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Abstract: Chitin is an abundant organic resource but shows poor solubility, leading to difficulty in
utilization as materials. We have already reported that an ionic liquid (IL), 1-allyl-3-methylimidazolium
bromide, dissolves chitin at concentrations up to ca. 5 wt %. However, the color of the resulting
solution is blackened, mainly owing to the presence of bromide. On the other hand, some deep
eutectic solvents (DESs) have been already reported to dissolve chitin. In this study, we found
that DESs composed of imidazolium ILs and thiourea dissolved chitin without obvious coloring.
DESs are systems formed from eutectic mixtures of hydrogen bond accepters and donors. We first
prepared DESs by heating mixtures of imidazolium ILs with thiourea at 100 ◦C for 30 min with
stirring. Predetermined amounts of chitin were then added to the DESs, and for the dissolution, the
mixtures were left standing at room temperature for 24 h, followed by heating at 100 ◦C for 24 h with
stirring. The dissolution processes were evaluated by CCD camera views, which revealed in most
cases the dissolution of chitin at 2–5 wt % concentrations with the present DESs.
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1. Introduction

Ionic liquids (ILs) are low-melting-point (low-mp) salts that form liquids at temperatures below
the boiling point of water. ILs have been identified as good solvents for natural polysaccharides [1,2],
since an IL, 1-butyl-3-methylimidazaolium chloride (BMIMCl), was found to dissolve cellulose in
2002 [3]. For more than a decade, various ILs have been reported to dissolve cellulose and to be used
as media for cellulose derivatization, modification, and functionalization [4–10]. On the other hand,
there are not many ILs to dissolve chitin [2,11–15], because chitin shows quite poorer solubility even
compared with cellulose. Such a solubility problem is principally caused by the presence of acetamido
groups at the C-2 position in β(1γ4)-linked N-acetyl-d-glucosamine repeating units, which form very
strong intermolecular hydrogen bonds [16]. Even nowadays, only several types of ILs, which dissolve
chitin, are known [17], including 1-alkyl-3-methylimidazolum acetates, 1-ethyl-3-methylimidazolium
alkanoates, 1-alkyl-3-methylimidazolium dimethylphosphate, tetrabutylphosphonium amino acid
salts, and 1-allyl-3-methylimidazolium bromide (AMIMBr) [11,18–21]. For example, we found that
AMIMBr dissolved chitin at concentrations up to ca. 5 wt % and formed ion gels with higher contents
of chitin [21]. AMIMBr is more stable and could be facilely prepared, owing to the fact that it consists
of a bromide counter anion, compared with the two kinds of ILs mentioned above. In the following
studies, accordingly, we used AMIMBr solutions as media for facile acylation and self-assembled
regeneration of chitin to successfully produce chitin esters and nanochitins [22–26]. The presence of
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bromide in AMIMBr, however, causes the solution and gel to be blackened, as shown in Figure 1a,
resulting in the production of colored chitin materials. Based on the above viewpoints, new solvent
systems for chitin have still attracted a great deal of attention, which can be used as media to construct
new chitin-based functional materials.

ChemEngineering 2019, 3, x FOR PEER REVIEW 2 of 9 

prepared, owing to the fact that it consists of a bromide counter anion, compared with the 
two kinds of ILs mentioned above. In the following studies, accordingly, we used 
AMIMBr solutions as media for facile acylation and self-assembled regeneration of chitin 
to successfully produce chitin esters and nanochitins [22–26]. The presence of bromide in 
AMIMBr, however, causes the solution and gel to be blackened, as shown in Figure 1a, 
resulting in the production of colored chitin materials. Based on the above viewpoints, 
new solvent systems for chitin have still attracted a great deal of attention, which can be 
used as media to construct new chitin-based functional materials. 

 
Figure 1. Photographs of solutions of chitin in 1-allyl-3-methyl-imidazolium bromide 
(AMIMBr) (a) and a deep eutectic solvent (DES) composed of 
1-allyl-3-methylimidazolium chloride (AMIMCl) and thiourea (ca. 5 wt %) (b). 

Recently, some deep eutectic solvents (DESs) as analogs of ILs, mainly composed of 
choline chloride, have also been found to dissolve chitin [27–35]. DESs are fluids formed 
by adequate mixtures of hydrogen bond acceptors (HBAs) and hydrogen bond donors 
(HBDs), which are capable of self-association through hydrogen bonding interactions to 
form eutectics with lower melting points (mps) in comparison to each individual 
component [36]. For example, a DES composed of choline chloride and thiourea was 
reported to dissolve chitin [27,28]. Furthermore, DESs have been used for extraction and 
purification of chitin from raw native resources such as lobster shells [29]. However, mps 
of DESs obtained from choline chloride are relatively high, e.g., higher than room 
temperature, which are disadvantage to be employed as media for further applications of 
chitin [36]. Therefore, considerable efforts should be devoted to developing new DESs for 
solvents of chitin, which have potential to be used as media in efficient materialization of 
chitin, such as derivatization and modification. 

On the other hand, DESs composed of ILs as HBAs have been found to dissolve 
biopolymers, such as starch [37]. In this study, we prepared DESs from imidazolium ILs 
having different substituents and thiourea, which were employed for the dissolution 
experiments of chitin. The imidazolium ILs, used in this study, were 
1-allyl-3-methylimidazolium chlorides (AMIMCl), BMIMCl, 
1-ethyl-3-methylimidazolium chlorides (EMIMCl), and 1-butyl- and 
1-ethyl-3-methylimidazolium bromides (BMIMBr and EMIMBr) (Figure 2a). It should be 
noted that the pure ILs do not dissolve certain amounts of chitin. Consequently, in most 
cases, the addition of thiourea to the ILs enhanced the dissolution ability of chitin in the 
resulting DESs. 

Figure 1. Photographs of solutions of chitin in 1-allyl-3-methyl-imidazolium bromide (AMIMBr) (a)
and a deep eutectic solvent (DES) composed of 1-allyl-3-methylimidazolium chloride (AMIMCl) and
thiourea (ca. 5 wt %) (b).

Recently, some deep eutectic solvents (DESs) as analogs of ILs, mainly composed of choline
chloride, have also been found to dissolve chitin [27–35]. DESs are fluids formed by adequate
mixtures of hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs), which are capable
of self-association through hydrogen bonding interactions to form eutectics with lower melting points
(mps) in comparison to each individual component [36]. For example, a DES composed of choline
chloride and thiourea was reported to dissolve chitin [27,28]. Furthermore, DESs have been used for
extraction and purification of chitin from raw native resources such as lobster shells [29]. However, mps
of DESs obtained from choline chloride are relatively high, e.g., higher than room temperature, which
are disadvantage to be employed as media for further applications of chitin [36]. Therefore, considerable
efforts should be devoted to developing new DESs for solvents of chitin, which have potential to be
used as media in efficient materialization of chitin, such as derivatization and modification.

On the other hand, DESs composed of ILs as HBAs have been found to dissolve biopolymers,
such as starch [37]. In this study, we prepared DESs from imidazolium ILs having different substituents
and thiourea, which were employed for the dissolution experiments of chitin. The imidazolium
ILs, used in this study, were 1-allyl-3-methylimidazolium chlorides (AMIMCl), BMIMCl,
1-ethyl-3-methylimidazolium chlorides (EMIMCl), and 1-butyl- and 1-ethyl-3-methylimidazolium
bromides (BMIMBr and EMIMBr) (Figure 2a). It should be noted that the pure ILs do not dissolve
certain amounts of chitin. Consequently, in most cases, the addition of thiourea to the ILs enhanced
the dissolution ability of chitin in the resulting DESs.
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2. Materials and Methods

2.1. Materials

The α-chitin powder from crab shells was purchased from Wako Pure Chemicals, Tokyo, Japan.
BMIMCl (purity ≥ 98.0%) and EMIMCl (purity > 97.0%) were purchased from Sigma-Aldrich,
Darmstadt, Germany and Tokyo Chemical Industry Co., LTD., Tokyo, Japan, respectively. The other
reagents and solvents were available commercially and used without further purification.

2.2. Preparation of Ionic Liquids

A typical procedure for preparation of ILs was as follows. 1-Chloro-1-propene (14.0 mL; 0.183
mol), 1-bromobutane (20.0 mL; 0.185 mol), or bromoethane (20.0 mL; 0.257 mol) was slowly mixed
with 1-methylimidazole (10.0 g; 0.122 mol) at 80 ◦C, and the resulting mixture was then maintained
at this temperature for 15 h with stirring. After the reaction mixture was washed with diethyl ether
several times, the residue was dried under reduced pressure at 100 ◦C for 24 h to give the ILs, that
is, AMIMCl, BMIMBr, and EMIMBr (ca. 17–22 g; 73%–87% yields). The structures of the ILs were
confirmed by 1H NMR spectra (CDCl3, Supplementary Figure S1) according to the data previously
reported in the literature [38,39].

2.3. Preparation of DESs

A typical procedure for preparation of DESs was as follows. A mixture of an IL with thiourea at a
predetermined molar ratio was heated at 100 ◦C for 30 min with stirring. After cooling the mixture to
room temperature, the formation of a clear solution was evaluated by a charge-coupled device (CCD)
camera view.

2.4. Dissolution Experiments of Chitin with DESs

A typical procedure for a dissolution experiment of chitin with a DES was as follows.
A predetermined amount of chitin was mixed with a DES at an IL/thiourea molar ratio of 1:0.5.
The mixture was then left standing at room temperature for 24 h and subsequently heated at 100 ◦C for
24 h with stirring. After cooling the mixture to room temperature, the dissolution was evaluated by a
CCD camera view.
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2.5. Regeneration of Chitin from a Solution with a DES

A mixture of chitin (0.0526 g; 0.259 mmol) with the AMIMCl/thiourea DES (1:0.5 molar ratio;
1.00 g) was left standing at room temperature for 24 h and subsequently heated at 100 ◦C for 24 h to give
a 5 wt % solution. After the addition of methanol (6.0 mL) to the resulting solution, the mixture was
centrifuged, and the supernatant was decantated. The processes for the addition of methanol to the
residue, centrifugation, and decantation were additionally performed twice. The resulting residue was
isolated by filtration, washed with methanol, and dried under reduced pressure at room temperature
for 2 h to give the regenerated chitin (0.0508 g).

2.6. Measurements

The 1H NMR spectra were measured on the JEOL ECA600 spectrometer (JEOL, Akishima, Tokyo,
Japan). CCD camera observation was conducted using the Dino-Lite Digital Microscope AM-311
(AnMo Electronics Corporation, Hsinchu, Taiwan). Differential scanning calorimetry (DSC) was
performed on the DSC 6220 (Seiko Instruments Ins. Chiba, Japan). Samples (ca. 5–8 mg) were
hermetically sealed in an aluminum pan and heated from room temperature to 100 ◦C at a heating rate
of 20 ◦C min−1 under nitrogen atmosphere as the first scans for removal of moisture. After the samples
were cooled to 0 ◦C, the second scans were then conducted by heating the samples from 0 to 400 ◦C at
the same heating rate to obtain the DSC profiles. Powder X-ray diffraction (XRD) measurements were
conducted using the PANalytical X’Pert PRO MPD (PANalytical B.V., Almelo, The Netherlands) with
Ni-filtered Cu Kα radiation (λ = 0.15418 nm). Infrared (IR) spectra were recorded on the PerkinElmer
Spectrum Two spectrometer (PerkinElmer Japan Co., Ltd., Yokohama, Japan).

3. Results and Discussion

We first performed the preparation of DESs by heating the mixtures of imidazolium ILs with
thiourea at different molar ratios at 100 ◦C for 30 min with stirring (Figure 2a). The CCD camera views
of the resulting liquids with a 200 times magnification indicated that clear solutions were obtained
from the mixtures at IL/thiourea molar ratios up to 1:0.5 (Figure 3a), except the mixtures with EMIMCl,
while at higher IL/thiourea molar ratios such as 1:0.6, thiourea was not completely dissolved in the ILs
in all the cases (Figure 3b). Hereafter, we employed a 1:0.5 IL/thiourea molar ratio for DESs. In the case
of EMIMCl, a maximum molar ratio of EMIMCl/thiourea for the formation of a clear solution was 1:0.3,
which was used for the subsequent dissolution experiment.
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Figure 3. CCD camera views of the mixtures of AMIMCl with thiourea at molar ratios of 1:0.5 (a) and
1:0.6 (b) after heating at 100 ◦C for 30 min with stirring for preparation of DESs. The magnification is
200 times.

The formation of the DESs was confirmed by DSC measurements. Figure 4 shows the DSC
profiles of thiourea, EMIMBr, and the DES prepared from the mixture of EMIMBr and thiourea (molar
ratio of 1:0.5). The DSC profile of the DES exhibits an endothermic peak at 40 ◦C, whereas those of
the pure thiourea and EMIMBr show endothermic peaks at higher temperatures, i.e., 182 and 64 ◦C,
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respectively, corresponding to their mps; the mp values of EMIMBr in the literature are 65–79 ◦C [40].
These data support the occurrence of mp depression in the mixture of EMIMBr with thiourea, strongly
indicating the formation of the DES. Based on the DSC results of the prepared DESs, the mp value
of the EMIMBr/thiourea DES was reasonably evaluated to be around 40 ◦C as shown in Figure 4c,
while the mp values of the other DESs were estimated to be lower than 0 ◦C. Indeed, the former DES
was frozen at 10 ◦C, whereas the latter DESs were kept to be liquids even in a refrigerator (at −20 ◦C).
The as-prepared EMIMBr/thiourea DES was liquid at room temperature below the mp, owing to the
undercooling state, which could be employed for the dissolution experiments. However, after the DES
was frozen once, it was kept to be solid even at room temperature.
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The dissolution experiments of chitin using the prepared DESs were then carried out as follows.
Predetermined amounts of chitin were mixed with DESs. The mixtures were then left standing at
room temperature for 24 h for pretreatment and subsequently heated at 100 ◦C for 24 h with stirring.
The dissolution processes were followed by CCD camera views with a 200 times magnification, as
shown in Figure 5. The maximum concentrations of chitin dissolved were evaluated by whether solids
of chitin were seen or not in the CCD camera views. For example, the CCD camera view of the 5 wt %
mixture of chitin with the AMIMCl/thiourea DES after heating at 100 ◦C for 24 h does not show any
solids of chitin (Figure 5b), unlike the CCD camera view of this mixture before heating (Figure 5a).
This result suggested that the DES dissolved chitin at a 5 wt % concentration (Entry 1, Table 1). Similarly,
Table 1 lists the maximum concentrations of chitin for dissolution in the prepared DESs to obtain clear
solutions. Besides the system from BMIMCl, the addition of thiourea contributed to the enhancement
of the dissolution ability of chitin in the DESs. Indeed, the CCD camera views in Figure 5d–f show
the formation of clear solutions, by the dissolution experiments, in the mixtures of 5 wt % chitin
with the BMIMBr/thiourea DES (Entry 4, Table 1) and 2 wt % chitin with the EMIMCl/thiourea and
EMIMBr/thiourea DESs (Entries 3 and 5, Table 1). On the other hand, insoluble solids of chitin appeared
in the mixture of a lower content (1 wt %) of chitin with the BMIMCl/thiourea DES after heating
at 100 ◦C, as shown in Figure 5c (Entry 2, Table 1), indicating that the addition of thiourea was not
significantly effective in the enhancement of the dissolution ability of the DES. These results indicated
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that both the substituents on the imidazolium rings and the counter anions of the ILs strongly affected
the dissolution ability of the DESs, but roles of them for the dissolution in the DESs are not yet clear.
Furthermore, it is notable that the solutions of chitin with these DESs did not exhibit obvious coloring,
as shown in Figure 1b.
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Figure 5. (a) CCD camera view of the mixture of chitin with AMIMCl/thiourea DES. (b–f) CCD camera
views of products of chitin in the AMIMCl–, BMIMCl–, EMIMCl–, BMIMBr–, and EMIMBr–thiourea
DESs in the dissolution experiments. Contents of chitin are as listed in Table 1, except the content for
the BMIMCl/thiourea DES, which was 1 wt %. The magnification is 200 times.

Table 1. Dissolution of chitin in the DESs a.

Entry IL in a DES (Molar ratio of IL
to Thiourea)

Maximum Concentration of
Chitin for Dissolved (wt %) b

1 AMIMCl (1:0.5) 5
2 BMIMCl (1:0.5) ~0
3 EMIMCl (1:0.3) 2
4 BMIMBr (1:0.5) 5
5 EMIMBr (1:0.5) 2

a The dissolution experiments were conducted by standing mixtures at room temperature for 24 h and subsequently
by heating at 100 ◦C for 24 h with stirring. b Estimated by the CCD camera views of the mixtures after heating.

Finally, regeneration of chitin from the AMIMCl/thiurea DES solution was carried out by addition
of methanol as a poor solvent for chitin. The XRD profile and the IR spectrum of the regenerated chitin
were totally identical with those of the original chitin, as shown in Supplementary Figures S2 and S3.
These results strongly suggested that degradation and change in the chemical structure of chitin did
not obviously occur during the dissolution experiments.

4. Conclusions

In this study, we found that the addition of thiourea to imidazolium ILs provided the dissolution
ability of certain amounts of chitin in the produced DESs in most cases. The preparation of DESs
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was conducted by heating the mixtures of imidazolium ILs with thiourea at 100 ◦C for 30 min with
stirring. The formation of the DESs was confirmed by the DSC measurements of the produced
solutions. The dissolution experiments were conducted by standing mixtures of chitin with the DESs
at room temperature for 24 h for pretreatment and subsequently by heating at 100 ◦C for 24 h with
stirring. The dissolution processes were evaluated by CCD camera views, which indicated that the
AMIMCl– and BMIMBr–thiourea DESs and the EMIMCl– and EMIMBr–thiourea DESs at the molar
ratios listed in Table 1 dissolved chitin with 5 wt % and 2 wt % concentrations, respectively. On
the other hand, the BMIMCl/thiourea DES did not dissolve chitin. Accordingly, the results of the
investigation suggested that both the substituents on the imidazolium rings and the counter anions of
the ILs strongly affected the dissolution ability of the DESs. The XRD and IR results of the regenerated
chitin from the AMIMCl/thiurea DES solution suggested no obvious occurrence of degradation and
change in the chemical structure of chitin during the dissolution experiments. Furthermore, clear
solutions without obvious coloring were obtained using the present DESs, unlike the phenomenon of
chitin dissolved in an AMIMBr solution, as previously reported. The present DESs, facilely prepared
from imidazolium ILs and thiourea, can be considered as useful solvents, which will be employed as
media for derivatization and functionalization of chitin in the future.
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chitin (b).
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