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Abstract: Drying of porous media is strictly governed by heat and mass transfer. However, contrary
to the definition that drying is simultaneous transport mechanisms of heat and mass, most past and
current models either account for temperature or concentration gradient effects on drying. Even
though the complexity of computations of these processes varies with area of application, in most
cases, the Dufour and Soret effects are neglected. This leads to deviations and uncertainties on the
assumptions and interpretations of these and other relevant effects on drying. This paper covers
the theoretical methods to derive the coupled transfer effects. In addition, this work proposes and
formulates relevant heat and mass transfer equations, as well as the governing equations for drying
processes with Dufour and Soret effects. The application of a numerical approach to solve the
equations allows for studying of the influence of these effects on the design and operation of dryers.
It is shown that the Soret effect can be highly relevant on drying operations with dynamic heating
operation. While for drying processes where the steady state drying process predominates, the effect
is deemed negligible.

Keywords: Soret effect; nonequilibrium thermodynamics; thermodiffusion; drying; numerical
simulation

1. Introduction

Drying is a very energy costly operation and accounts for up to 15% of industrial energy usage,
while the thermal efficiency is only about 25–50% [1]. With growing consciousness about sustainability
and the trend towards cleaner production, improving the energy efficiency is one of the key aspects.
It is therefore of great importance to understand and quantify all relevant effects on drying processes
to avoid deviations and uncertainties, leading to more conservative operations.

Most applied heat and mass transport relations for drying processes neglect the Dufour and Soret
effect. These coupled heat and mass transport phenomena are derived in detailed drying process
literature by, e.g., Keey [2] or Kowalski [3], but only mentioned as being possibly of relevance. In an
earlier conference proceeding by the authors the relevance of the coupled heat and mass transport
effects on drying was argued based on these works. In this contribution the relevance of the coupled
heat and mass transport phenomena on drying processes is shown in detail with the derivation of first
principle flux equations for a drying process, using linear nonequilibrium thermodynamics. The effects
are quantified by a numerical simulation of a drying process model based the derived fluxes. Hence
quantifying the coupled heat and mass transport phenomena for drying processes.

2. Methods

Linear nonequilibrium thermodynamics allow the derivation of coupled transport phenomena,
assuming that the system is close to global equilibrium [4]. In the following, first principle flux
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equations are derived, coupling heat and mass transport. The derivation is based on the works by
Demirel [5]. The coupled flux equations are subsequently extended for drying systems.

2.1. Linear Nonequilibrium Thermodynamic Derivation

In linear nonequilibrium thermodynamics all flows can be described as linear functions of the
phenomenological coefficients and the thermodynamic forces [5]. Coupled heat and mass transport
can therefore be described as a linear combination of the thermodynamic heat and mass forces.
The thermodynamic forces can either be derived from the entropy production rate [4], or more recently
by Demirel from the dissipation function [5]. The advantage of the dissipation function Ψ is that it can
describe systems arbitrary far from equilibrium. Thermodynamic forces derived from the dissipation
function are hence valid on the same domain. In nonequilibrium thermodynamics the dissipation
function is proportional to the entropy production, which can be derived by combining the entropy
balance and the substantial derivative of the Gibbs relation, assuming local equilibrium. This is done
by exchanging the differential operators in the Gibbs relation with the substantial time derivatives for
a moving fluid element, the extended substantial Gibbs relation is shown in Equation (1).
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In Equation (1) the substantial time derivatives of the fundamental state variables can
be substituted with expressions derived from a substantial energy and mass balance, seen in
Equations (2)–(4).
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Combining these equation with the entropy balance in Equation (5), leads to an expression of the
rate of entropy produced due to local changes, σ, Equation (6).
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The first term (I) on the right-hand side describes the entropy production associated with heat
transfer. The second term (II) describes the entropy production due to mass transfer. The third term
(III) the entropy production resulting of viscous dissipation of the fluid and the fourth term (IV) that
due to chemical reaction. The Terms are categorised based on their rank. Term (IV) is scalar and
therefore of rank zero, while term (II) and (III) are of rank one. The Curie–Prigogine principle [6] states
that scalar and vectoral quantities do not interact in an isotropic medium.

For an isotropic medium without chemical reaction, considering only the heat and mass transfer,
the entropy produced due to local changes, Equation (6), is reduced to Equation (7) [5].

σQM = σI + σI I (7)
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To get independent terms for the heat and mass forces, the conduction energy Ju is transformed
to the heat flux Jq and the total potential µi,T to the chemical potential µi, resulting in Equation (8).

σQM = Jq · ∇
(

1
T

)
− 1

T

n

∑
i=1

ji · ∇T (µi) (8)

2.2. Drying System

The coupled heat and mass transport effects are further on derived for a drying process of an
isotropic porous medium. The progress of the drying process is described by the moisture content.
The moisture content is defined as the ratio of the mass of liquid water in the porous medium mw, and
the mass of water at saturation msat

w = mwet
medium −mdry

medium, seen in Equation (9). Water is used as an
exemplary solvent, the equations are valid for any other solvent.

Xw =
mw

mwet
medium −mdry

medium

(9)

For a medium which does not experience any deformation during drying, the moisture content
can directly be described by the liquid volume in the medium, the porosity, φ and the total volume,
Vtot, seen in Equation (10).

Xw =
V l

W
Vtot · φ

(10)

To describe the gas phase in the medium, the remaining void is assumed to be filled with
a n-component gas mixture, which is described by an indicator gas phase moisture content Xvap,
Equation (11).

Xvap =
Vg

Vtot · φ
= (1− Xw) =

n

∑
i=1

Xvap
i (11)

A relative moisture content is introduced in Equation (12). The sum of the relative moisture
contents over all components is equal to 1. If the gas phase is an ideal mixture, than the relative
moisture content equals the mole fraction xi.

Xrel,vap
i =

Xvap
i

Xvap =
Vg

i
Vg =

ng
i

ng = xi (12)

2.3. Thermodynamic Forces for a n-Component Drying System

The independent thermodynamic forces, χi can be derived from the definition of the dissipation
function as seen in Equation (13), using the entropy production in Equation (8). The result is seen in
Equation (14).

Ψ = T · σ =
n

∑
i=1

Jdiss
i χdiss

i (13)

Ψ = Jq · ∇ ln T︸ ︷︷ ︸
χq

−
n

∑
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ji · ∇T (µi)︸ ︷︷ ︸
χi

(14)

At mechanical equilibrium the sum of χi, the second term in Equation (14), can be described using
the Gibbs–Duhem equation, substituting the amount of substance with Xrel,vap

i , since solely the gas
phase is assumed to contain a multicomponent mixture.
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Inserting the new expression for the isothermal gradient of the chemical potential into the
dissipation function yields Equation (16). In the equation the two independent thermodynamic forces
are indicated by the curly bracket, while the flux ji is not part of the thermodynamic force χi.
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2.4. Heat and Mass Flux for a Binary Drying System

In a binary drying system containing only water and air, the thermodynamic force χi is reduced
to Equation (17).
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The coupling of the thermodynamic forces and the fluxes is described by the phenomenological
equations, the relation becomes linear close to the global equilibrium and can be described by
Equation (18).

Ji =
m

∑
k=1

ΛiK · χi (18)

The heat and mass flux are derived from Equation (18), with the independent thermodynamic
forces highlighted in Equation (16). The fluxes are valid for isotropic, nonelectrolyte mixtures without
external fields or pressure gradients. The heat and mass flux for drying processes with coupled heat
and mass transport are seen in Equations (19) and (20) respectively. In Equation (19) the Dufour effect
is included as the second term on the right-hand side and in Equation (20) and the Soret effect is
included as the second term on the right-hand side.
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3. Results

The coupled heat and mass transport flux equations that are derived from linear nonequilibrium
thermodynamics in the method section, are tested with a numerical simulation of a drying system.
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To systematically analyze the impact of the Soret effect, the coupled heat and mass transport
equations are implemented in a drying model, suitable for the analysis of coupled heat and mass
transport phenomena.

3.1. Drying System and Model

There is a wide variety of partial differential models describing drying processes [7]. The most
known model including coupled heat and mass transport effects on the moisture transport is Luikov’s
approach [8], though the numerical studies on drying processes with this approach are rare [9]. The use
of the model proposed in this section, is to study the relevance of the Soret effect for a conventional
drying technique. To avoid additional model complexity, drying regions not relevant for the Soret
effect are not included. Therefore the four drying regions of a porous medium proposed by Keey [2] are
compared. Keeping in mind that the Soret effect is only applicable in a multicomponent mixture [10],
the second and the third region are deemed most relevant, since the transport of moisture changes
from liquid to vapour phase diffusion.

The solid matrix of the porous material is regarded as system of parallel tubular channels,
packed in a primitive cubic system, seen in Figure 1(right), the walls of the channels are considered
impermeable. On a macro scale the porous medium is described as a sphere. The drying process
is assumed to be convective drying, which is referred to as the most common drying technique in
literature [11]. The external diffusion limitation is nullified by assuming a high bulk-velocity and low
moisture content of the hot air circulating the porous body.

Figure 1. (left) A Schematic description of the channel in which the drying process is simulated, the
arrow indicates the flow direction of bulk, the grey subsections indicate the boundary layers and the
three lines mark the gas-liquid interface, the liquid phase is on the right side and gas phase on the left
side. (right) 2D vertical cut of the spherical macro structure with packed parallel channels.

Given the symmetry of the macro scale, only one tubular channel needs to be modelled. Further
the channel is assumed to be radially and tangentially symmetric, hence the heat and mass transport
are only regarded in axial direction. To simplify the quantification of the Soret effect the channels
are assumed to be horizontally arranged to the mass forces, eliminating the buoyancy effects on
the thermodiffusion. The impact of the buoyancy effects on transport phenomena in porous media
is treated in detail by Saghir [12]. The evaporation of water is assumed to be at a sharp receding
gas-liquid interface, moving inwards as the drying process proceeds. This is an ideal consideration, but
a correct simplification for sufficiently small particles and high temperature differences [7]. A summery
of the drying system is shown in Table 1.
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Table 1. Summery of the drying system used for the simulation of the Soret effect.

Drying region:
2nd and 3rd region proposed by Keey [2], where moisture transport changes from liquid
to vapour phase diffusion

Macro model:
A sphere made of horizontally arranged parallel tubular channels packed in a primitive
cubic system

Channel model:
Hollow tubular channels with impermeable walls, the channel is radially and tangentially
symmetric

Drying process:
Evaporation of water at a receding gas–liquid interface at the button of the channel,
gas-phase diffusion from the gas–liquid interface to the channel opening and convection
to the bulk

3.2. Implementation of the Drying Model

3.2.1. Flux Equations

The mass and heat flux equations for the system are derived from Equations (20) and (19),
neglecting the Dufour effect. The flux equations are compared with the Fourier’s law, Equation (21),
and Ficks law, Equation (22), to determine the phenomenological coefficients.

− Jq = λ∇T (21)

− ji = ρD∇X (22)

Comparing the coefficients of Equations (19) and (21) assuming no moisture gradient, gives an
expression for Λqq, as seen in Equation (23). Similarly, an expression for ΛWW , Equation (24), is derived
by comparing Equation (20), assuming no temperature gradient, with Equation (22).

Λqq = λT (23)

ΛWW = D · Xrel,vap
air · Cvap

(
∂µW

∂Xrel,vap
W

)−1

(24)

To describe the Soret effect in Equation (20) the phenomenological coefficient is defined in
Equation (25).

ΛWq = DTWCvap (25)

The thermodiffusion coefficient DTW will be substituted with its mass diffusion coefficient ratio,
referred to as the Soret coefficient sTW and are shown in Equation (26).

sTW =
DTW

D
(26)

The resulting heat and mass flux equations are seen in Equations (28) and (27), respectively.

Jq = −λ∇T (27)

− jW = Cvap · D · ∇Xrel,vap
W + D · sTW · Cvap · ∇ ln T (28)

3.2.2. Soret Effect

The Soret effect can be described entirely by the flux equations derived in the methods
section, Equations (19) and (20). Applying the Onsager Reciprocal leads to an expression for the
phenomenological coefficient ΛWq, which describes the Soret effect.
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The mass flux for the model, Equation (28), contains the Soret coefficient devided by the
temperature, sTW/T, as a simplified description of the Soret effect. A more precise description of the
Soret effect is not needed in this model set-up, since the Soret coefficient is varied over a great range.

Similar expressions for the Soret effect, as derived in the methods section and seen in Equations (20)
and (19) can be derived using Luikov’s approach [13]. One should consider that this approach does
not clearly consider the composition in the liquid and vaporous phases in the porous medium, which
makes a correct numerical implementation more challenging. Avramidis bases his expressions of the
Soret effect on Luikov’s approach. Where the Soret coefficient is a function of the moisture content and
the temperature [14]. Experimentally the Soret coefficient is measured by Kempers for a great variety
of mixtures [15]. The experimental Soret coefficient lie in an interval between 1.0× 10−3 and 1.0× 102

1/K. For air mixtures, which are relevant for drying processes, the coefficient lies between 1.0× 10−1

and 1.0 1/K.

3.2.3. Governing Equations

The Governing equations are derived from the differential heat and mass balance inside one
channel with the corresponding flux equations, Equations (27) and (28).

∂Xrel,vap
w
∂t

= D
∂2Xrel,vap

w

∂x2 +
D · sTW

T
∂T
∂x

(29)

cp · Cvap

λ
· ∂T

∂t
=

∂2T
∂x2 (30)

3.2.4. Boundary and Initial Conditions

The boundaries are oriented according to Figure 1(left). The boundary conditions include
convective transport of mass and heat from the boundary on the left side of the channel into the
bulk, seen in Equations (31a) and (31b). On the right side the transport is driven by the evaporation of
water, described by the boundary conditions in Equations (31c) and (31d).

The phase equilibrium information is included on the right boundary. The vapour phase is
assumed to be an ideal mixture and the liquid phase is assumed to be a pure substance. The partial
pressure in the vapour phase can therefore be described with Raoult’s law. The vapour pressure of
water is described with the Arrhenius equation [16].

The receding gas liquid interface is defined via the left side boundary condition of the liquid phase,
Equation (31e). The liquid phase is assumed to be at steady state. Since the rate of capillary water
diffusion is negligible compared to the evaporation rate and because of the higher heat conductivity of
liquid water compared to water vapour. Therefore the moisture content of the porous medium can
be fully described via the boundary condition and must not be implemented as source term in the
governing equations, as argued by Chen [17]. Similar boundary conditions can be found in literature
for other diffusion based models with local evaporation rate [17].
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x = 0 D
∂Xrel,vap

w
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λ
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λ
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Dl
w ·

1
MW
· ρW

∂XW
∂x

= − kVL
RT

(PVL,W − PW) (31e)

The initial conditions are based on the specified drying region of the model, where moisture
transport changes from liquid to vapour phase diffusion. The initial conditions are shown in
Equations (32).

t = 0, ∀x Xrel,vap
w = 1; Xrel,vap

air = 0 (32a)

T = 20 ◦C (32b)

XW = 0.9 (32c)

The total moisture content of the medium is coupled to the governing equation for the mass
transport, Equation (29), through the left side boundary condition of the liquid phase.

3.2.5. Numerical Implementation

The model was simulated with a numerical MatLab solver developed by the authors, using
central schemes second order for the space derivatives and explicit Euler for the time derivative. The
receding gas front is simulated through defining the fluxes on the right boundary using a ghostpoint
and increasing the volume of every finite difference in every time step depending on the amount of
water evaporated, adjusting the discretization. The left and right side boundary conditions are scaled
by the discretization.

The convective temperature boundary layer on the left boundary is for moderate Re numbers
negligibly small, therefore replaced with a Dirichlet boundary condition. Increasing the numerical
stability without decreasing the physical description.

The constants used in the governing equations and boundary conditions are shown in Table 2.

Table 2. Constants used in the numerical simulation, base case values included for the constants which
were varied in the simulation.

Constants Description Units Value

X∞ Bulk moisture content - 0
T∞ Bulk temperature K 393
P System Pressure Pa 1× 105

cP Heat capacity of water J mol−1 K−1 73 [18]
∆HVL Vaporization Enthalpy of water J mol−1 2400 [18]
ρ Density of air kg m−3 1 [18]
ρl Density of liquid water kg m−3 1000 [18]
D Moisture diffusion coefficient m2 s−1 2.5× 10−5 [2]
Dw Liquid water Diffusion coefficient m2 s−1 1× 10−9 [19]
R Universal gas constant J mol−1 K−1 8.314
MW Molar mass water kg mol−1 18× 10−3

Mair Molar mass air kg mol−1 0.028
λ Heat conductivity W m−1 K−1 0.0012 [18]
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The concentration of the gas phase Cv is defined by the ideal gas law. The heat transfer coefficient
from the channel to the bulk is calculated from a Nussel-correlation for a sphere [18]:

a =
λ

ρ · cP
(33a)

Pr = µ/a (33b)

Nu = 2 + 0.66 ∗
(

1 +
(
0.84 ∗ Pr1/6)3

)−1/3 (Re ∗ Pr)1.7

1 + (Re ∗ Pr)1.2 (33c)

α = Nu(Re, Pr) · λ

d
(33d)

The mass transfer coefficient from the vapour-liquid interface to the gas phase is simply defined
by the integration of the Fick’s law over the boundary layer on the left side in the channel, see
Equation (34). The boundary layer is defined as the size of cell furthest to the right in the discretization
and is hence adjusted during the drying process.

kVL = αc
D
σ

(34)

3.3. Simulation Results

The model is validated by simulating the drying process without the Soret effect, i.e., keeping
the Soret coefficient at zero. Subsequently comparing the results with similar drying models in
literature [7]. The simulation results are in accordance to the literature simulation, for drying processes
which are vapour diffusion governed.

A pre-study is conducted monitoring the impact of the Soret effect, while systematically varying
all coefficients and variable ranges. Additionally analyzing the governing equations and boundary
conditions, yields four variables and coefficients with the highest impact on the Soret effect: Heat
conductivity λ, particle size d, Soret coefficient sTW , and the initial temperature difference ∆T =

T∞ − Tparticle,0. These coefficients are varied over a wide range, exceeding the range of normal drying
conditions, to definitely determine the relevance of the Soret effect.

The simulation shows that the drying process is divided in a dynamic and a steady state part. The
dynamic part is influenced by any nonequilibrium processes in the distribution of the temperature
and concentration. Vice versa, these nonequilibrium effects only have an influence in the dynamic part
of the drying. In the model the dynamic part of the concentration distribution always lies within the
dynamic temperature distribution time.

Therefore a relative dynamic drying time is introduced, defined as the ratio of the drying time of
the dynamic drying process with the Soret effect and the dynamic drying time without the Soret effect.
The dynamic drying time is defined as the duration from start until the time, when the concentration
distribution reaches steady state. The change in the relative dynamic drying time for different Soret
coefficient, while varying the four previously mentioned coefficients is shown in Figure 2. The Soret
effect shows no impact on the total drying time.

Through the boundary and initial conditions two nonequilibrium effects are simulated. The first
is caused by the initial composition condition for the vapor phase, when the drying changes from
liquid to vapour phase diffusion. The second effect starts when the evaporation rate governed by
the temperature at the liquid-vapor boundary layer exceeds the diffusion rate, until the temperature
distribution reaches a steady state. In Figure 3a,b, the two effects lead to a retardation in the change
in water vapour content, which is equivalent to the moisture content of the gas-phase, over time.
Comparing Figure 3a,b shows the Soret effect on the concentration distribution with a negative Soret
coefficient. The Soret effect, depending on its sign will accelerate or delay the change in composition,
as long as the temperature gradient has not reached a steady state. During the first dynamic drying
effect it deaccelerates the vapour diffusion. In the second dynamic drying effect, where the evaporation
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rate outbalances the diffusion rate, the Soret effects leads to further retardation. An inverted effect is
observed for positive Soret coefficients. A steady state is reached when the change in the temperature
gradient over time is zero, leading to a constant evaporation rate. This is the start of the steady state
drying process, seen by the constant change in water vapour content over the length of the channel,
independent of the time.

Figure 2. Results of the case study on the impact of the heat conductivity (λ), particle size (d) and
bulk temperature (Tbulk) on the relative dynamic drying time with varying Soret coefficients sTW

(sTW,lit = sTW /T). The base case is: λ = 0.0012, d = 0.001, Tbulk = 120.

Figure 3. The change in the water vapour fraction during the dynamic drying process, over the drying
time and the channel length. The water vapour fraction is highlighted with a white to blue colour map.
(a), simulation without Soret effect (left) (b) Simulation with Soret effect (right), seen by the retardation
of the vapor diffusion.

The derivation of the Soret effect from nonequilibrium thermodynamics already shows its
nonequilibrium character. This is supported by the simulation, where the Soret effect only is visible
during the dynamic drying processes, provided that the dynamic change in temperature outlast the
dynamic change in concentration. As soon as the change in temperature gradient reaches a steady
state, as indicated by the decreasing temperature gradient profiles with increasing drying time in
Figure 4, the effect vanishes. Any dynamic disturbances on the temperature distribution on the system
will reactivate the effect, in a numerical simulation this can be shown by setting a nonlinear profile for
the heat flux at the boundary.
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Figure 4. Temperature over the channel length at different drying times. With increasing drying time
the change in the temperature gradient decreases, approaching a steady state.

4. Discussion

Deriving flux equations directly from linear nonequilibrium thermodynamics, result in the general
first principle flux equations, seen in Equations (27) and (28), which are applicable to any isotropic
drying process without external pressure gradients assuming the liquid phase is a pure substance.
The studied drying process model contains all physical prerequisites to model nonequilirium effects,
including multiple phases and phase-shift. Therefore, the results concerning the relevance of the Soret
effect can find a broad applicability.

The numerical simulations show that the Soret effect only appears during dynamic operations.
As long as the dynamic change in temperature outlast the dynamic change in concentration, the Soret
effect will be relevant for all dynamic operations. It can therefore be concluded from the simulations
that the effect has a critical impact on the dynamic part of the drying process. The variation in the
coefficient and variable ranges shows up to a 10 fold increase in relative dynamic drying time for a
drying temperature of 240 ◦C when considering the Soret effect, compared to the case where the Soret
effect is neglected.

The dynamic part of the drying operation simulated with the drying model compared to the
total drying time is negligible. This is supported by varying the coefficients and variables with the
highest impact on the dynamic operations in the model. Even in ranges outside normal drying
operations the dynamic drying time is negligible compared to the total drying time. The Soret effect is
therefore concluded to be of no relevance for any conventional drying operations where the steady
state operations predominates. From the numerical simulation it can also be concluded that for all
isotropic porous media with simple pore structure, the Soret effect does not need to be regarded.

However, as the total drying time decreases for very small particles, the dynamic drying time
becomes more predominant. This can be seen when dynamic temperature shifts occur during the total
drying process for e.g., spray drying of suspended particles with particle sizes of a few micrometers.
This should draw interest to consider the Soret effect, when modelling the drying process [20].

For nanoscale systems dynamic processes heavily predominate the drying of thin layers.
Investigation of the impact of the Soret effect could help understand the formation of specific material
structures [21].

In this contribution the consideration by i.a., Keey [2] and Kowalski [11] that the Soret effect does
not have a relevant impact on conventional drying processes is supported by numerical simulations.
Moreover, the results of the study presented stress that the consideration is only valid provided that
steady state operations predominate the drying process. It can further by argued based on these results
that in any drying process with predominating dynamic heating operations the Soret effect can have a
crucial impact on the drying operation.
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Nomenclature

Latin letters
ai,m unit tensor with mass fraction -
a thermal diffusivity m2 s−1

Aj affinity of a chemical reaction J mol−1

C concentration mol/m3

cp heat capacity J/(mol·K)
d particle size (radius) m
D molar diffusion constant m2/s
Dw,air molar diffusion constant of water in air m2/s
DTW thermodiffusion coefficient m2/s
Fi mass force -
ji mass flux kg/(m2s)
Ji general flux -
Jrj chemical reaction rate of component j mol/(s·m3)
Jq heat flux W/m2

Ju conduction energy flux W/m2

kL mass transfer coefficient m/s
L length m
m mass kg
M molar mass kg/mol
n amount of substance mol
Nu Nussel number -
P pressure Pa
Pr Prantl number -
R universal gas constant J/(mol·K)
Re Reynold number -
sTW Soret coefficient -
s molar entropy J/(mol·K)
t time s
T temperature ◦C or K
u molar internal energy J/mol
v molarvolume m3/mol
xi mole fraction -
Xi moisture Content of component i kg/kg
Xvap indicator gas-phase moisture content kg/kg
Xrel,vap relative moisture content -

Greek letters
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α heat transfer coefficient W/(m2K)
αc factor -
δ boundary layer thickness m
χ thermodynamic force -
σ entropy production -
ω mass fraction kg/kg
µi chemical potential -
ν kinematic viscosity m2 s−1

λ thermal conductivity W/(m·K)
Λij phenomenological constant -
∆H latent heat j/mol
ρs density of dry material mol/m3 or kg/m3

ρ density of fluid kg/m3

φ porosity m3/m3

Ψ dissipation function -
τ shear stress Pa
ν kinetic energy J

Sub- and superscripts
diss dissipative
g gas/vapour phase
i component i
l liquid phase
M mass
n amout of components
Q heat
q heat
T at constant temperature
tot total
v vapour phase
VL vapour liquid interface
W water
∞ bulk

References

1. Takamte, G.; Edoun, M.; Monkam, L.; Kuitche, A.; Kamga, R. Numerical Simulation of Convective Drying
of Mangoes (mangifera Indica L.) Under Variable Thermal Conditions. Inter. J. Therm. Technol. 2013, 3,
48–52.

2. Keey, R.B. Drying Principles and Practice, 1st ed.; Pergamon Press: Oxford, NY, USA, 1972; p. xix, 358p.
3. Kowalski, S.J. Thermodynamics of Viscoelastic Materials Under Drying; Springer: Berlin/Heidelberg, Germany,

2003; pp. 80–95. [CrossRef]
4. de Groot, S.R.; Mazur, P. Non–Equilibrium Thermodynamics; Dover Publications: New York, NY, USA, 1984;

ISBN 9780486647418.
5. Demirel, Y. Chapter 3—Fundamentals of Nonequilibrium Thermodynamics. In Nonequilibrium

Thermodynamics; Elsevier: Amsterdam, The Netherlands, 2014; pp. 119–176. [CrossRef]
6. Kirschner, I.; Molnár, P. Relation between Curie’s principle and Onsager’s reciprocity. Acta Phys. Hung.

1989, 66, 277–287. [CrossRef]
7. Chen, X.D.; Putranto, A. Modelling Drying Processes: A Reaction Engineering Approach; Cambridge University

Press: Cambridge, UK, 2010; Volume 9781107012103, pp. 1–214. [CrossRef]
8. Luikov, A.V. Systems of differential equations of heat and mass transfer in capillary-porous bodies (review).

Inter. J. Heat Mass Transf. 1975, 18, 1–14. [CrossRef]
9. Nadi, F.; Rahimi, G.H.; Younsi, R.; Tavakoli, T.; Hamidi-Esfahani, Z. Numerical Simulation of Vacuum

Drying by Luikov’s Equations. Dry. Technol. 2012, 30, 197–206. [CrossRef]

http://dx.doi.org/10.1007/978-3-540-36405-46
http://dx.doi.org/10.1016/B978-0-444-59557-7.00003-5
http://dx.doi.org/10.1007/BF03155798
http://dx.doi.org/10.1017/CBO9780511997846
http://dx.doi.org/10.1016/0017-9310(75)90002-2
http://dx.doi.org/10.1080/07373937.2011.595860


ChemEngineering 2020, 4, 13 14 of 14

10. Cussler, E.L. Diffusion Mass Transfer in a Fluid System; Cambridge University Press: Cambridge, UK, 2009.
[CrossRef]

11. Kowalski, S.J. Characterization of drying processes. In Thermomechanics of Drying Processes; Springer:
Berlin/Heidelberg, Germany, 2003; Volume 8, pp. 24–30. [CrossRef]

12. Saghir, M.Z.; Jiang, C.G.; Chacha, M.; Yan, Y.; Khawaja, M.; Pan, S. 9—Thermodiffusion in Porous Media.
In Transport Phenomena in Porous Media III; Pergamon: Oxford, UK, 2005. [CrossRef]

13. Luikov, A.V. Heat and Mass Transfer in Capillary-Porous Bodies. In Advances in Heat Transfer; Elsevier
Science: Amsterdam, The Netherlands, 1964; pp. 123–184.

14. Avramidis, S.; Hatzikiriakos, S.G.; Siau, J.F. An irreversible thermodynamics model for unsteady-state
nonisothermal moisture diffusion in wood. Wood Sci. Technol. 1994, 28, 349–358. [CrossRef]

15. Kempers, L.J. A comprehensive thermodynamic theory of the soret effect in a multicomponent gas, liquid,
or solid. J. Chem. Phys. 2001, 115, 6330–6341. [CrossRef]

16. Chase, M.W., Jr. NIST-JANAF Themochemical Tables, Fourth Edition. J. Phys. Chem. Ref. Data Monogr.
1998, 9, 1–1951.

17. Chen, X.D. Moisture diffusivity in food and biological materials. Dry. Technol. 2007, 25, 1203–1213.
[CrossRef]

18. Berechnungsmethoden für Stoffeigenschaften. In VDI-Wärmeatlas; Springer: Berlin/Heidelberg, Germany,
1997; pp. 129–510. [CrossRef]

19. Easteal, A.J.; Price, W.E.; Woolf, L.A. Diaphragm cell for high-temperature diffusion measurements. Tracer
diffusion coefficients for water to 363 K. J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases 1989,
85, 1091–1097. [CrossRef]

20. Handscomb, C.S.; Kraft, M.; Bayly, A.E. A new model for the drying of droplets containing suspended
solids. Chem. Eng. Sci. 2009, 64, 628–637. [CrossRef]

21. Schmidt-Hansberg, B.; Klein, M.F.; Peters, K.; Buss, F.; Pfeifer, J.; Walheim, S.; Colsmann, A.; Lemmer, U.;
Scharfer, P.; Schabel, W. In situ monitoring the drying kinetics of knife coated polymer-fullerene films for
organic solar cells. J. Appl. Phys. 2009, 106. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1017/CBO9780511805134
http://dx.doi.org/10.1007/978-3-540-36405-4_3
http://dx.doi.org/10.1016/B978-008044490-1/50013-2
http://dx.doi.org/10.1007/BF00195282
http://dx.doi.org/10.1063/1.1398315
http://dx.doi.org/10.1080/07373930701438592
http://dx.doi.org/10.1007/978-3-662-10745-4_4
http://dx.doi.org/10.1039/f19898501091
http://dx.doi.org/10.1016/j.ces.2008.04.051
http://dx.doi.org/10.1063/1.3270402
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Linear Nonequilibrium Thermodynamic Derivation
	Drying System
	Thermodynamic Forces for a n-Component Drying System
	Heat and Mass Flux for a Binary Drying System

	Results
	Drying System and Model
	Implementation of the Drying Model
	Flux Equations
	Soret Effect
	Governing Equations
	Boundary and Initial Conditions
	Numerical Implementation

	Simulation Results

	Discussion
	References

