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Abstract: Among various mechanisms for enhancing the interfacial area between gases and liquids,
a vertical liquid jet striking a still liquid is considered an effective method. This method has vast
industrial and environmental applications, where a significant application of this method is to aerate
industrial effluents and wastewater treatment. Despite the huge interest and experimental and
numerical efforts made by the academic and scientific community in this topic, there is still a need
of further study to realize improved theoretical and computational schemes to narrow the gap
between the measured and the computed entrained air. The present study is a numerical attempt
to highlight the air being entrained by water jet when it intrudes into a still water surface in a tank
by the application of a Volume of Fluid (VOF) scheme. The VOF scheme, along with a piecewise
linear interface construction (PLIC) algorithm, is useful to follow the interface of the air and water
bubbly plume and thus can provide an estimate of the volume fraction for the gas and the liquid.
Dimensionless scaling derived from the Fronde number and Reynolds number along with geometric
similarities due to the liquid jet’s length and nozzle diameter have been incorporated to validate the
experimental data on air entrainment, penetration and void fraction. The VOF simulations for void
fraction and air-water mixing and air jet’s penetration into the water were found more comparable to
the measured values than those obtained using empirical and Euler-Euler methods. Although, small
overestimates of air entrainment rate compared to the experiments have been found, however, VOF
was found effective in reducing the gap between measurements and simulations.
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1. Introduction

The significance of the liquid plunging jet’s entrainment of a gas lies in achieving a large interfacial
area between gas and liquid, which is useful for a large number of environmental and industrial
applications. Fuel consumption optimization of ships is compromised due to the formation of a wake
on the water surface associated to air being entrained across the boundary layer [1,2]. Pressurized
water reactors (PWRs) face partially filled cold legs associated to emergency core cooling as a result of
gas entrainment when the coolant strikes the water’s surface [3,4]. Plunging jets have been proved
efficient methods to aerate industrial effluents [5–8]. Other applications include mineral-processing
flotation cells [9,10] and oxygenation of cell bioreactors [11]. In another industrial process involving the
casting of polymers and glass [12], promoting enhanced interaction between gas and liquid aeration is
significant for the efficient formation of products.

Among the several applications of the plunging jet mentioned above, aeration and floatation
of industrial effluents and wastewater treatment [8,13] represent a huge application of this method.
For aerobic treatment processes, such as the activated sludge process, plunging jet aeration systems
provide a simple and inexpensive method of supplying oxygen for wastewater treatment [13,14].
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Bin [13] has comprehensively reviewed gas entrainment by plunging liquid jets. Numerous
studies are reported in his review on single plunging jets which reveal that gas entrainment by a
plunging liquid jet is a complex process. The main quantities that determine the functioning of a
plummeting jet, including the reduced critical entrainment’s velocity, ue, and the amount of entrained
gas rate, Qg, which depends on parameters expressed as Dj, uj, ρg, ρl, g, µj, µg, v’ σ, λ, respectively,
where, Dj is the liquid jet’s diameter, uj is the liquid jet’s velocity at the time of contact with the pool
liquid, ρg is the gas density (i.e., air), ρl is the liquid’s density of the jet and the liquid in the pool, g is
the acceleration constant due to gravity, µj is the liquid viscosity (i.e., water), µg is the gas viscosity (i.e.,
air), v’ is the geometry of the case has been approximated by refereeing to a characteristic length L.

The occurrence of air entrainment associated to the water jet impacting into a liquid pool has been
found an efficient phenomenon to form larger interfacial areas between gas and liquid, for instance in
environmental industries, plunging liquid jets can cause agitation when contacting the surface of a
liquid pool to improve exchange between the gas and liquid [13,15,16]. For industrial effluent and
water treatment, the influence due to the combined inertial as well as intense turbulence is to enhance
the mass transfer of gases (i.e., nitrogen, oxygen, hydrogen sulphide, etc. and organic compounds).
Air entrainment generally occurs due to two mechanisms that complement each other, one of these
is the interfacial shear acting at the intermittent region between the water and the air, which shrinks
the air boundary layer. However, the second phenomenon relates to the entrapment of the air in the
vicinity of the plunging jet when striking a liquid pool [17]. Entrapment of air at the water surface
causes a large scale cavity with the cylindrical shape at the bottom that is pinched off, thus forming a
bubbly plume that moves downward below the impact surface of the water [18].

With a huge increase in computing power in the last few decades, several numerical models;
two-fluid [19,20]; large eddy simulation (LES) [21,22], direct numerical simulation (DNS) [23],
Euler-Euler method [22,24] and many others have been built to determine understanding of multiphase,
gas and liquid plunging jets. Among these VOF, proposed by Hirt and Nichols [25], is useful to
simulate the interface interaction between gas and liquid flows. Ma et al. [19] applied a Eulerian/Eulerian
two-fluid computational multiphase fluid dynamics (CMFD) model along with a supplement sub-grid air
entrainment model to predict the distribution of void fraction in vertical plunging water jets. Miwa et al. [4]
made use of analytical and dimensionless numbers such as the Weber number and Laplace length scale
to propose a predictive model for the computation of air entrainment ratio (entrained air rate/impinging
jet rate), which deviated from the experimental values by about 15.9%. Yin et al. [20] used the volume
of fluid and coupled level set method to investigate the numerical response of a vertical plunging jet.
The computational values were in accordance with reported literature values on the subject matter.
Different vertical jet parameters such as the air void fraction, liquid velocity field, and turbulent kinetic
energy were analyzed by altering the length between the still water level and the nozzle exit. The velocity
of the nozzle exit had no role in the size and shape of inpinging bubbles. A revised predictive equation
relating the axial separation and the centerline velocity ratio was formulated with the help of data for the
coupled level set and volume of fluid methods, and it exhibited a greater predictability capacity than the
mixture and level set methods. A comparison was drawn between turbulent kinetic characteristics such
as radial and vertical distribution and the highest value location to that of submerged jets.

Several studies have been performed to track the motion of the free surface [21,22], the distortion
of the interface between liquid and gas in columns [23,24], and the VOF has been applied to visualize
both the plunging of the liquid jet into the still liquid and the subsequent entrained bubble plume
phenomena [25,26].

The present attempt aims to focus on air being entrained by a water jet striking a still water pool using
the VOF gas-liquid model. The Navier-Stokes equations are solved using the CFD code ANSYS-Fluent.
The objective of the numerical investigation is to validate the applicability and accuracy of the VOF
model to replicate a circular water jet sinking into a still water pool. A VOF scheme along with PLIC
proved effective to characterize the distinction between the gas and liquid phase, which can prove useful
in the present case to determine the bubbly plume and void fraction along the plume. However, our
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main emphasis is to determine the distribution of air void fraction at various depths of the plume from
the water-free surface and its corresponding impact on the values of the air entrainment rate.

2. Methodology

2.1. Physical Parameters

The schematic illustration in Figure 1 shows a vertical plunging water jet of diameter Dj, which
intrudes into the still surface of a water tank at a velocity uj. The relevant dimensionless numbers, that
describe the physics of the phenomenon are the Reynolds number (Re), Froude number (Fr), and Weber
number (We). Reynolds number can be expressed as:

Re =
ρwu jD j

µw
(1)

where, u j is the jet’s velocity when impacting the still surface of the water pool, Dj is the jet’s diameter
at the instance when the jet impacts the still surface of the water, ρw is the water density, i.e., 1000 kg/m3

and µw is the water’s viscosity, i.e., 1 × 10−3 pa.s. Froude number is expressed as:

Fr =
u j√
gD j

(2)

where, g is the gravitational acceleration, i.e., 9.8 m2/s. Weber number is written as:

We =
ρwu2

j D j

σ
(3)

where, σ is the surface tension corresponding to the air-water interface, 0.072 Nm−1.
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2.2. Numerical Scheme

The computational simulation has been conducted utilizing the commercial code Fluent applying
VOF to characterize the multiphase flow. The VOF model, developed by Hirt and Nicholas [27], can
track the interface between the two phases, so it can be used in all those studies where an interface
between two phases exists. A two-equation, k-ε scheme using standard wall values in the vicinity of
the wall layer has been applied to describe the turbulence.

The VOF has been applied here to solve multiphase flows. The VOF method deals with flow equations
through averaging them in terms of volume to attain a group of equations, whereas the interface between
the gas and liquid can be followed by applying a phase marker (α), better named volume function, which
can be expressed as: (i) If α = 1 (i.e., computational cell occupies phase 1, e.g., liquid), (ii) If α = 0
(computational cell occupies phase 2, e.g., gas), (iii) 0 < α < 1 (both phases are present and an interface
exists within the computational cell). For those cells containing either phase 1 or 2, the formulation
consists of mass conservation equations and momentum conservation equations containing properties
of the phase present in the cell. If both phases exist within the cell, then the properties of the air and
water mixture are evaluated through a mean voidage of the fluids present within the respective cell,
thus ensuring to acquire a single set of equations by averaging the variables, for the present case, these
variables are density and viscosity, their averaging is expressed as:

ρ = αρl + (1− α)ρg (4)

µ = αµl + (1− α)µg (5)

Using averaging variables and considering that across the interface, the velocity corresponding to
the two phases is uniform, the continuity and momentum equations [28,29] expressed as [30,31]

∂ρ

∂t
+∇.(ρu) = 0 (6a)

∂
∂t
ρu +∇.(ρuu) = −∇p +∇.(µ∇u) + ρg + FS (6b)

where, FS symbolizes the continuum surface force (CSF) [30,32]. This force acts across the interface,
containing the interfacial and subsequent surrounding cells. FS can be expressed as:

FS = σ
ρl

1
2

(
ρl + ρg

)κ∇α (7)

where κ represents the curve of the surface due to air or water on it. κ can be computed [31,32] as:

κ = −∇.
→
n = −∇.

∇α

|∇α|
(8)

where,
→
n is the unit vector representing the surface perpendicular to the interface, however, at the wall,

the surface normal to the computational cell, adjacent to the wall will be considered [30,32,33],
→
n is

expressed as:
→
n =

→
nxcosθ+

→
nysinθ (9)

where θ is the angle between the interface and the wall and
→
nx and

→
ny stand for the unit vectors along

tangential and normal to the wall, respectively. However, this is to confirm that all simulations that
have been obtained here, are at a contact angle of 90◦ from the wall.
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Since the volume fraction, α, is a property of the fluid, which changes along with the fluid, thus,
its evolution is dictated by the simple advection relation, expressed as [34]:

∂α
∂t

+∇.uα = 0 (10)

Due to the fact the VOF model is more flexible and efficient compared to others used to track liquid-gas
interfaces, the VOF has become useful in examining a wide range of gas-liquid problems [21,35,36].
Progression of the interface as a function of time between the gas and liquid is tracked in the computational
cell using scheme, piecewise linear interface construction (PLIC). As prescribed by Youngs [37], the method
considers a linear form of the interface between the two phases within all those cells where the two
phases meet each other. Linear behavior of the interface within a cell (Figure 2) and distributions of the
normal and tangential velocity at the face have been used to compute the advection of fluid (Equation
(10)) across each face of the cell. Subsequently, the void fraction in every cell (α) is determined owing to
the fluxes, computed in the previous cell.
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Turbulence Equations

The liquid leaving the nozzle has a velocity high enough to be in a turbulent regime. The gas
entrapped due to the liquid jet interacting the surface of the still liquid pool and the gas-liquid two
phase flow thus formed, plunge into the pool of liquid at a mixed velocity in the range of turbulent
flow. Thus, it is reasonable to compute the gas-liquid jet flow in the liquid pool by application of
equations for turbulent quantities acquired by the liquid and gas. The flow variables (e.g., velocity,
pressure, etc.), contain mean and fluctuating components. Thus, incorporating the instantaneous
equations (Equation (6a,b)) having decomposed variables and utilizing averaging of Reynolds stresses to
the Navier-Stokes equations, along with the kinetic energy, k, of turbulence, and its dissipation rate, ε.
After dropping the overbar on the mean variables for convenience, The Reynolds-averaged equation
after ignoring the overbar for mean quantities can be expressed in a general form as:

∂(ρϕ)

∂t
+ div(ρuϕ) = div

(
Γϕgradϕ

)
+ Sϕ (11)

where ϕ represents the scalar variable, Γϕ is the diffusion coefficient and Sϕ is the source term.
The representation of these quantities for different variables are given in Table 1. Also, the radial (r)
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and axial (z) momentum equations along with k and ε equations and values of the respective constants
appearing in these equations are also part of this Table.

µt = Cµρk2, µe f f = µ+ µt, Cµ = 0.09, C1 = 1.44, C2 = 1.92, σk = 1.0, σε = 1.3

Transport equations relating to momentum are solved to determine turbulence quantities of the
two-phase flow by sharing the variables k and ε as well as the Reynolds stresses (i.e., −ρu’u’, −ρu’v’, u’
and v’ are fluctuating velocities along with the axial and transverse flow) by the phases across the flow.
However, in the governing equations for turbulent production (k) and its dissipation (ε), presented in
Table 1, the consequence of turbulence (i.e., Reynolds stresses) is linked to the average flow through
the standard k-ε turbulence model [38]. The standard version of the turbulence model has been chosen
in our study here due to the sensible computing time and is useful for high Reynolds number flows.

Table 1. Source terms and values of coefficients of Generic Transport Equations [37].

Equation ϕ Γϕ Sϕ

Continuity ϕ/ρ 0 0

Radial momentum v µeff −
∂p
∂r +

∂
∂z

(
µe f f

∂u
∂r

)
+ 1

r
∂
∂r

(
rµe f f

∂v
∂r

)
−

2µe f f v
r2

Axial momentum u µeff −
∂p
∂z + ∂

∂z

(
µe f f

∂u
∂z

)
+ 1

r
∂
∂r

(
rµe f f

∂v
∂z

)
+ g

k Equation k µ+
µl
σk

µt

[(
∂u
∂r + ∂v

∂z

)2
+ 2

(
∂u
∂z

)2
+ 2

(
∂v
∂r

)2
+ 2

(
v
r

)2
]
− ρε

ε Equation ε µ+
µl
σk

C1
ε
kµt

[(
∂u
∂r + ∂v

∂z

)2
+ 2

(
∂u
∂z

)2
+ 2

(
∂v
∂r

)2
+ 2

(
v
r

)2
]
−C2ρ

ε2

k

2.3. Simulation Plan

Geometry, Mesh, and Boundary Conditions

The 2d meshed domain of the front section of the plunging liquid jet assembly is shown in
Figure 3. The meshed domain is used to compute the liquid jet plunging into the pool of still water
with subsequent gas entrainment as well as the development of the bubbly plume. The computational
domain consists of a 0.15 m radius, where the height varies between 0.397, 0.42 and 0.47 m, which
comprises the liquid pool’s depth (0.32 m), nozzle pipe (50 mm), and liquid jet’s length, with values of
27, 50 and 100 mm. The liquid jet’s lengths adopted here are due to the nozzle sizes, i.e., 5, 6.83, 12.5 and
25 mm, which have been chosen here to follow Chanson’s [39] experimental setup. The dimensions of
the Chanson’s experimental tank are sufficiently large so as not to have any impact on the contact of
the water jet in the vicinity of the water-free surface. Here, the dimensions of the domain, including
sizes of the water jet and the water pool (i.e., r = 0.15 m and h = 0.47 m) are sizeable enough that the
boundaries have no influence, however, the jet’s domain is much smaller than the pool dimensions.
Due to the preference of 2d geometrical scheme and symmetry boundary conditions, the meshed
region is reduced to about 25% of the entire geometry, which is useful to reduce the computing time as
well as falling within the limitations of the computing grid storage.

The inward flowrate exiting the nozzle located at the top of the water free surface and the out
rate of the geometry is located at the bottom, also, wall and outlet pressure constitute the boundary
conditions [40]. Water flowing through the nozzle follows a constant mean velocity profile. At the
wall, no slip has been assumed. Further, an open boundary condition is considered to model the top of
the domain with gauge pressure 0 Pa. However, the outlet flow from the horizontal section of the tank
should follow pressure outlet conditions.

Clustering is applied towards the centerline of the liquid jet and the top water free surface to
track the phases owing to the liquid and the gas phases, along with the deformation of the interface
between the gas and the liquid since the tiniest gas bubble experienced in the experiment involving
plunging water jet utilizing tap water is nearly 0.7 mm [39]. Thus, the cell sizes being retained are of
asize smaller than the tiniest bubbles within the plume.
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The fluid domain can be divided into two regions: the region that has to inhibit the jet impingement
as well as the interaction regions, appropriately referred here as region of interest (ROI) between the
impinged jet and the surrounding water, the mesh size in the region of interest (ROI) may approximately
be within 0.01–0.03 mm, whereas in the region that is external to the main flow region (ROI) the mesh
size has been keep a little coarse which is around 0.7–0.85 mm. In this way we have tried to reduce
the total number of meshes with the best-attained results for the parameters of our concern (i.e., jet
impingement length and the jet diameter) with the optimized meshing.
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Along the region surrounding the centerline, the cells are quadratic having excellent computational
prospects owing to skewness factor and orthogonal quality [41]. At all faces of the computational cell,
boundary values for physical and flow properties are specified, which include gas and liquid velocity
components, acting pressure (which is atmospheric pressure in the present set-up), the level function,
the gas number density, the turbulent kinetic energy, k, and the turbulent dissipation, ε. To model the
liquid jet at the top surface of the domain, the vertical share of the jet’s velocity is set as the nozzle
outlet velocity, whereas, all remaining components of the velocity relating to the liquid and the gas as
well as the function owing to the bubble’s number density are considered as zero. As stated, before that
for pressure, a zero-gradient boundary condition has been set, however, the function associated with
the level set has been considered such that the periphery of the liquid’s jet coincides with the level
function having the zero, whereas, its value elsewhere by application of the level function is chosen
to specify its zero value that coincides with that of the periphery of the liquid jet, whereas, its value
elsewhere is equivalent to the distance from the level setting as zero. The model variables due to the
turbulence, k, and ε, relating to their free-stream values as 9 × 10−4/Re and 0.9, respectively [21] have
been set, which, have been verified to be significantly small so as to not affect the simulations.

For computations relating to fluid volumes, the mass rate at outlet boundaries has been set as less
than 10−6 and the 2-D derivatives were used in the conservation equations are discretized by the use of
the quick scheme, while, geometrical re-construction has been applied to achieve discretization of the
void fraction in advection Equation (10). The pressure-velocity coupling has been achieved through
the algorithm, pressure-inherent with the splitting of operators, PISO [42], whereas, time discretization
is used as the inherent first order function applicable to the conservation equations.

An extensive grid independence test was conducted by varying the mesh size with the same Hex
type of mesh elements. The varying mesh size with the total number of meshes along with the its effect
on the penetration length and jet diameter has been presented in Table 2.

Table 2. Grid Independence Test.

Case No. Jet Velocity
(m/s)

Mesh Size
(Millions) Element Type Mesh Provision Jet Penetration

Length/Dia

01 1.7–15.7 0.31 Hex Cooper Fine
More fine in upper region near

the jet impingement zone up till
the middle of the rig

27.3–39.7/6.83–11.2

02 1.7–15.7 0.35 Hex Cooper Fine
More fine in upper region near

the jet impingement zone up till
the middle of the rig

31.8–41.2./7.9–13.2

03 1.7–15.7 0.37 Hex Cooper Fine
More fine in upper region near

the jet impingement zone up till
the middle of the rig

34.2–45.7/10.4–17.1

04 1.7–15.7 0.41 Hex Cooper Fine
More fine in upper region near

the jet impingement zone up till
the middle of the rig

37.88–49.12/12.7–20.41

05 1.7–15.7 0.43 Hex Cooper Fine
More fine in upper region near

the jet impingement zone up till
the middle of the rig

55.79–67–56/14.77–22.18

06 1.7–15.7 0.48 Hex Cooper Fine
More fine in upper region near

the jet impingement zone up till
the middle of the rig

74.58–89.18/18.79–24.87

07 1.7–15.7 0.57 Hex Cooper Fine
More fine in upper region near

the jet impingement zone up till
the middle of the rig

84.58–99.98/19.55–24.98

08 1.7–15.7 0.64 Hex Cooper Fine
More fine in upper region near

the jet impingement zone up till
the middle of the rig

85.58–99.99/19.55–24.99

09 1.7–15.7 0.69 Hex Cooper Fine
More fine in upper region near

the jet impingement zone up till
the middle of the rig

85.58–99.99/19.55–24.99

10 1.7–15.7 0.75 Hex Cooper Fine
More fine in upper region near

the jet impingement zone up till
the middle of the rig

85.58–99.99/19.55–24.99



ChemEngineering 2020, 4, 56 9 of 19

Grid independence tests show that upon varying the density of the meshes from 0.31 million
to 0.75 million, the highest values of the jet penetration length to the diameter of the jet has been
found to be equal to its highest values i.e., (jet penetration length/jet dia 84.58–99.98/19.55–24.98).
The highest values of the jet penetration length/jet dia has been achieved at 0.57 million meshes.
After that computations were obtained for higher mesh sizes, however, the values for both quantities
only differed by 1.0–0.01/0–0.01. Thus in order to save computational resources and time it was decided
to continue with the 0.57 million meshes with the provision that a higher mesh resolution has to be
used in the area where the jet impingement occurred all the way till the end of bubbly jet. As the total
number of cases ranged to 9 for each mesh density thus we presented the cumulative results of the
grid independence in the form of the ranges for the properties of interest i.e., the jet penetration length
and the jet dia. in Table 2.

3. Numerical Results

To achieve similarity between the computations and the experimental results, non-dimensionized
equations have been set to achieve right values for the jet’s size and the jet velocity that lead to Reynold’s
numbers of 12,050–105,600 and Froude numbers ranging from 5 till about 9, which correspond to the
experimental liquid jet velocity (1.79 m/s–4.4 m/s) analogous to the empirical nozzle dia (6.83, 12.5 and
25 mm). These values were considered for the purpose of comparison with the simulations relating to
the void fraction. For evaluation of simulated outcomes for penetration of bubbly plume, experimental
values [43] related to nozzle dia (0.3, 1.3, 2.4 mm) and jet velocity, ranging from 6.79–15.7 m/s, were
used to evaluate the accuracy of the simulations. All these details including the geometrical dimensions
and fluids properties along with the respective values of Re and Fr are summarized in Table 3.

Simulations have been performed initially iterating for a steady liquid phase alone. A steady-state
solution has been achieved after time iterations of approximately 2000 with 0.015 dimensionless time,
which is equivalent to real-time of nearly 0.1 ms. The steady conditions have been verified by inspecting
no change in the time-averaged quantities by raising the number of iterations. Thus, before moving
on to the simulations for the bubbly flow, a steady flow of the liquid phase alone has been set as the
initial condition.

The simulation involving bubbly flow has been initiated by setting on the multiphase model.
The bubbly flow simulation has been obtained with the time step the same as of the single phase,
and bubbles travel vertically down across the computational domain towards the region where the
bubbles’ buoyancy is sufficient to enable the bubbles to move up. However, for simulating gas
entrainment and void fraction profiles along with a depth of water pool at 2Dj from the contact
surface, here air entrainment and void fraction measurements have been achieved experimentally.
The bubbles have taken nearly 600 time periods to cover the computational domain equivalent to 2Dj.
The time-averaged void fractions have been obtained after attaining a steady value after approximately
3000 time periods. The measurements such as gas entrainment and void fraction, made by [39]
involving water jet sinking into the water pool have been used for comparison with the simulations.
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Table 3. (a) Geometry of Plunging Liquid Jet. (b) Operating Conditions and Fluid Properties.

(a)

SIM No. Nozzle Dia (mm)-DN Jet Dia (mm)-DJ Jet Length (mm)-LJ

1 25 24 100
2 12.5 12.5 50
3 6.83 6.83 27.3
4 0.3, 1.3, 2.4 0.3, 1.3, 2.4

(b)

SIM No. Nozzle Dia
(mm)-DN

Jet Dia
(mm)-DJ

Jet Length
(mm)–LJ

Jet Velocity
(m/s)

Profile
Locations (m) Fluid Properties and Details Frj Rej

1 25 24 100
3.5

0.8DJ, 1.2DJ, 2DJ

Tap water, µw = 1.015 × 10−3 Pa.s 7.2 82,760
4.1 ρw = 1000 kg.m−3 8.4 96,950
4.4 σ = 0.055 N/m 9 104,040

2 12.5 12.5 50
2.42 7.1 29,805
3.04 8.8 37,440
3.46 10 42,615

3 6.83 6.83 27.3
1.79 7.1 12,050
2.16 8.5 14,540
2.49 9.7 16,760

4 0.3, 1.3, 2.4 0.3, 1.3, 2.4
9.83–12.0,
1.86–15.7,
2.92–6.79

Penetration
Depth

181.2–221.2,
16.47–139,

19–44.3

2949–3600,
2418–20410,
7008–16296
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3.1. Gas Entrainment and Developing Bubbly Regime

Sequential illustrations of the simulations presented in Figure 4 show the formation of a gas plume
within the liquid pool. VOF simulation exhibits entrainment of the air by the water jet, that has been
driven deeper in the tank. The entrained gas bubbles have been advected by the downward flow to
form a plume. The depth of the plume associates with the momentum of the water jet, however, bubbles
can only be driven down to a depth where the bubble’s buoyancy overcomes the momentum owned
by the liquid jet, thus, bubbles rise due to the buoyancy to reach the surface of the pool, where they
the gas separates the liquid. Similar computational results were found by [18,21,25]. The volumetric
downward gas rate at a given level below the surface is given by:

Qg(z) =
∫

z
qgdS (12)

where qg is the volumetric rate flux of the gas. Since the 1980s, empirical predictive modeling equations
relating to plunging liquid jets have been proposed [15,44,45], however, simple relations based on
geometry conditions have been proposed in these studies and absolutely no influence due to the
physical properties of the fluids into the predicting modeling has been emphasized in them. Bin [13]
was the first who has realized the impact of fluid properties into his empirical predictive modeling:

Qg

Q j
= 0.04Fr0.28

(
hp

DN

)0.4

(13)

where Qg is the downward vertical gas flux density or gas (air) entrainment rate (m3/s), Qj is the liquid
volumetric rate (m3/s) and h is the depth of the plume from the impact (m). The above equation has been

found agreeable with the data following conditions falling within,
L j

DN
≤ 100,

L j
DN
≥ 10 and Fr0.28

(
L j

DN

)0.4
≥

10. The relation has been observed to agree with an error of about ±20%, compared to experimental
values for air entrainment, relating to the present geometrical setup involving air and water.

The present simulated air entrainment (
Qg
Q j

) values along with Chanson [39] experimentally measured
values and Bin’s [13] correlations as well as Euler-Euler simulated values [25], are summarized in Table 4.
The VOF simulations have revealed a closer agreement with air entrainment values determined from
Bin’s correlation and experiments compared to the Euler-Euler simulations. This shows that VOF scheme
is effective to trace the air-water interface.ChemEngineering 2020, 4, x FOR PEER REVIEW 7 of 19 

 

Figure 4. VOF Sequences of bubbly plume. 

Moreover, the gas entrainment in the present situation is modeled using the advection (Equation 
(10)) that provides sufficient protection from the errors in entrainment caused due to the numerical 
method, whereas, within the region across the developing bubbly plume, the distribution of the 
bubbles is not influenced by the interfacial forces as only surface tension has been included in the 
momentum equation. For improvement in the bubble’s distribution within the plume’s profile across 
the depth of the water pool, there is a need to improve the modeling by enhancing the interfacial 
interaction between gas and liquid.  

Table 4. Air Entrainment to Water Rate Ratio. 

 Dj(m) uj (m/s) Lj (m) Fr Qair/Qw 
Bin [13] Correlation      

 0.024 3.5 0.1 7.2 0.12 
 0.005 2.54 0.01 11.47 0.104 
 0.00683 2.49 0.027 9.62 0.131 

Chanson’s Values [39]       
 0.024 3.5 0.1 7.2 0.11 
 0.00683 2.49 0.027 9.62 0.193 

Euler-Euler [25]      
 0.005 2.54 0.01 11.47 0.5 

VOF Simulations      
 0.024 3.5 0.1 7.2 0.19 
 0.005 2.54 0.01 11.47 0.24 
 0.00683 2.49 0.027 9.62 0.26 

3.2. Penetration Depth 

After nearly four seconds of physical time, the gas plume reaches a steady penetration depth, 
hp, below the water free surface. The simulated values for the penetration of bubbly plume can be 
seen in Figure 5, also recent data for the circular plunging jet from Guyot [43] on the penetration of 
bubbly plume has been included in this figure. It’s interesting to express here the empirical 
correlation proposed by Bin [13] for plume’s penetration (ℎ௣): ℎ௣ = 0.42𝑢௝ଵ.ଶହ𝐷ே𝑄௚ି଴.ଶହ (14) 

Figure 4. VOF Sequences of bubbly plume.



ChemEngineering 2020, 4, 56 12 of 19

Moreover, the gas entrainment in the present situation is modeled using the advection (Equation (10))
that provides sufficient protection from the errors in entrainment caused due to the numerical method,
whereas, within the region across the developing bubbly plume, the distribution of the bubbles is
not influenced by the interfacial forces as only surface tension has been included in the momentum
equation. For improvement in the bubble’s distribution within the plume’s profile across the depth
of the water pool, there is a need to improve the modeling by enhancing the interfacial interaction
between gas and liquid.

Table 4. Air Entrainment to Water Rate Ratio.

Dj(m) uj (m/s) Lj (m) Fr Qair/Qw

Bin [13] Correlation

0.024 3.5 0.1 7.2 0.12
0.005 2.54 0.01 11.47 0.104

0.00683 2.49 0.027 9.62 0.131

Chanson’s Values [39]

0.024 3.5 0.1 7.2 0.11
0.00683 2.49 0.027 9.62 0.193

Euler-Euler [25]

0.005 2.54 0.01 11.47 0.5

VOF Simulations

0.024 3.5 0.1 7.2 0.19
0.005 2.54 0.01 11.47 0.24

0.00683 2.49 0.027 9.62 0.26

3.2. Penetration Depth

After nearly four seconds of physical time, the gas plume reaches a steady penetration depth,
hp, below the water free surface. The simulated values for the penetration of bubbly plume can be
seen in Figure 5, also recent data for the circular plunging jet from Guyot [43] on the penetration of
bubbly plume has been included in this figure. It’s interesting to express here the empirical correlation
proposed by Bin [13] for plume’s penetration (hp):

hp = 0.42u1.25
j DNQg

−0.25 (14)
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The relation has been used to determine the depth of the gas plume as per the sizes of the configuration.
The relation is applicable for liquid jet nozzle sizes that vary from 3.9 mm to 12 mm, whereas, and for
a pool depth (h) about 0.50 m or less, with the error of ±20%. VOF simulated values for hp higher
than both experimental [39] and predictive values of the above equation. This equation can also be
expressed alternatively [18] as:

hp = 2.1u0.775
j D0.67

N (15)

The relation reveals that the bubbly plume is independent of the quantity of air being entrained
and it only depends on the jet’s velocity and the nozzle size. Table 5 provides a summary of the
penetration depth of bubbly plume below the impact surface for a jet velocity of 2.54 m/s and nozzle
dia of 5 mm. The VOF computed penetration depth that follows the continuous entrainment regime
against the operating condition is 0.3 m, which exceeds both the empirical correlation (Equation (14))
and the experimental values. However, with the Euler–Euler scheme, the plume depth doesn’t reach
as much as the experiment (Equation (14)).

Table 5. Bubbly Plume Penetration Depth(m) at uj = 2.54 m/s and DN = 5 mm.

Experimental Bin’s Correlation Euler-Euler VOF Simulation

0.23 0.131 0.10 0.3

3.3. Void Fraction

The instant void fraction values have been averaged over time to obtain a steady mean void
fraction over 3000 iterations, which have been averaged again along the circumference. The mean
simulated values of void fraction are compared with averaged values of void fraction experimentally
measured by Chanson [39], obtained under similar operating conditions as in the simulations described
here. The experimental void fractions determined by Chanson [39] have been measured along a
horizontal axis that passes through the jet’s center. These measurements have been averaged by
including results either sides of the jet to curtail the error owing to the measurements. It is known that
the flow attains the status of fully developed at 40DJ [46], which is much outside the computational
domain being used here. Subsequently, the plume’s depth such as 0.8Dj, 1.2Dj, and 2Dj from the
impact surface, have been chosen for simulated void fraction profiles across the bubbly plume.

It has been described under the above topics that the bubbles have been entrained through the
impact between the liquid jet and the receiving pool. Further from the impact surface, the bubbles
move both inside and outside radially, as the two-phase mixture travels deep into the water pool. All
this can be seen in a sequence of snaps shown in Figure 4 for the operating conditions involving a
liquid jet velocity of 3.5 m/s and a nozzle size of 25 mm.

The simulated peaked void fraction along with the depth (0.8Dj, 1.2Dj, and 2.0Dj) from the impact
surface along with the corresponding experimental measured values of void fraction are presented
in Figures 6–8, where the predicted values have been averaged in time. The computed void fraction
profiles are obtained for liquid jet velocities of 3.5, 4.1, and 4.4 m/s, to compare both with experimentally
measured as well as other simulated void faction profiles.

Figures 9–11 provide plots of the numerically and the experimentally obtained void fraction
distributions against liquid jet velocities of 3.5, 4.1 and 4.4 m/s at three depths of 0.8, 1.2, and 2.0Dj
from the water-free surface, respectively. The bottom profile for all void fraction plots relates to the
void fraction distribution obtained at depth 0.8Dj from the contact surface. The simulated void fraction
values in this plot agree well with the measured values, and the location of the peaked void fraction
matches among the measured value and the present VOF simulation. The peaked void fraction for all
three downstream locations (0.8, 1.2 & 2.0Dj) along the depth of the pool from the contact surface is
shown in Figures 9–11 for the liquid jet velocity of 3.5, 4.1, and 4.4 m/s.
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Since the simulated bubbly jet is spreading at depth, 0.8Dj is small, however, the agreement with
measurements suggests that the VOF model accurately depicts the location of air entrainment owing
to their sources. Further, it can be seen in these figures that the maximum value of the void fraction
agrees well with the measured value, which confirms the accuracy of the VOF model in computing the
quantity of air that has been entrained.

The plots further down to lower depths from 0.8Dj are presented in Figures 10 and 11, which
also indicate good agreement between the experiments and the presented simulations. This indicates
that VOF accurately predicts the spreading of bubbly jet and the transport of bubbles which are
entrapped by the liquid jet at the impact surface. Transport of bubbles is powered by the liquid
velocity along with a balance between turbulent dispersion and drag forces acting on a bubble. Also,
the present simulated results make good agreement with the analytical results derived from the simple
diffusion scheme adopted by Chanson [39]. Such evidence has been derived by Drew and Passman [47],
who have indicated that in circumstances when the dispersed phase momentum under the resulting
dominance impact of drag force and turbulent dispersion, the mass conservation should be modeled
by a diffusion equation.

Thus, the simulations are obtained at 0.8Dj, 1.2Dj, and 2.0Dj to enable comparison with measured
values of the void fraction by Chanson [39] at the same downstream distance from the impact surface.
The comparisons between the time-averaged steady simulated values of void fraction and the measured
values are presented in Figures 9–11.

4. Conclusions

CFD simulations of water jet impacting into a still water pool are performed using the VOF
formulation through the commercial code FLUENT, whereas tracing of the interface between air and
water is conducted by applying a PLIC algorithm. The simulated results are confirmed by comparing
them with Chanson [39] experiments through considering uniformity conditions of experimental three jet
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sizes along with three jet velocities and three jet diameters. The simulations agreed well with experimental
data. Focusing VOF simulations on the developing region of the bubbly plume, it has been inferred that
the location of peak void fraction in both experiments and the simulations match. In the experiment, this
maximum decays exponentially for deeper locations. However, in the present simulations, it remains
almost constant as the two phases move with the same velocity. This fact is inherent to the VOF modeling
which resolves only one equation. Hence, no slip velocity between the two phases can be modeled. Slight
overestimates of air entrainment rate compared to the experiments of Chanson [39] are noticed for all
the three cases, however, VOF simulations came close to the experimental values as compared to the
empirical correlation and Euler-Euler scheme. This indicates that the entrainment should be regulated by
more parameters than just mere geometric similarities. Hence, small scale-models should be investigated
keenly to describe the clear picture of the air entrainment.
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