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Abstract: In this paper we analyse static properties of mass spring models (MSMs) with the focus of
modelling non crystalline materials, and explore basic improvements, which can be made to MSMs
with disordered point placement. Presented techniques address the problem of high variance of
MSM properties which occur due to randomised nature of point distribution. The focus is placed on
tuning spring parameters in a way which would compensate for local non-uniformity of point and
spring density. We demonstrate that a simple force balancing algorithm can improve properties of
the MSM on a global scale, while a more detailed stress distribution analysis is needed to achieve
local scale improvements. Considered MSMs are three dimensional.

Keywords: mass spring model; soft body deformation; physically based modelling

1. Introduction

Mass spring models are used for the purpose of simulating elastic objects in various
fields. Their potential applications include computer games, animations, virtual reality
environments as well as engineering of structures or materials in which deformation under
stress is considered, crack propagation studies or human tissue simulations. Related fields
range from ultramicroscopy to astrophysics [1–6]. Specific needs of specific application
may vary, but the general theory of how mass spring models (MSM) deform concerns all
of them.

We distinguish two broad classes of mass-spring networks—crystal (lattice) based
and disordered. In crystal based networks, mass points are placed on a periodic lattice
and mechanical properties of such networks can be expressed with analytical formulas.
This allows for more precise analysis and description of their behaviour. In disordered
networks, on the other hand, the mass placement rules are relaxed and do not have to
follow any regular order (Figure 1). The downside of such models is reduced accuracy
and increased difficulty of estimating their mechanical properties [7]. Consequently, lattice
based networks are usually preferred over disordered ones and are even used to model
materials, which are known not to be crystals.

Figure 1. Cubic lattice and disordered mass placement.
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For numerous applications this is not a problem, however, there is a danger that in
certain situations the material may inherit some unexpected properties of the periodic
network and exhibit unintended behaviours. An example is the crack propagation problem,
where geometry of the network may influence the observed crack patterns considerably.
If the numerical model has a regular, lattice-like topology which determines the potential
crack placement, it creates “easy propagation planes” for cracks (whether it is based on
MSM or FEM, or some other modelling technique). In such models cracks tend to form
and propagate along lattice dependent directions and resulting patterns may reflect lattice
properties instead of material ones (Figure 2). In such cases it is difficult to asses, if the
obtained results follow from the mathematical model, or if they are only artefacts of the
numerical representation. For example, in a model with cubic lattice topology a curved
crack may appear as two straight segments approaching each other at 45 degrees, or worse,
the crack may not bend at all, if breaking of subsequent segments influences tensions
within the system.

Some attempts have been made to address these problems, such as Chen et al. [8],
where introduction of non-local interactions into the model is shown to reduce negative
effects of a lattice topology. Such solutions may mitigate most apparent artefacts in cer-
tain situations, however they do not eliminate the problem completely. A class of conditions
for which such methods are unlikely to work involves situations where cracking is induced
by a shrinkage front progressing through a material, such as in the case of drying or cooling
materials [9–13]. For example if a cooling front is advancing through solidifying lava in
presence of water, the problem has a translational symmetry. Cracks which appear at the
top, allow for the water to be in contact with the top of the front, keeping the temperature
at 100 ◦C, while the bottom of the front is in contact with non-solidified lava at an approxi-
mately constant temperature TL. The front itself is expected to have a linear gradient of
temperature between these two values [14]. Modelling such process with lattice-based
networks will result with exactly the same conditions at each cracking step, and since the
tip of the crack can follow only discretised paths, it may never turn if the incentive to turn
is too weak.

Figure 2. Example crack patterns observed on cubic lattice and disordered networks.

In such situations it may be beneficial to use disordered MSMs instead of lattice-based
ones. As mentioned, the downside of such models is the reduced accuracy when compared
to lattice-based MSMs, which in turn may cause discrepancies between modelled and
theoretical properties of the material e.g., such as reported in [15]. In this work we place
focus on disordered MSMs.

Mass spring models studied in this work are based on [7,16] and the reader is en-
couraged to refer to these papers for a more detailed introduction. We achieve varying
values of Poisson’s ratio ν in our models, by introducing a force dissipation mechanism.
This technique offers a considerable simplicity in terms of implementation as well as low
conceptual and computational complexity, when compared to alternative methods capable
of achieving full spectrum of ν. A comprehensive review of other MSM-like techniques
can be found in [17].

In the following sections we show how to formalise the force dissipation mechanism
proposed in [16], with a focus on ease of implementation. We introduce a new pair of
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elastic constants for the material, which translate into simple properties of springs and
nodes of the network. We also demonstrate how to mitigate the accuracy problems of
disordered MSMs by adjusting stiffness coefficients of the springs. Presented techniques
allow to improve both global and local behaviour of disordered mass-spring networks.

It should be noted, that we investigate only the static properties of MSMs. We do
not address here the question of how these systems evolve over time or what are the
most efficient numerical schemes to track their dynamics. Efficient ways of simulating the
dynamics can be found e.g., in [18,19].

2. Elastic Moduli

In linear elasticity, the relation between tensions and deformations of a continuous
medium is linear. This can be expressed in general form by:

σij = Λijklεkl , (1)

where σ̂ denotes the stress and ε̂ the strain tensor; Λ̂ is a tensor of elastic constants.
Components of Λ̂ are tied together by various relations which follow from symmetry of σ̂
and ε̂. In this paper we discuss homogeneous isotropic media, which further restricts the
values of Λijkl .

In a medium which behaves like fluid or gas, in an equilibrium state, all the “tensions”
are distributed equally in all directions, that is σij = −δij p, where p denotes pressure
(for fluids or gasses we should not be using quantities like stress or strain, however the
purpose here is only to highlight analogies in the description of various media, in situations,
where it is applicable to do so; same comment applies to E and ν below). More precisely
σij = −δijdp if we consider a small deformation from a reference configuration, so that:

K = −V
dp
dV

= − dp
εkk

,

εij = −δij
dp
KN

,

σij = δijεkkK,

Λijkl = Kδijδkl

(2)

where K is a bulk modulus, V volume and N is the number of dimensions of the space.
In this case Lamé parameters are equal λ = K, µ = 0, Young’s modulus E = 0 and Poisson’s
ratio ν = 1

N−1 . One realisation of such a medium is a disordered collection of particles,
which collide with each other, bouncing off randomly, so that there is no way to induce a
momentum flow/surface pressure higher in one direction than in others. We will say, that
the interactions which lead to such relations, are of a completely dispersive nature.

Let us now take our ensemble of particles and impose fixed relative positions on them,
so that deformations are properly expressed by the strain tensor. We will assume here, that
a change in the distance r between a pair of particles gives rise to a force (acting between
them) which can be represented by a central potential V(r). In such setup there is no way
to displace a chosen particle and induce tension in only one given direction. If we move a
particle by dl along x axis, y components of the distances to its neighbours will be affected
as well. This is a geometrical property of euclidian space and it gives rise to the elastic
moduli tensor of the from [7,17,20]:

Λijkl = µ(δijδkl + δikδjl + δilδjk) (3)

There is, similarly as in the case of gas/fluid, only one elastic constant here, however,
this time bulk modulus depends on the connectivity, which follows from the dimensionality
(the higher the dimension, the more particles are present in the immediate neighbourhood).
It is given by K = µ(1 + 2

N ). Similarly E = 2µ N+2
N+1 and ν = 1

N+1 . We also have λ = µ. This
one elastic constant corresponds to direct interactions.
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There exist materials with these properties, an example of which is a diamond, how-
ever this model is too simplistic to properly describe elastic solids in general, as it results in
only one degree of freedom, corresponding to a single elastic constant, while real materials
are characterised by two.

Possible solutions, which allow to achieve two degrees of freedom, include introduc-
tion of angular springs or beams into the model, usage of non central forces or introduction
of a volume change component into the potential energy [17,21–25] (some of them limited
to very specific lattice topologies). However, a particularly simple way of extending this
model, which works both with lattice based networks as well as disordered ones, is to allow
for the force to be partially dispersed, so that all the interactions become superpositions
between direct and dispersive forces [16].

F̄ = F̄µ + F̄∗, (4)

where F̄µ denotes the direct, and F̄∗ dispersive component of the force. The resulting elastic
body then becomes a superposition between fluid and diamond like materials [16,17,26].

The reasoning behind this is, that direct interactions are in essence interactions by
means of idealised classical Newtonian force, which acts across time and space, instantly,
without accounting for relative velocities or other possible characteristics of the bodies
involved in the problem, such as their shape, which could potentially influence the net
effect of one body acting on another from a distance (There is plenty of evidence suggesting
that the real character of the interaction on a distance depends on factors other than just
relative position of the bodies in question, the prime example of which is electrodynamics,
where the presence of relative velocity gives rise to a magnetic force).

If we take:

σij = µδijεkk + 2µεij + Bδijεkk, B = λ− µ

Q =
B

µ(1 + 2
N )

,
(5)

then Q denotes the ratio between dissipative forces and the direct ones, with its values
spanning from −1 to infinity. F̄µ ∼ µ, and F̄∗ ∼ µQ. Other elastic constants become:

K = B(1 +
1
Q
),

E =
B
Q

2N2(Q + 1)
(N − 1)(N + 2)(Q + 1) + 2

ν =
(1 + 2

N )Q + 1

(N − 1)(1 + 2
N )Q + N + 1

.

(6)

In practice, when implementing a mass spring model for the representation of an
elastic material, it may be more convenient to introduce yet another pair of constants.

C = µ + µ|Q|, (7)

D =
Q

1 + |Q| . (8)

C now can be interpreted as the total amount of interaction potential (e.g., a density of
interaction carriers between two particles). The dissipative part is given by C · D, and the
direct one by C · (1− |D|). D is the dispersion fraction with values between −0.5 and 1.
With this description we avoid the singularity in Q around the ν = 0.5 point and allow for
expressing possible dynamic differences between media with K = 0, but varying C (the
aspects of MSMs not explicitly addressed in this work). Other elastic constants become:

µ = C(1− |D|) (9)
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λ = C((1 +
2
N
)D− |D|+ 1) (10)

K = C(1 +
2
N
)(D− |D|+ 1) (11)

ν =
(1 + 2

N )D + 1− |D|
(N − 1)(1 + 2

N )D + (N + 1)(1− |D|)
(12)

E = 2µ
Nλ + 2µ

(N − 1)λ + 2µ
(13)

A few examples of the decomposition of the interactions into dissipative and direct
parts are illustrated in the Figure 3 (with E = const). The first extreme, ν = 0.49, corre-
sponds to D ≈ 1, where almost all the forces are dispersed, making the material fluid-like
(ν = 0.5 in 3D means no change in volume under unidirectional compression; the limit
value of ν = 0.5 is unstable). The second extreme, ν = −0.99 has D ≈ −0.5 (ν = −1
once again is an unstable limit), which means that half of the compressing force acts in a
dispersive manner, but with a “reversed sign”. In such regime K = 0 and the material can
be uniformly compressed without changing its elastic energy. As we can see, the unidi-
rectional compression gives rise to considerably high forces, both direct and dispersive,
which cancel out each other almost perfectly in the resulting concave shape. The ν = 0.25
has no dispersive forces at all and for ν = 0, we have D = −3/8.

Figure 3. A cube compressed in x direction by 10% (x-borders frozen). First row ν = 0.49, second
ν = 0.25, third ν = 0, fourth ν = −0.99. First column: total force on springs, second: direct
component, third: dispersive component. Red colour indicates expansive force, blue compressive.

3. Mass Spring Models

Mass spring models represent elastic solids with discrete points connected by springs.
As mentioned in Section 1, we distinguish two broad classes here—a regular crystal-like
models and disordered ones [7]. In both cases, elastic constants of the material follow from
spring coefficients. As elucidated in the previous section, if classical, direct force springs are
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used, the value of Poisson’s ratio for three dimensional isotropic and homogeneous models
is fixed and equal to 1

4 . The relation between bulk modulus K and spring parameters is
given by:

K =
5
3

µ =
1

9V ∑
i

kiL2
i , (14)

where Li and ki denote the length of i-th spring and its stiffness coefficient. V is the volume
of the object and the sum is taken over all springs inside this volume.

In order to model materials with other values of Poisson’s ratio, we can introduce the
force dissipation mechanism discussed in previous sections with the C modulus obeying:

5
3

C =
1

9V ∑
i

kiL2
i , (15)

where the classical stiffness coefficient of a spring is now κi = ki(1− |D|). And the force
propagation follows the algorithm [16]:

For each node:

• Compute forces from springs Fi = −ki∆Li.
• Apply Fµ

i = (1− |D|)Fi as a regular force
• Additionally accumulate 0.5DFiLi as Jacc.

In the second pass:

• Redistribute the accumulated force as
F∗ = Jacc/(Lib)
to all the springs connected with the node (by applying it on both nodes the spring
connects), where b denotes the number of these springs

Estimates given by Equations (14) and (15) can be applied to any mass spring network,
however the more homogeneous and isotropic the network is, the better it will approximate
elastic properties of a given material.

4. Accuracy of Random MSM Models

In this study we consider MSM networks with randomly generated points connected
by springs with their nearest neighbours. The network topology is characterised by two
parameters—first, minL, gives a minimal allowed distance between any pair of MSM
nodes; second, maxL, is the range within which spring connections are formed (any two
nodes which are less than maxL apart get connected by a spring) [7]. Please note, that
the random point generation mechanism described in [7] is flawed. The article suggests
a performance improvement for the implementation, which advocates a usage of a small
spherical brush-like window traveling through the material in order to fill it with random
points. The performance improvement for point collision calculation is real, however the
“window” should be moved after each point addition, in contrast to a procedure which fills
the window region fully first, before advancing to the next region of the material. The latter
may introduce a non-homogeneity at the window borders. This was not stated clearly in
the original article.

For such MSMs, our previous experiments show, that as long as the average number
of springs attached to one node is sufficiently high, Equations (12) and (14) give the elastic
properties of the network in bulk with a reasonable accuracy. The values of Poisson’s
ratio for such models are very close to theoretical predictions (observed discrepancies
were in many cases of magnitude of measurement errors) and the values of E diverge
from theoretical by no more than 10% [7,16]. Such accuracy may be satisfactory for many
applications, but there is certainly a room for improvement.

Currently we will focus not only on bulk properties, but also investigate how MSMs
behave locally, on a scale of internode distances. We perform a simple test, in which we
consider a model of a cube 10a0 × 10a0 × 10a0, that undergoes compression (expansion)
uniformly in all directions and observe how the MSM reacts. The following setup was



ChemEngineering 2021, 5, 3 7 of 15

used for this test. The elastic constants of the material were set to K = 100 k0
a0

and ν = 0.25
(this means D = 0, which makes the theoretical analysis simpler. Materials with D 6= 0
are expected to inherit the same properties here, which was confirmed by additional tests
afterwards). The material was modelled with a random MSM with minL = 0.92 · 0.5a0 and
maxL = 1.77 · 0.5a0, which gives around 6700 nodes, 55,000 springs and approximately
〈S〉 = 18 springs connected to one node inside of the material. All springs were assigned
the same spring constant k[k0] calculated with Equation (14). The cube was expanded
uniformly in all directions by 1% (We will use expansion and compression interchangeably
in the rest of the article when discussing the phenomenon analysed in this experiment;
for technical reasons expansion is easier to perform). In such setup the values of diagonal
components of the strain tensor should be equal to 0.01 and corresponding diagonal
elements of the stress tensor should be equal to 3 k0

a0
(with a0 being the unit of length and k0

the unit of force).
In our numerical experiments we measure the stress inside of MSM according to the

procedure proposed by Hardy [27,28]. It estimates the stress by measuring the tension
inside a probe sphere placed in the point of interest. The tension in each spring in the
surroundings of the point is weighted by a bond function. If only a fraction of the spring
is contained within the probe sphere, the corresponding fraction of the tension is taken
into account:

σ̂ =
1
2

N

∑
α=1

N

∑
β 6=α

x̄αβ ⊗ F̄αβBαβ(x̄), (16)

where:
xαβ—distance between nodes α and β
F̄ab—force acting through the spring ab
Bαβ—bond value

In order to calculate the bond value, we associate an influence sphere with each
spring—the center of the sphere is placed in the middle of the spring, and its radius is
equal to half of the length of the spring. Then the bond value is calculated as a fraction of
the volume of that sphere, intersecting with a probing region. This is a slight modification
to the original method, which measured intersections between raw springs and a probing
region. Our experiments shown that calculating intersections with three dimensional
spheres surrounding the springs reduces noice and allows for more localised measurements
(smaller probe regions).

Experiments presented in this article are using spherical probing region with the
radius 1.5〈L〉, where 〈L〉 denotes the average length of a spring in MSM.

The test consists of two steps. First we scale the cube uniformly, mimicking the perfect
uniform deformation, then we let the MSM relax (holding only borders in place). In both
stages we measure stress and strain present inside of the cube. In a perfect model the
relaxation phase should not lead to any additional displacements.

As an example the ε22 strain tensor component and the σ22 stress tensor component
measured in this experiment are presented on Figures 4 and 5. The character of discrep-
ancies in other tensor components is similar. The measurements were taken along the
line in X direction in the middle of the cube, with regions in close proximity to the border
omitted (to avoid various problems with stress measurements near the border). Standard
deviation from theoretical value of the final (relaxed) stress is denoted by ∆t, and the
standard deviation from the average value by ∆. Standard deviation between the stress in
compressed (scaled) state σs and the stress in relaxed state σr is denoted by ∆r.

∆ =

√
1
M ∑ (A− 〈A〉)2, (17)

∆t =

√
1
M ∑ (A− A0)2, (18)
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∆r =

√
1
M ∑ (σr − σs)2, (19)

where A denotes measured, 〈A〉 average and A0 theoretical value of a strain or stress
component; M is a number of measurements.

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

-4 -3 -2 -1  0  1  2  3  4

ε22 const k ∆t=0.0024 

x [a0]

Figure 4. The strain component ε22 in a uniformly compressed solid modeled with mass spring
models (MSM) with constant k, same for all springs. Dotted lines represent theoretical values. Solid
lines indicate the strain after material has relaxed to the equilibrium compressed state.

 2

 2.5

 3

 3.5

 4

-4 -3 -2 -1  0  1  2  3  4

σ22 const k ∆=0.21 

∆t=0.25 

∆r=0.43 

x [a0]

Figure 5. Same as Figure 4, but for σ22[
k0
a0
]. Dotted lines represent stress in uniformly compressed

material. Solid lines indicate stress after the material has relaxed to its new equilibrium state.

As we can see, the plotted tensor components average out to match theoretical pre-
dictions reasonably well. Local divergences, however, are high. The root cause of this
behaviour is that the random MSM achieves isotropy statistically in bulk, but is not isotropic
on singular nodes. To understand what exactly we mean by that, let us look at a simplified,
one dimensional example from Figure 6. In disordered MSMs lengths of the springs are not
equal. In uniform compression ∆L/L0 = ε and if all the springs have the same k, the force
acting on a spring is FA = −kLAε, and as a result springs do not compress by the same
degree under a constant pressure. If they did, the red coloured node from Figure 6 would
experience non-zero net force and would move. In 3D networks, additionally, the number
of springs facing each direction may differ, which further influences local isotropy.

k
A

k
B

L
A

L
B

Figure 6. An MSM node with springs of different lengths connected to it.

These are the reasons for local discrepancies in deformation as well as ∆r for stress
in the material from Figures 4 and 5. Forces on the nodes do not balance to zero when
the springs get compressed by the same degree. This also affects the estimation of C
(and consequently K and E) from Equations (14) and (15). These equations measure the
energy needed to compress material uniformly, but in this case the energy is lower, and the
corresponding K is lower as well. The values of σ22 average to the desired 3 k0

a0
when the
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MSM is scaled uniformly (indicated by dotted line on the Figure 5), however after the
relaxation this value drops to around 2.8 k0

a0
.

5. MSM Tuning

Our goal is to adjust stiffness coefficients for springs in such way, that in an MSM
subjected to uniform compression (realized by simple scaling):

(a) forces acting on inner MSM nodes sum to zero,
(b) stress is isotropic.

Achieving (a) would reduce both, the variations of strain, and the change in stress
which occurs when a scaled model relaxes (∆r), and in consequence would allow for a
better estimation of the actual K in bulk. Achieving (b) would reduce the variations of
stress. It should be noted, that condition (a) does not apply to the nodes which lie on the
border of the MSM, where forces will sum to a value that counteracts the outside pressure.
To distinguish which nodes are “inner”, and which lie on the border, for each node, we
measure the intersection between modelled object and a sphere centered on the node,
with a radius equal to maxL. If the whole sphere intersects we treat the node as inner.
Otherwise we assume it lies on the border.

To give some notion about how well (a) holds for a chosen MSM, we introduce the
following measure, which we call kL-score:

SkL =
1
N ∑

n

∣∣∣∣ ∑b kb L̄b

∑b kb|L̄b|

∣∣∣∣, (20)

where the inner sums indexed by b are taken over all springs connected to a node n. Outer
sum is taken over all the nodes, the total number of nodes is N, and L̄b is the vector between
nodes connected by a spring b; |x̄| is the length of a vector x̄. The lower the value of SkL is,
the closer to zero is the sum of forces acting on an MSM node (the lower the better). Such
inner kl-score of the model from Figures 4 and 5 is equal SkL = 0.11.

5.1. Constant kL

Since we have identified that in uniform compression the force exerted by a spring
equals F = −kLε, our first attempt at improving accuracy of random MSMs could be by
setting the stiffness coefficients of the springs in such way that kL = const. This would
certainly help in 1-d case from Figure 6, however for three dimensional MSMs effects
of such modification should be rather limited. In 3D the number of springs facing each
direction is of bigger importance than differences in their lengths.

Setting kL = const does however improve the MSM slightly with SkL dropping to 0.091
and divergences from Figures 4 and 5 becoming: ∆tε22 = 0.0023, ∆tσ22 = 0.17 ∆rσ22 = 0.4.

This actually results, right away, in improvement for the estimation of the bulk value
of K by a few percent (more results in following sections).

5.2. kL-Tuning

As described in previous sections, the source of divergences in strain within MSM are
unbalanced forces which appear during uniform compression. They cause the nodes to
move and springs relax to new equilibrium lengths.

Our first goal is to construct an MSM in which the unbalanced forces do not appear.
It can be achieved in a number of ways, one of which is simply by solving as a set of
linear equations for stiffness coefficients ki. As the number of springs is an order of
magnitude larger than the number of nodes, this may turn out to be problematic (but not
impossible) for large systems, unless we have a whole computational cluster at our disposal.
An alternative way, is to use the original MSM (with either k = const or kL = const) and
follow the same relaxation path which our MSM from Figure 5 traveled when reaching the
equilibrium state. If we consider a simple time integrator (e.g., Euler or Verlet scheme) its
basic steps are:
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• compute forces
• update velocities
• update positions

the “update positions” step will result in changes in lengths of springs and consequently
in changes of forces exerted by these springs. We can achieve the same change in forces
by changing stiffness coefficients of the springs ki instead of moving the nodes. Such
algorithm (with damping) will find an MSM with SkL ≈ 0.

This is the approach we use, however in our case we skip the “update velocities” step
and modify spring coefficients directly, increasing or decreasing their value depending on
the magnitude of the projection of the force vector onto the direction of the spring. This
is analogous to a simulation of an overdamped movement and basically is a variation of
steepest descent minimisation procedure. The tuning procedure starts by artificially chang-
ing natural lengths of all springs by the same degree and then following with a number of
minimisation steps. In our implementation we use L−L0

L0
= ε = 1%. Additionally appropri-

ate border conditions need to be set, similarly as it was done in compression/expansion
experiment, where borders were frozen in place. This basically means that the relaxation
should only be applied to inner nodes. Nodes that lie near the border have by definition
non-isotropic spring connections and achieving SkL = 0 is not even possible for them.

Each iteration of the algorithm reduces SkL and increases the MSM quality. We stop
when a certain value of SkL is reached (0.0003), or the progress becomes too slow (max
relative change of k smaller than 0.002).

Additionally, we place a restriction on the maximal allowed change of k for each
spring to 50% of its original value. This way we explore only the set of solutions close to
our original choice of k, and avoid degenerate solutions with negative k. In the last step we
restore natural lengths of springs to their original values.

The values of ε22 and σ22 for the resulting MSM of the cube test are presented on
Figures 7 and 8. The divergence in strain is now practically zero and ∆r is two orders of
magnitude smaller than for k = const. The profile of stress in this case is exactly the same
as the relaxed profile from k-const model (Figure 5), but shifted towards desired value of
3 k0

a0
. This means that we have managed to improve the estimate of bulk K, however local

divergences did not change.

 0.0099

 0.00995

 0.01

 0.01005

 0.0101

-4 -3 -2 -1  0  1  2  3  4

ε22 kL tune ∆t=9e-06 

x [a0]

Figure 7. Same as Figure 4, but for kl–tune MSM.

 2

 2.5

 3

 3.5

 4

-4 -3 -2 -1  0  1  2  3  4

σ22 kL tune ∆=0.22 

∆t=0.25 

∆r=0.0017 

x [a0]

Figure 8. Same as Figure 5, but for kl–tune MSM.
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5.3. ikL-Tuning

Figure 8 shows, that SkL ≈ 0 does not necessary translate into isotropy on a node basis.
To further improve MSM representations we need to make sure, that not only forces on
singular nodes sum up to zero, but also that their magnitude is approximately the same
in all directions. Figure 9 illustrates an MSM node for which this is not the case; in this
example forces do sum to zero, but their magnitude is different in X and Y directions.

F
A

-F
A

F
B

-F
B

Figure 9. An MSM node for which forces balance to zero but are not isotropic.

In kL-tuning at each step of the algorithm we modified ki based on the current value
of the force acting on each node. In the improved procedure, instead of calculating the
force, we will calculate the stress tensor at the point where the node is placed and see how
much it diverges from the expected tensor:

σ̂err
ij = σ̂ij − 3Kεδij, (21)

where δij is the Kronecker’s delta.
The contribution of each spring to σ̂ can be expressed as:

δσ̂ =
Bkε

V
L̄⊗ L̄0, (22)

where ε is the relative length change of the spring, L the current length and L0 the neutral
length. V is the volume of the region in which we are measuring the stress and B is a
bond between this region and the spring. The bond can be calculated in a number of
ways [27,28]; in our case we use the percentage of the overlap between probing region,
which is a sphere and another sphere placed in the middle of the spring with radius equal
0.5L. As we remember L0 is artificially changed in the first step of the tuning procedure.

We project the spring influence onto the σ̂err and compute the ∆k for each spring as:

∆k = −t
V

BεLL0

L̄⊗ L̄0 : σ̂err

LL0
, (23)

where Â : B̂ = ∑ij AijBij, and t is step size for the steepest descent algorithm (t ∼ 1
b ,

where b is the number of springs connected to a node). The stress tensor tuning is run in
addition to kL-tuning, and it also has a limit for the relative change of k on each spring to
prevent degenerate solutions in which k becomes negative. After this procedure the strain
tensor is as close to theoretical as it was in Figure 7. This time however we observe an
improvement in stress tensor. The σ22 component is presented on Figure 10. The divergence
∆σ22 dropped to 0.067, and is about three times smaller than it was for kL-tune.

Comparison of the four presented algorithms is terms of divergences ∆tε, ∆rσ and ∆tσ
observed in the cube compression test is presented on Figures 11–13. As we can see kL-tune
procedure eliminates divergencies ∆tε, ∆rσ, which are caused by internal relaxation of
unbalanced forces. The ikL-tune additionally reduces local variations in stress and reduces
divergencies between stress present in the deformed body and its theoretical value.
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Figure 10. Same as Figure 5, but for ikl–tune MSM.
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Figure 11. Comparison of ∆tε for four variants of random MSM.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

σ11 σ12 σ13 σ21 σ22 σ23 σ31 σ32 σ33

∆rσ [k0/a0] k const
kL const

kl tune
ikl tune

Figure 12. Comparison of ∆rσ for four variants of random MSM.
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Figure 13. Comparison of ∆tσ for four variants of random MSM.

6. Effects on Young’s Modulus

Next we investigate what are the effects of tuning, on global material properties
and how reduced variations of local stress and strain translate into the value of Young’s
modulus E.

We measure the value of E by performing a numerical experiment similar to the one
described in [7]. We apply a static displacement to a block of material with dimensions
35a0× 7.5a0× 7.5a0, so that it gets compressed along X axis and we estimate E by measuring
forces present in the material. In [7] we have measured the force passing through YZ plane
in the middle of the system, following the equation:
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E =
F/A

∆x/Lx
,

where F is the reaction force, A the cross-sectional area of the block (in YZ plane), and ∆x
is the deformation of the block along x direction.

This equation however does not account for the possibility of non-zero stress in
directions other than X in the system. As we have seen in previous section such stress may
be present even for stress components which theoretically should be equal zero. A more
accurate equation gives E as:

E =
Fx/Ayz − ν · (Fy/Axz + Fz/Axy)

∆x/Lx
. (24)

This time we measure not only a force through yz plane, but also xy and xz planes.
After applying this correction to the measurement procedure, the resulting estimates of
E become smaller by 2–5%, showing that the E calculated this way may diverge from
theoretical value by a higher degree than our original estimates.

The results for the four variants of random MSM are presented in the Figure 14. First
we notice that simple setting kL = const instead of k = const does improve the value of E
noticeably. Introduction of kL-tune gives further improvement, however ikL-tune does
not. For high 〈S〉 it is as good as kL-tune, however for lower values it is worse. The curve
seems however more stable with lower variations around its trend value.

In all the cases the lower the number of springs, the higher divergence from theoretical
value we observe. The average number of springs connected to one node for the cubic
lattice MSM is 〈S〉 = 18, and it seems that in our experiment all the curves reach plateau
around this point. While the effects of tuning are positive for MSM with mid to high 〈S〉,
for values lower than 14 other issues related to low network connectivity seem to dominate
and the tuning can no longer compensate for them. For 〈S〉 < 12 we observe a rapid
decrease of rigidity of the network. This result is consistent with [29], where the loss of
rigidity caused by reduced network connectivity is studied. Authors show, that weakened
FCC networks with 〈S〉 around 8–10 suffer from the loss of rigidity and become floppy for
lower values of 〈S〉 (exact numbers depend on applied strain).

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 8  10  12  14  16  18  20  22  24  26

E/E0

<S>

const k

const kL

kL tune

ikL tune

Figure 14. Values of Young’s modulus relative to theoretical value for four variants of random MSM.
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7. Conclusions

In this article, we have demonstrated possible accuracy problems one may face when
using disordered MSMs. We have proposed two tuning procedures which aim to improve
the accuracy of such MSMs. The first one, kL-tuning, eliminates unbalanced forces on MSM
nodes which allows for better estimates of K (and E) of the whole network. The second, ikL-
tuning aims to additionally reduce local stress variations. In both cases, the implementation
details are of a lesser importance, than the effects each tuning procedure has on the MSM
quality (as mentioned one might simply use linear solvers).

The presented analysis gives an overview of what should be expected of randomised
models and what are their limitations. The proposed techniques can be used to reduce
both global and local discrepancies and inhomogeneities present in the material, however
one should keep in mind that such tuning may not always be necessary or even desirable.
As mentioned in the introduction, real materials are not perfect, and the presence of inho-
mogeneities may be advantageous for certain applications and purposes. Overaggressive
tuning may simply destroy the desired properties of our models (For the same reason, we
did not even consider annealing-like approaches which modify position of nodes—such
procedures may very well lead to node reorganisation into crystalline structures).

In the view of this, one may decide to abandon the tuning altogether and use k = const
for the whole network, with k scaled to match the desired K, not based on Equation (14),
but rather on experiments. Typically a given network characteristics (minL and maxL)
lead to discrepancies of the same order, independent on the specific specimen of the
MSM, therefore once we establish, that e.g., k should be increased by 10% relative to the
original estimate, we can simply apply the 10% increase for all models generated with
these parameters and get plausible results. The stress and strain figures in Section 5 should
give a good intuition as to what to expect.

In our reference single threaded implementations, for the model with 55,000 springs,
kL-tuning took 1s to complete, while ikL-tuning about 10s. The achieved reduction of stress
variations is about 60% for the stress measured with resolution comparable to internode
distances. However if such localised measurements are not needed, the kL-tune alone may
be sufficient as it is considerably faster and much easier to implement.

Finally, we should remember, that problems discussed here concern disordered MSMs.
If for a given application, a crystal-like structure is appropriate, then cubic lattice MSMs
offer very high accuracy for typical deformation scenarios [7,30], and if we consider simple
compression or shearing, the errors in local stresses and deformations are of an order of
numerical precision of floating point numbers.
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