defined hexagonal plate 15 µm

1.0

3 NaOH

2.0 25 N2 without aging Not given
NO3

−

Poorly dispersed spherical
aggregates

Aggregates
size 10–50 µm

[83]Cl−

ClO3
−

3.5
30 Air without aging Not given SO4

2−
Aggregates >10 µm [84]

2.0 Cr2O4
2−

2 NaOH and
Na2CO3

2.0 40 Air 150 24
Air (closed
container)

Not given CO3
2− Hexagonal aggregates Not given [85]

3 Spherical aggregates Not given

3 NH3 gas Not
given 25 N2 without aging Not given Cl− Poorly dispersed spherical

aggregates
Aggregates

size 10–50 µm [83]

3 NH4OH 6.4 25 Air
without aging 9.7

Cl− Uniform platy particle 50 nm [49]25 24 Air 10.6

80 24 Air 10.0
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The LDHs from co-precipitation were generally finite particles with broad particle size distribution,
and aggregation of the particles was observed. Hence, various types of mixing conditions and post
synthetic aging have been employed to increase the homogeneity of the product, to reduce the particle
aggregation, and to increase the crystallinity.

Ultrasonication has been applied for the synthesis of LDHs. Zhao and his co-workers (2016) studied
the effect of ultrasonication on the crystallite size and the aggregation of the particles by comparing
with the LDHs prepared without sonication [86]. NiAl-LDH at the Ni:Al ratio of 3 was synthesized by
the co-precipitation from aqueous solutions of Ni(NO3)2·6H2O and Al(NO3)3·9H2O, and NaOH and
Na2CO3, which was done in the ultrasonication bath. The mixing was done under ultrasonication
and mechanical stirring for 30 min, keeping the temperature at 50 ◦C. The precipitate was then aged
at 50 ◦C for 10 h. As a comparison, a NiAl-LDH was synthesized by the co-precipitation without
ultrasonication. The NiAl-LDH prepared under ultrasonication was an isolated disk-shaped particle.
In contrast, the NiAl-LDH prepared without sonication was aggregates of thin plate with the lateral
size of 50 nm as shown by the SEM images (Figure 3b,c) [86]. The effects of the reaction temperature
on the crystallinity and crystallite size of the LDHs were examined. Climent and co-workers (2004)
reported the preparation of MgAl-LDHs at the Mg:Al ratio of 3 by applying ultrasonication at different
temperatures (0, 10, 25, and 50 ◦C). The increasing of the reflection intensity and the sharpness of
diffraction lines were seen when increasing the reaction temperature as shown by XRD patterns
(Figure 3a) [87].
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Figure 3. The variation of the XRD patterns (a) and the morphology (b,c) of NiAl-LDH prepared
by coprecipitation with (b) and without (c) the ultrasonication. Reproduced with permission from
reference [86,87].

The formation of nuclei and the crystal growth take place simultaneously leading to the wide size
distribution. Zhao and his co-worker (2002) reported a method for the preparation of LDHs to obtain
narrower particle size distribution by separating nucleation and aging steps using a colloid mill [88].
The synthetic procedures were as follows; an aqueous solution of Mg(NO3)2·6H2O and Al(NO3)3·9H2O
at the Mg:Al ratio of 2, 3, and 4 and a basic solution of NaOH and Na2CO3 were simultaneously added
to a colloid mill rotating at 3000 rpm and mixed for 2 min for nucleation. The resulting slurry was aged
outside the colloid mill at 100 ◦C for 13 h. The precipitate was filtered, washed with deionize water,
and dried at 100 ◦C for 24 h. The LDHs thus prepared were obtained as platy particles with the size
in the range of ca. 60–80 nm. The particle size and shape of LDHs prepared using colloid mill were
smaller and more uniform than the LDHs obtained without colloid mill as shown by the TEM images
(Figure 4) [88]. The MgAl-, CuNiAl-, and CuNiMgAl-LDHs were also prepared and their particle size
distribution was determined by laser light scattering to confirm the particle size distributions were
narrower when colloid mill was used [88,89].
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Figure 4. TEM images of MgAl-LDHs prepared by co-precipitation using colloid mill (a–c) and by
conventional co-precipitation without colloid mill (d–f) (at the molar Mg:Al ratio of 2 (a,d), 3 (b,e), and
4 (c,f). Reproduced with permission from reference [88].

For the preparation of LDHs via co-precipitation in a batch, the mixing may not be homogeneous,
which is a drawback to reproduce the products quality [90,91]. In order to overcome this drawback,
flow reactor was used for the preparation of LDHs. Since the cross-section area of microreactor at the
mixing point is in micrometer scale, rapid mixing was achieved by self-diffusion. The LDHs were
prepared involving separate nucleation and aging under continuous process. Using a microreactor,
MgAl-LDH (at the Mg:Al ratio of 2) was synthesized by simultaneous pumping an aqueous solution
of metal salts and a basic solution at the flow rate of 20 mL/min through two inlets. The solid was
separated, washed, and dried at 60 ◦C for 24 h. The MgAl-LDH thus formed were well-dispersed
LDH, hexagonal platy particles with the lateral size of ca. 60–120 nm, as shown by the TEM image
(Figure 5) [92].
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Post synthetic hydrothermal treatment was done to increase the particle size and crystallinity of the
LDH. It has been reported that aging the LDH precipitates after co-precipitation under hydrothermal
condition led LDHs with larger particle size than the one aged at room temperature [93]. The effects of
the temperature and period of aging under the hydrothermal condition on the particle size and size
distribution were studied [61]. MgAl-LDHs with the Mg:Al ratio of 2 was prepared by titration of
aqueous metal salts solution with basic solution until the pH of mixture reached to 11. The resulting
slurry was aged under hydrothermal conditions at 100 ◦C for 12–72 h and at 100–180 ◦C for 18 h to
examine the effects of aging temperature and periods on the morphology of LDHs. As shown by the
SEM images (Figure 6a,b), higher temperature and longer periods led the products with well-defined
particle; the particle size was controlled in the range of ca. 115–340 nm by the reaction temperature
and in the range of ca. 85–120 nm by the reaction periods [61].
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Figure 6. SEM images of LDHs prepared by coprecipitation under hydrothermal condition; aging
at 100 ◦C (a) and 150 ◦C (b) for 48 h; and under microwave irradiation; aging at 100 ◦C (c) for 5 h.
Reproduced with permission from reference [61,94].

Microwave heating has been applied to synthesize LDHs [94,95]. Benito and co-workers (2007)
reported that the shape and average sizes of the LDHs, which were aged under hydrothermal condition
at 100 ◦C for 24 h, were similar to the LDHs aged under microwave irradiation at 100 ◦C for 3–5 h as
shown by the TEM image (Figure 6c), showing rapid heating by the microwave irradiation [94].

2.2. Homogeneous Precipitation

Homogeneous precipitation using the decomposition of urea at elevated temperature is a
well-known method to obtain well-defined inorganic particles [96]. During the heating, urea hydrolyzes
to give carbonate and ammonium ions, resulting in the homogeneous pH raised, which often results
in the monodispersed particles of hydroxides and carbonates. The urea approach has been used to
prepare LDHs with narrower particle size distribution compared to those of the LDHs prepared by
titration [4,97–103]. The LDH prepared using urea method has been used as the host material for the
organic anions’ incorporation through ion exchange reaction [104]. Hexamethylenetetramine has also
been used to make solution basic for LDH precipitation [105].

We have reported the preparation of large platy particles of LDH with the size of 40 µm by
applying urea method under hydrothermal conditions [106,107]. As an example, the XRD pattern and
the SEM image of hydrotalcite prepared by the hydrothermal reaction using urea are shown in Figure 7.
We have also revealed the successful control of the particle size distribution using the hydrothermal
reaction in aqueous alcohol [108,109].
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Figure 7. XRD pattern and SEM image of MgAl-LDH prepared by the homogeneous precipitation
method using urea. Reproduced with permission from reference [81].

As an example, synthetic procedure of CoAl-LDHs is described here. Aqueous stock solutions of
CoCl2·6H2O, AlCl3·6H2O, and urea ((NH2)2CO) were mixed at a molar Co:Al:(NH2)2CO ratio of 2:1:10.
The aqueous mixture (homogeneous solution) was allowed to react under a hydrothermal condition.
The precipitates obtained showed obvious pink colored and the main product was CoAl-LDH as
determined by XRD, TG-DTA, and IR results [110,111]. The particle size was successfully controlled by
the reaction temperature and period. It was found that larger particles formed by the reactions at lower
temperature and longer reaction period owing to the slow urea hydrolysis at lower temperature, which
was expected to suppress the formation of nuclei in the solution. When the reaction was conducted at
60 ◦C for 100 days, particles with a lateral size larger than 40 µm were successfully obtained, as shown
in the SEM image (Figure 8).
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Figure 8. SEM image of a large platy particle of CoAl-LDH. Reproduced with permission from
reference [81].

The particle size and size distribution of CoAl-LDHs were controlled by adding alcohols (ethylene
glycol and glycerol) to the starting solution mentioned above [108]. The LDHs prepared by adding
glycerol gave the narrower particle size distribution [108], so that the effects of the synthetic conditions
on the particle morphology were also examined for the preparation of LDH from aqueous glycerol
solution. Hexagonal platy particles of CoAl-LDH were obtained when glycerol/water ratio was 1
g/40 mL, and the reaction temperature was controlled at 80 ◦C. Average particle diameters were 3.8,
9.3, and 10.1 µm with the coefficient of variation (CV) values of 22.5%, 23.3%, and 24.7% when the
heating time was 1, 2, and 7 days, respectively. It was shown that pH after the reaction increased
with prolonged periods (pH = 6.09, 6.27, and 8.50, for the reactions for 1, 2, and 7 days, respectively),
resulting in higher product yields. The product yield and the particle size suggested the particle
growth was completed within a few days by the reaction at 80 ◦C.
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It has been reported that urea hydrolysis rate depends on the reaction temperature. Therefore, the
temperature is one of the crucial parameters to determine the particle size. It is known that the urea
decomposition rate increased by ca. 200 times when increasing the temperature from 60 to 100 ◦C [112].
Larger particle size of LDHs could be obtained from slow urea hydrolysis rate, where the limited
number of nuclei formed and grew. The particle prepared at 80 ◦C for 1 day (pH = 6.09 after the
reaction) was larger than that prepared at 100 ◦C for 1 day (pH = 8.50 after the reaction).

The effect of glycerol amount added into the metal precursor solution on the particle morphology
was investigated for the synthesis at 100 ◦C for 1 day. When the glycerol/water ratio was 0 and
1 g/40 mL, the products were hexagonal platy morphology. When the glycerol/water ratio was 10
g/40 mL, the products were circular plate. Shapeless and stick-like particles of approximately 1 µm
length were obtained besides the circular plate, which is the main product, when the glycerol/water
ratio of 15 or 20 g/40 mL were used. The difference between hexagonal plate and circular plate is
worth discussing from the viewpoints of crystal growth mechanisms and the properties. The average
particle size of the products decreased with increasing the glycerol/water ratio, while the particle size
distribution of the products did not change.

After the reaction at 50 ◦C for 150 days, circular platy particle of CoAl-LDH with the average
diameter ca. 1 µm, which was smaller than that (38 µm) of the product prepared without glycerol
in the starting solution [107], was obtained [109]. A SEM image is shown in Figure 9. Very narrow
particle size distribution (ca. 13% coefficient of variation) was achieved for the product prepared with
glycerol heating at 50 ◦C for 150 days.ChemEngineering 2018, 2, x FOR PEER REVIEW  11 of 23 
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2.3. LDH Precipitation from the Solution Containing Additives

The synthesis of LDH in surfactant solution and emulsion has been conducted [113–117].
A surfactant was dissolved in water-oil (organic solvents-water) and form reverse micelles, where the
hydrophobic chains pointing out into the oil phase and water droplets were entrapped in the reverse
micelles. Chemical reactions were allowed to occur within the reverse micelles (water droplets) due
to the higher solubility of starting materials in water, so that the reverse micelles act as microreactor.
The effects of water content on the morphology of MgAl-LDHs were examined by Hu and co-workers
(2007). The synthetic procedures were as follow; a basic solution was added dropwise in emulsion with
different water/surfactant fractions (12, 24, 36, and 48), containing Mg(NO3)2·6H2O, Al(NO3)3·6H2O,
sodium dodecyl sulfate, 1-butanol and isooctane. After mixing and aging, the precipitate was refluxed
in an ethanol/water mixture, and then, washed with acetone in order to remove the surfactant. The
multilayer structures in the products were observed at the water/surfactant fraction of 36 and 48,
because the micelles size increased when increasing the water/surfactant fraction. In contrast, the
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particles prepared at the lower water/surfactant fraction were round platy-shaped with the particle
size in the range of 40–80 nm as shown in Figure 10 [115].
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Figure 10. TEM images of LDHs synthesized in reverse micelles with the water/surfactant fraction of
12 (a), 24 (b), 36 (c), and 48 (d). Reproduced with permission from reference [115].

3. Preparation from Slurry of Metal Oxides/Hydroxides

In addition to the preparation of LDH from homogeneous solution, we have developed another
simple synthetic method of LDHs, where oxides and hydroxides were used as the source. By using
magnesium hydroxide (brucite) and aluminum hydroxide (gibbsite), the MgAl-LDH-deoxycholate
intercalation compounds were successfully prepared [118]. The selectivity of bulky and monodentate
deoxycholate anion as the interlayer anion of LDH was very low, and other synthetic methods,
conventional co-precipitation, anion exchange, and reconstruction were not applicable for the
syntheses so that the hydrothermal synthesis starting from magnesium hydroxide (brucite) and
aluminum hydroxide (gibbsite) was developed to successfully prepare deocycholate-LDH intercalation
compounds. The method is an easy and environmentally friendly method and, later on, was applied
for the preparation of a series of LDHs with different compositions and properties.

The hydrothermal synthesis of LDHs from aqueous suspension of magnesium hydroxide and
aluminum hydroxide was used for the synthesis of the sulfide containing MgAl-LDHs. Thioacetoamide
was used as the sulfide source for the study [119]. The reaction is as follows; brucite and gibbsite
powders were mixed with an aqueous stock solution of thioacetoamide with vigorous stirring. The
mixture was transferred into a Teflon-lined autoclave and heated at 150 ◦C for 1 day. Light green
colored precipitates were obtained by the reactions. During the hydrothermal reactions, magnesium
hydroxide and aluminum hydroxide were thought to be dissolved and subsequently precipitate as
LDH with containing polysulfide anions (S2− and S3−). The polysulfide anions were thought to be
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derived from the decomposition of thioacetoamide. The product with blue color corresponding to the
S2− and S3− ion turned to colorless when the sample was heated in air at 120 ◦C or stored for several
days, indicating that the occluded polysulfide anions were oxidized to sulfate anion by atmospheric
oxygen. The thermal analyses in air showed an exothermic reaction accompanying a weight gain at
around 150 ◦C, and the infrared spectrum showed an appearance of absorption bands ascribable to
sulfate (SO4

2−) anion, showing the oxidation of the sulfide anions to sulfate anion as schematically
shown in Figure 11.ChemEngineering 2018, 2, x FOR PEER REVIEW  13 of 23 
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Figure 11. A schematic structure of polysulfide containing MgAl-LDH. Reproduced with permission
from reference [81].

The synthetic method was extended for the preparation of ZnAl-LDHs. Benzenesulfonate was
used as the interlayer anion to be directly incorporated into the interlayer space of the LDH by
the hydrothermal reactions of aqueous suspension of zinc oxide and gibbsite [120]. The synthetic
procedure of ZnAl-LDH containing benzenesulfonate (abbreviated as BS) is shown below; first, zinc
oxide, gibbsite powders, and benzenesulfonic acid were mixed in distilled water with vigorous stirring.
The aqueous mixture (slurry) was transferred into a Teflon-lined autoclave and heated at 150 ◦C
for 1 day. After the hydrothermal reaction, the precipitate was separated by centrifugation, and the
formation of ZnAl-LDH containing BS in the interlayer space was confirmed by XRD, IR, TG-DTA.
It was found that the hydrothermal reaction in an absence of BS exhibited the remaining of starting
materials (zinc oxide and gibbsite), suggesting the crucial role of BS for the incorporation of guest
species as well as to dissolve zinc oxide and gibbsite. BS made the solution pH lower, so that the
dissolution of zinc oxide and gibbsite was promoted. Prolonging the reaction time and conducting
the reaction at higher reaction temperature were suggested to be a way to eliminate the remaining
starting materials.

The hydrothermal treatment of gibbsite and magnesium oxide (MgO) at 180 ◦C, was reported
for the preparation of LDHs by applying the similar synthetic condition [121]. Later on, Xu and Lu
(2005) reported the LDH formation by the hydrothermal treatment of aqueous slurries containing MgO
and Al2O3 at 110 ◦C [122]. The hydrothermal treatment at a temperature ranging from 100, 150, 180,
and 240 ◦C were examined in situ using synchrotron irradiation [123]. More recently, ZnAl-LDHs
containing chloride anion was synthesized from ZnO and AlCl3·6H2O by the hydrothermal treatment
at 150 ◦C for one day [124]. These reactions are simple and versatile methods for the synthesis of
LDHs. Nonetheless, the method is limited for the preparation of chloride, carbonate, and nitrate anion
intercalated LDHs besides our reports on the preparation of deoxycholate [118] and polysulfides [119]
containing LDHs.

4. Mechanochemical Syntheses

Preparation of LDHs by the solid-state reaction is worth investigating as an alternative to solution
and slurry base methods. Mechanochemical synthesis, in which mechanical energy is used to induce
the chemical reaction for the formation of material have been a topic of interest [125–132]. Mechanical
forces such as compression, shear, and friction are used to induce the reaction by simply grinding
the starting materials with mortar and pestle, or by using mill (ball mills and planetary mills). LDHs
have been synthesized by several mechanochemical methods, and we recently summarized the
reactions (Figure 12) [133]. In this section, examples of the mechanochemical syntheses of LDHs will
be introduced.



ChemEngineering 2019, 3, 68 12 of 22

ChemEngineering 2018, 2, x FOR PEER REVIEW  14 of 23 

 

 
Figure 12. A schematic drawing of the formation of layered double hydroxides from raw materials 
by applying mechanochemical reaction. Reproduced with permission from reference [133]. 

A LiAl-OH LDH formed by grinding a mixture of LiOH∙H2O and Al(OH)3 for 2–3 days 
followed by purging the mixture with the water saturated with N2 gas at room temperature [134]. 
The formation of LDH occurred from the imbibition of LiOH and H2O into Al(OH)3 particles during 
mechanical mixing. It was reported that water was important to promote interparticle diffusion. 
Without purging water, the formation of LDHs did not occur. MgAl-NO3 LDH was prepared by 
manual grinding the starting materials at room temperature [135]. Hydrate metal salts including 
Mg(NO3)2 and Al(NO3)3 were used instead of insoluble metal hydroxide precursors. Into the 
reaction, NaOH pellet was added as the hydroxide source. Nitrate intercalated LDH was obtained 
because of the rapid reaction of precursor which could prevent CO32− contamination. SEM 
observation exhibited the agglomerated plate-like LDH. The use of hydrated metal salts with 
atmospheric water (without the addition of water) was reported as an alternative procedure to 
synthesize LDH by mechanochemical method. 

Two grinding steps including dry grinding followed by wet grinding (with the addition of 
water) have been used for the synthesis of LDHs. CaSn LDH where Sn4+ was incorporated into the 
hydroxide layers, which could not be achieved from conventional co-precipitation method, was 
reported to be successful by applying mechanochemically two-step grinding approach [136]. For the 
procedure, CaCl2 and SnCl2 as metal precursors were first dry ground using mortar and pestle for 1 
h followed by the addition of 0.35 mL water to the mixture (0.35 mL H2O to 3 g powder) and further 
ground until a uniform and homogeneous mixture was obtained. One step dry grinding the metal 
precursors for 3 h was done as comparison. It was shown that CaSn-LDH was not synthesized by 
using the co-precipitation method. Similarly, one step dry grinding did not produce a LDH because 
the water introduced with the precursor could not generate sufficient amounts of hydroxide group 
for the LDH structure. Whereas, two step dry and wet grinding was effective to obtain CaSn-LDH as 
shown by the XRD pattern, where three reflections ((003), (006), and (009)) due to LDH were seen. 
The aggregated lamellar was obtained assuming that the small particles stuck together to form 
larger aggregate in the size of several micrometers. One-pot synthesis of organic molecules 
containing LDH was done by mechanical grinding with the addition of a small amount of solvent 
[137]. Hexagonal platy particles with the size of 2 to 10 µm were obtained. 

Post synthetic treatment was conducted to improve the crystallinity of LDH prepared from 
mechanochemical reaction. MgFe-CO3 LDH and ZnAl-CO3 LDH were prepared by two step 
grinding process at room temperature. The products were then peptized in a mixed ethanol and 
water solution [138]. From TEM images, particles showed the change from aggregated irregularly 
shaped particles to more regular, uniform, and monodispersed particles. They claimed that ethanol 
acted as stabilizing agent to protect the aggregation of particles from the interaction between 
hydroxyl group of ethanol with the surface of LDHs. Hydrothermal treatment was also applied to 
tailor the particle size and morphology of LDHs after mechanochemical grinding. Several LDHs (M2+ 
= Mg2+, Ni2+, Zn2+ and M3+ = Al3+, Fe3+) were prepared by manual grinding the starting metal nitrate 
salts (M2+(NO3)2∙mH2O and M3+(NO3)3∙nH2O) with NaOH and Na2CO3 at room temperature and then 
subjected to treat under hydrothermal condition at 100 °C for 24 h [139]. Comparing between 
hydrothermal treated and untreated one, the hydrothermal treated sample showed sharper intensity 
in the XRD patterns (Figure 13). The morphology of LDHs changed from irregular ultrafine 

Figure 12. A schematic drawing of the formation of layered double hydroxides from raw materials by
applying mechanochemical reaction. Reproduced with permission from reference [133].

A LiAl-OH LDH formed by grinding a mixture of LiOH·H2O and Al(OH)3 for 2–3 days followed
by purging the mixture with the water saturated with N2 gas at room temperature [134]. The formation
of LDH occurred from the imbibition of LiOH and H2O into Al(OH)3 particles during mechanical
mixing. It was reported that water was important to promote interparticle diffusion. Without purging
water, the formation of LDHs did not occur. MgAl-NO3 LDH was prepared by manual grinding the
starting materials at room temperature [135]. Hydrate metal salts including Mg(NO3)2 and Al(NO3)3

were used instead of insoluble metal hydroxide precursors. Into the reaction, NaOH pellet was added
as the hydroxide source. Nitrate intercalated LDH was obtained because of the rapid reaction of
precursor which could prevent CO3

2− contamination. SEM observation exhibited the agglomerated
plate-like LDH. The use of hydrated metal salts with atmospheric water (without the addition of water)
was reported as an alternative procedure to synthesize LDH by mechanochemical method.

Two grinding steps including dry grinding followed by wet grinding (with the addition of water)
have been used for the synthesis of LDHs. CaSn LDH where Sn4+ was incorporated into the hydroxide
layers, which could not be achieved from conventional co-precipitation method, was reported to be
successful by applying mechanochemically two-step grinding approach [136]. For the procedure,
CaCl2 and SnCl2 as metal precursors were first dry ground using mortar and pestle for 1 h followed
by the addition of 0.35 mL water to the mixture (0.35 mL H2O to 3 g powder) and further ground
until a uniform and homogeneous mixture was obtained. One step dry grinding the metal precursors
for 3 h was done as comparison. It was shown that CaSn-LDH was not synthesized by using the
co-precipitation method. Similarly, one step dry grinding did not produce a LDH because the water
introduced with the precursor could not generate sufficient amounts of hydroxide group for the LDH
structure. Whereas, two step dry and wet grinding was effective to obtain CaSn-LDH as shown by the
XRD pattern, where three reflections ((003), (006), and (009)) due to LDH were seen. The aggregated
lamellar was obtained assuming that the small particles stuck together to form larger aggregate in the
size of several micrometers. One-pot synthesis of organic molecules containing LDH was done by
mechanical grinding with the addition of a small amount of solvent [137]. Hexagonal platy particles
with the size of 2 to 10 µm were obtained.

Post synthetic treatment was conducted to improve the crystallinity of LDH prepared from
mechanochemical reaction. MgFe-CO3 LDH and ZnAl-CO3 LDH were prepared by two step grinding
process at room temperature. The products were then peptized in a mixed ethanol and water
solution [138]. From TEM images, particles showed the change from aggregated irregularly shaped
particles to more regular, uniform, and monodispersed particles. They claimed that ethanol acted as
stabilizing agent to protect the aggregation of particles from the interaction between hydroxyl group of
ethanol with the surface of LDHs. Hydrothermal treatment was also applied to tailor the particle size
and morphology of LDHs after mechanochemical grinding. Several LDHs (M2+ = Mg2+, Ni2+, Zn2+ and
M3+ = Al3+, Fe3+) were prepared by manual grinding the starting metal nitrate salts (M2+(NO3)2·mH2O
and M3+(NO3)3·nH2O) with NaOH and Na2CO3 at room temperature and then subjected to treat
under hydrothermal condition at 100 ◦C for 24 h [139]. Comparing between hydrothermal treated
and untreated one, the hydrothermal treated sample showed sharper intensity in the XRD patterns
(Figure 13). The morphology of LDHs changed from irregular ultrafine nanoparticles to hexagonal
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shape for MgAl-LDH with an average diameter of 120 nm. It was proved that hydrothermal treatment
could greatly improve the crystallinity and morphology of LDHs.
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Figure 13. The variation of XRD pattern (A) and the TEM images (B) without hydrothermal treatment
(a) and with hydrothermal treatment (a’). Reproduced with permission from reference [139].

Preparation of LDHs by using high energy mills has been reported. The preparation of Cl−,
NO3

−, and SO4
2− intercalated MgAl-LDH was done by using planetary ball mills to mix Mg(OH)2 and

aluminum salts (AlCl3, Al(NO3)3 and Al2(SO4)3) for 3–15 min followed by washing the product with
DI water [140]. Though the formation of LDH with the targeted interlayer anion was confirmed, the
Mg:Al ratio of the product was found to be smaller than the initial ratio of precursors. The importance
of the precursor composition for the formation of LDH by mechanochemical milling was studied [141].
Mg(OH)2 and Al(OH)3 (at Mg:Al = 3–6) were mixed in a planetary ball mill for 15 min at room
temperature to give MgAl-LDH (Mg:Al ratio = 3) and a part of Mg(OH)2 was unreacted when the
initial Mg:Al ratios were 4 and 6. The critical role of washing with water on the formation of the LDH
was shown from the fact that the no reflection was seen in the XRD pattern of the product before
the washing.

It is known that water is necessary to prepare LDHs for mechanochemical reaction. In order
to promote the formation, two step operation including dry and wet milling was developed [142].
Mechanochemical syntheses of LDHs from Mg(OH)2, Al(OH)3, and Mg(NO3)2 were reported [142,143].
Mg(OH)2 and Al(OH)3 were mixed by using planetary ball mill for 1 h, then, Mg(NO3)2·6H2O was
added at the second step. As a reference, they prepared one-step milling by mixing all the starting
materials from the beginning. The XRD, FTIR, and TG-DTA showed that, for the products prepared by
one step milling, the remaining starting hydroxide was observed. It was speculated that wet milling
reduced the efficiency of mechanochemical reaction, whereas two step milling exhibited the successful
formation of the NO3 intercalated LDH. From the results, they proposed the mechanism that, the first
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step dry milling led the starting metal hydroxide to be amorphous phase; then, by adding water in the
second step (wet milling), the slurry led to the formation of LDHs [142]. Ni doped MgAl-LDH was
also successfully prepared by applying two step milling operation [143].

The solid-state formation of organic anion intercalated LDHs has been reported [144,145].
MgAl-LDH intercalated with p-toluenesulfonate (TS-LDH), malonate (M-LDH), and oxalate anions
(O-LDH) were synthesized by milling Mg(OH)2 and Al(OH)3 in the planetary ball mill for 1 h and
subsequent milling with organic anions for another 1 h. The XRD patterns showed the diffraction
patterns pointed to LDH materials with a d value of 1.77, 0.88, and 0.86 nm for TS-LDH, M-LDH, and
O-LDH, respectively, indicating the successful synthesis of materials. The aggregated particles with
a size over 700 nm were observed from the TEM image, together with the small disk-like particles
having a lateral size of ca. 150 nm, suggesting the aggregation of primary particles during the reaction.
The TS-LDH was used as the starting material for the anion exchange reaction with the dodecyl sulfate
anion (abbreviated as DS). The XRD patterns showed the increasing of the basal spacing from 1.77 nm
to 3.09 nm, and FTIR results also confirmed the formation of DS-LDH with the absence of absorption
bands due to carbonate anions which was the advantage of the synthesis approach [144].

MgAl-acetate LDH film was prepared by casting the suspension of MgAl-acetate LDH on the
substrate [145]. MgAl-acetate LDH was synthesized by a mechanochemical reaction using Mg(OH)2

and Al(OH)3 as the starting materials. The metal hydroxide precursors were added and milled in the
planetary ball mil for 1 h. After the magnesium acetate was added as the acetate source, the mixture
was milled for another 1 h. The ratio of Mg:Al:acetate was 3:1:1. The XRD pattern was ascribed to
the acetate intercalated LDH with the d value of 1.19 nm [146–148]. FTIR and TG-DTA confirmed the
formation of LDH with acetate anion. The LDH was dispersed into DI water under N2 atmosphere
and casted to form homogeneous MgAl-acetate film as seen in SEM image (Figure 14). The thickness
of the film was controlled by changing the concentration of LDH from 3–20 g/L to be 1–3 µm. This
film was used for the anion exchange reaction with coumarine-3-carboxylate, which was achieved by
soaking the film into an ethanol solution containing coumarine-3-carboxylate to obtain a film with
keeping its homogeneity.
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Generally, two step milling operation led the thick-massive particles morphology. Second wet
milling step was replaced by agitation to increase the crystallinity. The mixture of Mg(OH)2 and
Al(OH)3 was milled for 1 h using planetary ball mill; then, the mixture was agitated in water for
1–5 h at room temperature [149]. The XRD result showed the increased crystallinity of LDH observed
by the increasing of the sharpness of the diffraction peak when prolonging the agitation time. The
importance of the combination of mechanochemical reaction and agitation step was investigated.
CuAl-CO3 LDH was prepared by milling Cu2(OH)2CO3 and Al(OH)3 in the planetary ball mill for
2 h, followed by agitating 1.0 g for the mixture in 100 mL DI water for 4 h [150]. Comparison with
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the one prepared by agitating the mixture in water without mechanochemical milling, the results
showed that agitation without milling could not form LDH. They suggested that the amorphous
state was necessary. The agitation caused the construction of LDH structure by adsorbing water
to increase the crystallinity. ZnAl-CO3 LDH was prepared by milling and subsequent agitation in
water for 4 h [151]. The morphology was sheet-like particles which were different from thick-massive
agglomerated particles prepared by the two-step milling operation. The author claimed that the
agitation could prevent the impact of the particles and could prevent the limit of the particle growth
caused in wet milling. Not only agitation but also ultrasonication have been used for the synthesis of
various LDHs [152].

If compared with reported LDH syntheses using aqueous media, the solid-state synthesis of
LDH has such advantages as (i) solid-liquid separation is not necessary, (ii) carbonate contamination
is less plausible, and (iii) the starting materials are not expensive if compared with those used for
the conventional syntheses starting from aqueous solution of metal salts. The variation of available
LDHs and the morphology achieved by the mechanochemical method are still limited; therefore, the
optimization of the synthesis condition is worth investigating further for a variety of LDHs.

5. Conclusions

The preparation of layered double hydroxides was summarized with the emphasis on the
chemistry in the formation of layered double hydroxides. Due to the wide range of application, layered
double hydroxides with various particle sizes and compositions are required. Efforts have been made
to find the conditions for the synthesis of a variety of layered double hydroxides with controlled
particle size from nm to micrometer. Further systematic studies on the preparation of layered double
hydroxides will be done to obtain wider particle size variation and narrower particle size distribution
as well as to find new functions based on the controlled composition. The bulk syntheses are an issue
to be tackled for practical application.
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