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Abstract: A new porous activated carbon (AC) material with very high specific surface area (3193 m2 g−1)
was prepared by the carbonization of a colloidal silica-templated melamine–formaldehyde (MF)
polymer composite followed by KOH-activation. Several electrical double-layer capacitor (EDLC)
cells were fabricated using this AC as the electrode material. A number of organic solvent-based
electrolyte formulations were examined to optimize the EDLC performance. Both high specific
discharge capacitance of 130.5 F g−1 and energy density 47.9 Wh kg−1 were achieved for the initial
cycling. The long-term cycling performance was also measured.

Keywords: electrical double-layer capacitor; porous activated carbon; specific surface area; maximum
operating voltage; specific capacitance; energy density

1. Introduction

An electrical double-layer capacitor (EDLC) is an electrical energy storage device that combines
the advantages of both conventional capacitors and rechargeable batteries, and offers attractive
features, such as fast storing/releasing of energy, long cycling life, and high reversibility. EDLCs store
energy by electrostatic absorption of ions (both cations and anions) at the interface between the
electrode and electrolyte. Consequently, this process does not involve electron transfer between the
electrode and electrolyte (i.e., a non-faradic process) [1]. This mechanism allows EDLCs to deliver much
higher charging/discharging rate (usually in seconds) and longer cycling life (typically >10,000 cycles)
compared to that of batteries [2–5]. However, the use of EDLC as a primary energy storage device is
not practical due to their very low energy density (~one order in magnitude less than Li-ion batteries).
The energy density of an EDLC cell is directly proportional to its specific capacitance (C) and the square
of its maximum operating voltage (OPV) and is described by the equation: E = 1

2 CV2, where V is the
maximum OPV [6,7]. Since energy is stored by the accumulation of ions at the electrode-electrolyte
interface, the C of EDLCs is strongly correlated with the specific surface area (SSA) of the electrodes.
Accordingly, to enhance the energy density of EDLCs, it is essential to develop a porous electrode
material with a very high SSA, and a matching electrolyte that can operate at a higher OPV [7].
Besides high SSA and maximum OPV, other properties of the electrode-electrolyte materials that
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influence the accumulation of ions include pore diameter and pore distribution [8], dotting of hetero
atoms [9], surface wettability [10] and surface roughness [11].

In the past few years, numerous carbon-based EDLC electrode materials have been reported
including AC, carbon nanoparticles (CNPs) [12], carbon nanotubes (CNTs) [13,14], graphene and
templated carbon [15–17]. Among these materials, porous AC materials are the most studied and the
most extensively used for commercial EDLCs, because of their high electrical conductivity [18], excellent
chemical/electrochemical stability, low cost, convenient preparation and abundance of precursor sources.
Compared with other carbon-based materials, the supreme high SSA of AC materials has been proved
by many studies, which lead to superior capacitance values. Ruoff et al. have presented the synthesis
of graphene oxide (GO)-derived carbon with SSA ~3100 m2 g−1 by microwave treatment and KOH
activation [19,20]. Niu et al. prepared carbon aerogel from resorcinol-formaldehyde (RF) activated by
Na2CO3 and CO2, with SSA 3431 m2 g−1 [21]. Jung et al. achieved glucose-derived foam-like graphene
with SSA up to 3657 m2 g−1 by both physical (CO2) and chemical (KOH) activation [22]. By contrast,
the theoretical SSAs of carbon nanotubes (CNTs) and graphene are only 1300 m2 g−1 and 2630 m2 g−1,
respectively [16].

Liquid electrolytes for EDLCs can be classified into three major categories: aqueous-based,
ionic liquid (IL)-based and organic solvent-based [6,7,23,24]. The maximum OPV of aqueous-based
electrolytes is limited to ~1.0 V (for strong acid/base electrolytes) or ~1.8 V (for neutral electrolytes)
due to the poor redox potential window of H2/O2. Thus, despite having very high ionic conductivity
(>100 mS cm−1), aqueous electrolyte-based EDLCs cannot deliver high energy density because of their
low OPV. By contrast, IL-based electrolytes display much higher OPV (as high as 3.5–3.7 V) [23,25–27] but
their high viscosity properties lead to low electrolyte conductivity [28,29]—a scenario not good for fast
charge and discharge properties. Consequently, the current state-of-the-art electrolytes for EDLCs are
organic-solvent-based, e.g., 1M tetraethylammonium tetrafluoroborate (TEA-BF4) in acetonitrile (AN).
This electrolyte displays excellent ionic conductivity (56 mS cm−1 [30]), which minimizes the impedance
of EDLCs and enables them to be operated at very high power density. However, the maximum OPV
of this electrolyte is limited to only 2.7 V, beyond which the cycling lifetime is significantly shortened.
Various organic solvents, such as adiponitrile (APN) [31,32], sulfones [33] and carbonates [34], have been
extensively studied for EDLC electrolytes (Table 1). Unfortunately, they typically suffer from insufficient
solubility to electrolyte salts and display low ionic conductivity. Electrolytes with higher OPV with the
compromise of other properties have also been developed (Table 2). Recently, DME (dimethoxyethane)
has been reported as another promising solvent for EDLC electrolytes. DME possesses very low
viscosity (which may significantly improve the ionic conductivity), moderate permittivity and high
DN number (which provides good solubility of electrolyte salts). Jänes et al. reported an electrolyte
composed of 60% of 1-ethyl-3-methyl imidazolium (EMIM-BF4) and 40% DME (v/v)—which displayed
an ionic conductivity of 24.2 mS cm−1 [35]. The electrochemical stability of DME is also excellent.
Ruther et al. reported EDLCs based on 1M sodium hexafluorophosphate (NaPF6) in DME electrolyte
with an OPV of 3.5 V [36].

Table 1. Physical properties of commonly used organic solvents for electrical double-layer capacitor
(EDLC) electrolytes.

Solvent Abbr. MW
(g·mol−1)

Density
(g cm−3)

m.p. (◦C) b.p. (◦C) Permittivity (25 ◦C) Viscosity (25 ◦C) (cPs) DN Number
(kcal·mol−1)

Acetonitrile AN 41.05 0.786 −46 81 37.5 0.34 14.1

Adiponitrile ADN 108.14 0.951 1–3 295.1 30 [23] 5.8 —

Ethylene
carbonate EC 88.06 1.321 34–37 243 90.5 (40 ◦C) 1.919 (40 ◦C) 16.4

Dimethyl
carbonate DMC 90.08 1.073 2–4 90.1 3.20 0.664 17.2

Dimethoxy
ethane DME 90.12 0.867 −58 85 7.2 0.46 20

Propylene
carbonate PC 102.09 1.205 −48.8 242 65.5 2.50 15.1
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Table 2. Reported organic solvent-based electrolytes for the EDLCs.

Solute Solvent Composition χ (25 ◦C) (mS cm−1) Maximum OPV (V) Ref.

1 M LiPF6 AN 50 2.7

[30]

1 M TEA-BF4 AN 56 2.7

1 M LiBF4 AN 18 2.7

1 M LiPF6 PC 5.8 2.7

1 M TEA-BF4 PC 13 2.7

1 M LiBF4 PC 3.4 2.7

0.7 M TEA-BF4 ADN 4.3 3.75 [31]

1 M SBP-BF4 EiPS (ethyl isopropyl sulfone) 3.7 [33]

1 M LiPF6 EC/DMC 1/1 v/v ~9 3.2
[34]

1 M LiCF3SO3 EC/DMC 1/1 v/v Low stability

1 M NaPF6 DME 12 3.5 [36]

1 M NaPF6 EC/PC/DMC/EA 1/1/1/0.5 v/v ~11 3.4 [37]

1 M NaPF6 EC/DMC 3.4
[38]

1 M NaClO4 EC/DMC 3.2

60% v/v EMIM-BF4 DME 40% v/v 24.2 2.7 [35]

In this work, we report the preparation of a new porous AC material by using MF as the precursor,
and silica nanoparticles as the hard template. Our product provided a very high SSA (3193 m2 g−1).
To identify a suitable electrolyte for this AC material, we prepared and examined the ionic conductivity
of 12 formulations and fabricated EDLC coin cells with the best formulations. Several electrolytes
displayed excellent capacitance with OPV up to 3.25 V.

2. Experimental

2.1. Materials

48–51 wt.% hydrofluoric (HF) aqueous solution; formaldehyde (37 wt.% aqueous solution);
Starch (from potato, soluble); NaPF6 (99+%); DME (99+%, stab. with BHT); EMIM-BF4 (98+%);
TEA-BF4 (99%) were all purchased from Alfa Aesar. Melamine, 99+%; KOH; LP30 electrolyte (1.0 M
LiPF6 in EC/DMC = 50/50 (v/v), battery grade); EC (anhydrous, 99%) were purchased from Sigma
Aldrich and used as received.

2.2. Synthesis and Characterizations of the Electrode Materials

The porous AC material for the EDLC electrodes was synthesized as follows:
Synthesis of porous carbon derived from melamine–formaldehyde (PC–MF). In a 250 mL

round bottom flask, 20 mL 40 wt.% colloidal silica (~8 g SiO2) was diluted with 100 mL DI water and
then heated to ~60 ◦C. In a 50 mL round bottom flask, 8.4 g of melamine and 17.34 g (15.9 mL) of
formaldehyde solution (37 wt.%) were mixed (molar ratio melamine/formaldehyde = 1/3.2) and heated
to 80 ◦C with stirring. After the precursor solution became clear, heating was ceased and added to the
colloidal silica suspension. Subsequently, 1 mL of acetic acid was added as the catalyst. After ~10 min,
a white product was formed. The stirring and heating were continued overnight. Then, the product
(SiO2@MF) was separated by centrifuge, washed with DI water to remove any acid, and dried in an
oven at 60 ◦C. Yield: 22.4 g.

The SiO2@MF composite was calcined in a tube furnace under argon at 900 ◦C for 2 h with
a heating rate of 2 ◦C/min. Subsequently, SiO2 was removed by stirring in a 10 wt.% HF solution
overnight. The product (PC–MF) was isolated by centrifuge, washed with DI water, and dried in an
oven at 60 ◦C. Yield: 1.18 g.



ChemEngineering 2020, 4, 43 4 of 15

Synthesis of porous carbon derived from starch (PC–Starch). In a 250 mL beaker, 15.0 g of
soluble starch was dissolved in 60 mL DI water at 80 ◦C with vigorous stirring. When a transparent
solution was formed, 20 mL of 40 wt.% colloidal silica dispersion was added slowly. After vigorous
mechanical stirring overnight, the gel-like mixture was poured into a watch glass and allowed to cool
down naturally. The jelly-like product (SiO2@starch) was further dried at 150 ◦C for 24 h. Yield: 22.9 g.
The subsequent carbonization and HF etching process (similar to PC–MF) produced PC–Starch.
Yield: 2.81 g. Since the BET results of PC–Starch were inferior to that of PC–MF, we did not pursue the
activation process (Table 3).

Table 3. BET results of new activated carbon (AC) materials.

Carbon
Precursor

Carbonization
Yield from ~15 g

Precursor

BET before KOH Activation BET after KOH Activation

SSA (m2 g−1)
Pore Volume

(cm3 g−1)
Average Pore

Size (nm) SSA (m2 g−1)
Pore Volume

(cm3 g−1)
Average Pore

Size (nm)

PC–Starch 1.18 g 676.202 1.679 12.069 — — —
PC–MF 2.81 g 823.343 1.634 3.723 3193.395 3.372 3.535

Activation of PC–MF with KOH. One gram of PC–MF was thoroughly mixed with KOH
(1:4 wt./wt.) manually for 30 min in a mortar. The mixture was transferred to an Al2O3 boat and heated
in a tube furnace at 800 ◦C for 2 h under Ar flow, with a heating rate of 5 ◦C/min. The product was
washed with DI water and refluxed in 1 M HCl solution overnight to remove all base and metal ions.
The KOH-activated porous AC product (PC–KOH) was washed with DI water until the filtrate was
neutral. Finally, the product was dried in an oven at 60 ◦C. Yield: ~216 mg.

BET and SEM characterizations. The BET measurements, as shown in Table 3, for PC–MF,
PC–Starch, and PC–KOH were carried out with a two-channel Nova Quantachrome® 2200e surface
area & pore size analyzer. SEM images were taken in a JEOL JSM5900LV (JEOL Ltd., Tokyo, Japan)
scanning electron microscope.

2.3. Formulations of the Electrolytes and Ionic Conductivity Measurement

As depicted in Table 4, we have prepared 12 electrolyte formulations with various salt-solution
compositions. Their ionic conductivities were measured by a Mettler Toledo S230-Kit conductivity
meter in an environmental chamber set at 25 ◦C [39]. The calibration of the conductivity meter
was performed using a standard (aqueous 0.01 mol L−1 KCl solution with an ionic conductivity of
1.314 mS cm−1 at 25 ◦C).

Table 4. Conductivity of the electrolyte formulations designed in this study.

Electrolyte χ (25 ◦C) (mS cm−1) a Our Measurement Literature

#1 EMIM–BF4/DME = 6/4 24.7 24.2
#2 EMIM–BF4/DME = 4/6 Not miscible
#3 EMIM–BF4/EC/DME = 4/1/5 25.8
#4 EMIM–BF4/EC/DME = 4/3/3 26.8
#5 1M TEA–BF4 in DME Not miscible
#6 1M TEA–BF4 in EC/DME = 1/4 Not miscible
#7 1M TEA–BF4 in EC/DME = 1/1 13.7
#8 1M LiPF6 in EC/DMC = 1/1 (LP30) Commercial sample ~9
#9 1M NaBF4 in EC/DME = 1/1 Not miscible
#10 1M NaPF6 in DME 12.8
#11 1M NaPF6 in EC/DME = 1/4 16.6
#12 1M NaPF6 in EC/DME = 1/1 12.3

a All solvents are in volume ratio.
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2.4. Fabrication of EDLC Coin Cells

Fabrication of coin cells. First, an electrode slurry was prepared by mixing 90 wt.% PC–KOH
and 10 wt.% carboxymethyl cellulose (CMC) binder in a water/ethanol (1:1) solution. Second, a thin
film of the slurry was casted over an aluminum foil using a doctor blade and then dried at 60 ◦C for
24 h. Third, the AC-coated aluminum foil was punched to obtain electrode discs. Each disc contained
~1.8 mg (±0.1 mg) of the composite electrode material. Finally, CR2032-type coin cells were assembled
in an Ar-filled glove box with oxygen content less than 1 ppm. The cells were symmetric with Celgard
2535 as the separator.

2.5. Electrochemical Measurements

Cyclic voltammetry (CV). CV scans were performed using a PARSTAT 4000A Potentiostat
Galvanostat instrument. Two-electrode test cells were initially charged from the open circuit voltage to
the maximum voltage (2.50 V to 3.50 V with a gradual increase of 0.25 V per test run). Subsequently,
the voltage was scanned between 0 and maximum at a scan rate of 10 mV s−1.

Electrochemical impedance spectroscopy (EIS). EIS data were collected with the above
instrument in the frequency range of 0.1 MHz to 1 Hz with a potential amplitude of 10 mV.

Cycling performance. The cycling performance of the cell was investigated using an MTI battery
analyzer (BST8-WA). Initially, we performed 50 charge–discharge cycles with different formulations at
current density of 0.5, 1.0, 2.0, and 4.0 A g−1 and then a long-term (4000 cycles) cycling test with the
best two electrolytes.

3. Results and Discussion

3.1. Synthesis and Properties of the Electrode Material

A new porous AC material was synthesized by using MF as the precursor and silica nanoparticles
as the hard template. We also attempt to apply the same method but using a natural polymeric
material precursor, such as corn starch, as an alternative carbon source. The advantage of starch over
MF is that we could skip the polymerization process. However, in practice this is a time-consuming
process and difficult to apply for the production in large scale with the apparatus available in our
lab. The jelly-like SiO2@starch became a stone-like hard material, which is very difficult to blend
with KOH. After calcination and HF etching, the porous AC material derived from MF (PC-MF)
and starch (PC-Starch) were characterized by BET. The results are depicted in Figure 1 and Table 3.
As shown in Table 3, both porous carbon materials displayed high SSA and excellent pore volume.
The carbonization process resulted in high yield for PC-Starch (about two times higher than that of
PC-MF). However, PC-MF displayed much higher SSA, while the average pore size of PC-starch is
much larger (12.07 nm vs. 3.72 nm), and the size distribution is also narrower.
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To further increase SSA, KOH activation was applied to the PC-MF material. The KOH/carbon
ratio during activation significantly influences the properties of the carbon material. Lu et al. compared
the different activation results by using KOH:carbon ratios of 1:2, 1:4 and 1:5. They showed that much
superior SSA and mesoporous pore volume can be obtained when the ratio equals 1:4 [40]. In the recent
past, AC materials with high SSA have been prepared by KOH activation using a variety of carbon
precursors, viz., pollen [41], wood powder [42] and other biomasses [43]. The KOH activation process
has been reported to give the highest SSA among all reported methods, viz., surface treatment with
steam, CO or CO2, and chemical activation with ZnCl2, Na2CO3 and phosphoric acid. Although the
KOH activation has been widely used, the activation mechanism is not well understood. The reaction
includes multiple steps and is very complicated. In general, potassium ions are reduced to metallic
potassium and carbon is partially oxidized to CO or CO2, which create pores and voids in the carbon
matrix, leading to significant increase in SSA [44]. Most of these studies used a KOH:carbon ratio of
1:4. It is important to note that ~80% of the mass of carbon is lost during the KOH activation process.
On the positive side, it is an excellent method for obtaining very high SSA materials (3293 m2 g−1).
Remarkably, the pore volume was also increased by ~106%.

The SEM images display the morphology changes of the porous carbon material before and after
the KOH activation process (Figure 2). Clearly, both of them are highly porous materials. However,
visually PC-MF is an amorphous structure containing many pores with diameter >50 nm (Figure 2a,d),
but after the KOH activation these pores have collapsed—only diameters <20 nm can be seen in
Figure 3d. We believe that the multilayer structure of KOH activated PC-MF is possibly due to the
formation of graphitic carbon (Figure 2c).
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3.2. Electrolyte Formulations

In EDLC devices, an electrolyte not only influences the maximum OPV but also the specific
capacitance of the cell. It is very important that the electrolyte be closely matched with the properties of
the AC (viz., surface area, pore volume and pore diameter). High surface area allows more absorptions
of ions, while pore volume facilitates electrolyte penetration in the AC (solvent reservoir). If the
AC possesses more micropores (pore diameter <2 nm), the sizes of cation and anion species and the
ion-solvent interaction become relevant [28]. BF4

− has been the best choice to increase the specific
capacitance because of its small size, which permits more anions to accumulate per unit surface area [28].
Additionally, small ions can penetrate to small pores on the electrode surface [45]. Most importantly,
ILs containing BF4

− usually display higher electrochemical stability and ionic conductivity than other
widely used anions, such as TFSI− and PF6

− [23,28]. However, because of their higher lattice energy,
typically the solubility of BF4

−-based ILs in organic solvents is comparatively lower, and for the same
reason the ionic conductivity of LiBF4 solution is poor (Table 1). Mousavi et al. also observed poor
wettability of EMIM-BF4 with the mesoporous carbon model electrodes [28], leading to poor overall
EDLC performance.

Although inorganic cations, such as Li+ and Na+, have dimensions that are much smaller than
organic cations like TEA+ or EMIM+, the kinetics of their adsorption/desorption process is sluggish
because of a strong solvation effect. Theoretical simulation and experimental characterization studies
have indicated that solvation ion clusters, such as Li+(EC)2 or Li+(EC)3 complexes are the main cationic
species in solutions made of polar organic solvents [46]. By contrast, in the “soft” organic cations,
the charge is effectively distributed/shielded and the interaction with the solvent molecules is much
weaker. As shown in Table 1, TEA-BF4 in organic solution displayed much higher conductivity than
Li+/Na+ salt-based formulations. However, the advantage of Li+/Na+ is that they have no redox
stability concerns.



ChemEngineering 2020, 4, 43 8 of 15

As mentioned earlier, organic solvents for EDLCs must possess high electrochemical stability.
A good solvent system should also offer (a) low viscosity, which typically leads to high ionic
conductivity; (b) high donor number, which indicates the ability of a solvent to solvate cations;
and (c) high permittivity, which increases the dissociation of the solute cations/anions. Based on this
understanding, we prepared several electrolyte formulations listed in Table 4.

As shown in Table 2, EC possesses high permittivity and donor number, which means EC can
readily dissolve high lattice energy salts and improve ionic conductivity by creating better cation/anion
dissociation. Furthermore, previous reports have demonstrated its electrochemical stability window
(ESW) of at least ~3.2 V when combined with other carbonate solvents [34,47,48]. However, EC has a
melting point slightly higher than room temperature, and comparatively high viscosity; which calls
for a “thinner” co-solvent. We decided to use DME instead of most popular low viscosity carbonates
(PC/DMC) because of its high donor number, low viscosity, low m.p. and excellent ESW—which could
compensate the drawbacks of EC.

The ionic conductivity results met our expectations very well. The properties of solutions #2,
#3 and #4 proved that a small proportion of EC could enhance the solubility of EMIM-BF4; while a
higher proportion of EC leads to slightly better conductivity. During the preparation of solutions
#5, #6 and #7 we noticed that EC facilitates the solubility of TEA-BF4. The electrolyte #11 (which
contains 20% EC) showed much higher conductivity than #12 (pure DME), but when the ratio of
EC was increased to 50%, the conductivity of #13 dropped, possibly because of the enhancement of
solution viscosity. Accordingly, we selected formulations #1, #7, #8, #10, #11 and #12 as the electrolytes
for our EDLC experiments.

3.3. Electrochemical Performance

Cyclic voltammetry measurements. The maximum OPV of an EDLC coin cell is best determined
by the CV experiment. We started scanning from 0–2.5 V, and then gradually increased the upper limit
of OPV, until unwanted redox peaks appeared at the high potential (the “sharp peak”). This is typically
due to the oxidation reaction on the anode with concurrent reduction of the electrolyte, and/or the
reduction reaction on the cathode with simultaneous oxidation in the electrolyte. This CV study allows
us to determine the approximate range of the maximum OPV. The results can be summarized as follows:
the maximum OPV was between 2.50–2.75 V for EMIM-BF4/DME = 6/4 (#1); 3.0–3.25 V for 1M LiPF6 in
EC/DMC = 1/1 (#8); 3.25–3.50 V for TEA-BF4 in EC/DME (#7); 3.0–3.25 V for 1M NaPF6 in DME (#10);
3.0–3.25 V for 1M NaPF6 in DME/EC = 4/1 (#11) and 2.75–3.0 V for 1M NaPF6 in DME/EC = 1/1 (#12).
When scanned at voltage lower than that of maximum OPV, the CV curves were rectangular shape,
showing behavior of EDLC system was nearly ideal capacitive. At cell potentials exceeding the
maximum OPV, an exponential increase in current density occurs. This may be due to the adsorption
of Li+ and partial charge transfer at negatively charged carbon electrode. The oxidation of surface
functionalities at the positively charged carbon electrode cannot be ruled out [49]. The abnormal bump
in Figure 3b may response to the reduction of trace H2O present in the electrolyte.

As can be seen from Figure 3a, the ESW of #1 is much narrower compared to the other formulations.
This might be due to poor electrochemical stability of EMIM+, which possesses an acidic hydrogen
atom at 2-position. The electrolyte #7 displayed the best ESW (i.e., high electrochemical stability of
both the cation and anion) among all formulations we studied. Several research groups have reported
similar electrochemical stability of electrolytes containing BF4

− rather than PF6
− [50].

By comparing the CV curves for samples #10, #11 and #12 (Figure 3d–f), we could see the
“sharp peaks” appearing at lower voltages when more EC was added. This indicates that a higher
ratio of EC lowers the electrochemical stability of the electrolytes. Previous research studies [23,28,50]
also observed this behavior and proposed that the H-transfer reaction between fluorinated anions
(PF6

−, BF4
− and FSI−) and carbonate solvents is responsible for marked decrease the oxidative stability.

Electrochemical impedance spectroscopy (EIS). The inner resistance of the EDLC cells can be
determined from the EIS and the Nyquist plots (Figure 4). Several confusing and often contradictory
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explanations to the Nyquist plots of EDLC have been proposed in the literature. We agree with
the explanation provided by Mei et al. [51]. The starting point of a Nyquist plot curve represents
the bulk electrolyte resistance RA; the semicircle at high frequency region represents the so-called
charge-transfer resistance RB (so that the internal resistance equals RA + RB); and the vertical line
at low frequencies was attributed to the capacitive behavior of the EDLC. According to this theory,
the cell with electrolyte #1 displayed the lowest internal resistance (~1.6 Ω) and an extremely small
semicircle (Figure 4a). The cells with electrolytes #7, #10, #11 and #12 have slightly larger internal
resistance than #1, and the size of their semicircles are all at the same level (Figure 4b). When comparing
electrolytes #10, #11 and #12, we can see the addition of EC decreased the bulk electrolyte resistance
(RA), which is consistent with our ionic conductivity measurement. However, the diameter of the
semicircles (RB) are much larger, as a result, the internal resistance is even higher, which is possibly
caused by the stronger solvation effect, because EC has more polarity than DME. The EIS curve of the
electrolyte #7 (1 M TEA-BF4 in EC/DME = 1/1) shows a much smaller semicircle than the electrolyte #12
(1 M NaPF6 in EC/DME = 1/1). This can be explained by the better charge-transfer kinetics, possibly
caused by the smaller size of BF4

− than PF6
− and lesser solvation effect of TEA+ than Na+, so that the

transport of ions between electrolyte and the pores on the electrode surface becomes faster. Only one
semicircle curve was obtained for the electrolyte #7, while multiple semicircles were observed for
electrolytes #10, #11 and #12. This is indicative of different charge-transfer processes of the solvated
ions. Other groups have also noticed similar high charge-transfer resistance behavior, indicating a
hindrance in transferring charge at the interface [52–54]. This may be due to a combination of many
factors, viz. (i) poor contact between the active material and current collector, (ii) high ionic resistance
of the electrolyte and high intrinsic resistance of the active material and (iii) high resistance of the
movement of ions at the electrode/electrolyte interface.
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Figure 4. Electrochemical impedance spectroscopy (EIS) of coin cells with different electrolytes.
(a) EMIM–BF4/DME = 6/4 and (b) 1 M TEA–BF4 EC/DME = 1/1, 1 M NaPF6 in DME, 1 M NaPF6 in
DME/EC = 4/1, and 1 M NaPF6 in DME/EC = 1/1.

Cycling performance of EDLC cells. The cycling performance of the EDLC cells was determined
using an MTI battery analyzer (BST8-WA). Several coin cells were prepared with six different electrolyte
formulations. Their charging-discharging cycles were recorded at different current densities: 0.5, 1.0,
2.0 and 4.0 A g−1. Figure 5 depicts the initial charging/discharging curves for all electrolytes. Specific
capacitance and energy density values were calculated based on the initial (50th) cycle discharging
time and OPV. The results are summarized in Table 5. The Coulombic efficiency (Cd/Cc) of the EDLC
cells was determined from the ratio of discharging/charging time of the displayed cycle at 1 A g−1.
It is noteworthy that although the electrolyte #1 has the lowest internal resistance and possesses a
very good C value, this system displayed the lowest E among all six formulations due to the low
OPV. For the electrolyte #8, the cell displayed the higher C and E than that of electrolytes #1 and #7,
despite a high OPV of the electrolyte #7. This may be due to the larger C caused by the small size of Li+
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compared to the organic cations, which allows more ion stacking at the electrode-electrolyte interface.
However, the huge internal resistance leads to the low coulombic efficiency of the cell, which means a
considerable loss of electrical energy. Under a constant current, the integral of voltage with respect
to time equals the electrical energy. As shown in Figure 5b, the low energy storage efficiency of cell
containing the electrolyte #8 is illustrated by the great difference between the area under the charging
curve and that under the discharging curve, which is much more severe than cells based on the
other electrolytes.
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Figure 5. The initial charging–discharging curves at different current rates of EDLCs with electrolytes
(a) #1, EMIM–BF4/DME = 6/4 v/v, (b) #8, 1 M LiPF6 in EC/DMC = 1/1 v/v (LP30), (c) #7, 1 M TEA–BF4 in
EC/DME = 1/1 v/v, (d) #12, 1 M NaPF6 in DME/EC = 1/1 v/v, (e) #11, 1 M NaPF6 in DME/EC = 4/1 v/v,
and (f) #10, 1 M NaPF6 in DME.

Table 5. Summary of the electrochemical properties of the EDLC cells with different
electrolyte formulations.

#1 #7 #8 #10 #11 #12

Electrolyte formulation EMIM-BF4/DME
= 6/4 v/v

1 M TEA-BF4
in EC/DME =

1/1 v/v

1 M LiPF6 in
EC/DMC = 1/1

v/v (LP30)

1 M NaPF6
in DME

1 M NaPF6 in
EC/DME = 1/4

v/v

1 M NaPF6 in
EC/DME = 1/1

v/v
Maximum OPV, (V) 2.5–2.75 3.25–3.5 3.0–3.25 3.0–3.25 3.0–3.25 2.75–3.0
Internal resistance,

(Ohm) ~1.6 ~3.7 ~620 ~4.6 ~5.9 ~6.1

Coulombic efficiency a

Cd/Cc (%) 96.5 92.2 91.9 97.1 95.4 97.3

Initial specific discharge
capacitance a, C (F g−1) 112.7 87.9 113.2 102.8 130.5 119.0

Initial energy density a,
E (Wh kg−1) 29.6 37.4 46.0 34.8 47.9 37.2

a Data of the 50th cycle. Calculated at the current density of 1 A g−1.
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In contrast, the cell with the electrolyte #7 can sustain the highest OPV, although C is the lowest
among all six formulations, because of the larger size and sphere-like shape of TEA+. The planar-shape
of EMIM cation may lead to higher C (electrolyte #1). This cell also suffered a comparatively low energy
storage efficiency. To conclude, the electrolytes #10, #11 and #12 are found to be the best electrolytes
in this study, especially, the electrolyte #11, which attained the highest C and E, while recording a
Coulombic efficiency >95%.

Long-term cycling performance. Two electrolyte formulations with the best comprehensive
performance (#11, 1 M NaPF6 in EC/DME = 1/4 v/v and #10, 1 M NaPF6 in DME) were selected for
the long-term cycling test. These EDLC cells were cycled at a current density of 1.0 A g−1 and OPV
0~3.25 V for 4000 cycles, and their specific discharge capacitance were recorded (Figure 6).
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It is a common observation that supercapacitor cells made of active carbon and organic electrolytes
experience performance fading in the first 1500 cycles. This is a result of both decrease in capacitance
and increase in equivalent series resistance (ESR) [55–59]. The capacitance fading is believed to be
driven by two mechanisms. The first one is associated with the exponential function of square root of
time of ageing, while the second one is described by the Gaussian function. The first ageing mechanism
(presumably related to the degradation of electrolytes) is observed for most samples, while the second
mechanism is significant only under harsh testing conditions, such as elevated temperature and/or
increased operating voltage. The degradation rate due to the cycling ageing test is much higher than
the degradation rate due to the calendar ageing test with equivalent voltage and temperature [60–62].
We presume that the second ageing mechanism is related to the electrode active area degradation
caused probably by the decrease of potential barrier on the electrode/electrolyte interface.

As expected, both cells experienced fast capacitance decay in the first 1500 cycles, but after that
the decay rate became very minimal. For the next 2500 cycles, the specific capacitance retention of both
EDLC cells were 93.6% and 85.4%, respectively (Table 6). For the cell with 1M NaPF6 in EC/DME = 1/4
v/v electrolyte, after 4000 cycles, its specific capacitance and energy density were calculated at 71.4 F
g−1 and 26.2 Wh kg−1, respectively. These results are superior to most reported organic solvent-based
EDLCs [63–65]. Similar phenomena have been reported in the EDLC research of Väli et al. using NaPF6

in EC/DMC/PC/EA = 1/1/1/0.5 (volume ratio) as the electrolyte [37]. Since the specific discharging
capacitance was still very high and kept stable after long-term cycling, we believe the fast capacitance
fading during the first 1500 cycles was not caused by the blocking of the micro pores or the passivation
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of the electrode surfaces. We believe a part of the reasons may be due to the high contribution
of pseudocapacitance created by the N and O functionalities on the electrode surface, which has
been widely researched in symmetric supercapacitors based on KOH-activated N-doped carbon
electrodes and aqueous electrolytes [65,66]. This type of N-dope carbon electrode material could
be prepared by calcination of MF or other nitrogen-containing precursors [63,64,67]. The maximum
OPV of aqueous-electrolyte supercapacitors are usually ~1.0 V (strong-acid/base) or ~1.8 V (neutral).
However, in our experiments under higher OPV these N and O functionalities may experience slow
oxidation/reduction, leading to the decay of pseudocapacitance.

Table 6. Specific discharge capacitance retention of the KOH activated PC–MF electrode with electrolytes
#10 and #11 after 4000 cycles.

Electrolyte Formulation Initial (50th)
Cd (F g−1) 1500th Cd (F g−1)

Cd Retention of the
First 1500 Cycles (%) 4000th Cd (F g−1)

Cd Retention of the
Next 2500 Cycles (%)

1 M NaPF6 in DME (#10) 102.8 67.7 65.9% 57.8 85.4%
1 M NaPF6 in EC/DME =

1/4 v/v (#11) 130.5 76.3 58.5% 71.4 93.6%

4. Conclusions

By virtue of the equation E = 1
2 CV2, a high SSA carbon material that could provide more area for

ion stacking, and a matching electrolyte that could support high operation voltage is necessary for
achieving high energy density. We successfully prepared a very high SSA porous carbon material from
MF followed by KOH-activation. The AC material displayed an SSA of 3193 m2 g−1. To identify an
electrolyte formulation with the best comprehensive property, 12 formulations were prepared, and their
ionic conductivities were measured. The electrochemical performance of coin cells composed of carbon
electrode and six best electrolyte formulations were evaluated. With 1 M NaPF6 in EC/DME = 1/4 v/v
electrolyte, our cells could support an operation voltage up to 3.25 V, which resulted in high specific
capacitance (130.5 F g−1) and high energy density (47.9 Wh kg−1). Long-term cycling stability was also
good after 4000 cycles.
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