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Abstract: Despite their importance, available information on the dynamics of forest 

protected areas and their management in the Niger delta are insufficient. We present results 

showing the distribution and structure of forest landscapes across protected areas in two 

states (Cross River and Delta) within the Niger Delta using multi-temporal remote sensing. 

Satellite images were classified and validated using ground data, existing maps, Google 

Earth, and historic aerial photographs over 1986, 2000 and 2014. The total area of forest 

landscape for 1986, 2000 and 2014 across the identified protected areas were 535,671 ha, 

494,009 ha and 469,684 ha (Cross River) and 74,631 ha, 68,470 ha and 58,824 ha (Delta) 

respectively. The study showed annual deforestation rates for protected areas across both 

states from 1986 to 2000 were 0.8%. However, the overall annual deforestation rate between 

2000 and 2014 was higher in Delta (1.9%) compared to Cross River (0.7%). This study 

shows accelerated levels of forest fragmentation across protected areas in both states as a 

side effect of the prevalence of agricultural practices and unsupervised urbanisation.  

The results show the need for government intervention and policy implementation,  

in addition to efforts by local communities and conservation organisations in protected area 

management across ecologically fragile areas of Nigeria.  
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1. Introduction 

The Niger Delta region is a biodiversity hotspot and has been classed as the second most sensitive 

environment in all of Africa [1]. The vast variety of fauna and flora in the region are put to a number of 

uses such as: fuel, fishing, agriculture, food, drugs and beverages, textile and leather production, paper 

production, and construction [2]. The region has the largest proportion of tropical forests in the country 

and is ravaged by diverse environmental problems of which deforestation is most prominent [3,4].  

The impact of human related activities such as land clearing for agriculture, urban development, fuel 

wood harvesting and timber logging are major causes of deforestation and forest degradation in 

tropical forest regions of the world, particularly in Africa [5–7]. A number of studies have investigated 

the devastating effects of human activities on the alteration of the earth’s ecosystems [6,8,9]. Land use 

conversion effects have evolved from local environmental impacts to matters of global importance as 

such changes are driven by pressures from the global population [6]. The establishment of protected 

areas (PAs) as a means of forest conservation and combating threats of deforestation is a globally 

recognised approach [10]. The International Union for Conservation of Nature (IUCN) defines PAs as 

areas of land or sea “dedicated to the protection and maintenance of biological diversity and of natural 

and associated cultural resources, managed through legal or other effective means” [11].  

At present, there is limited information on the extent, distribution, and structure of forest landscapes 

across PAs in the ecologically fragile Niger Delta. Such information is vital in creating reliable 

baseline data and providing an up-to-date database of forest information needed for forest 

conservation, monitoring, and management. The measure of spatial and temporal trends of 

deforestation across large expanses of varied landscape can be accomplished using a combination of 

multi-temporal remote sensing and ground-based observations [12–15]. A number of studies have 

successfully utilised a combination of satellite remote sensing and ground data to determine land cover 

changes within and around PAs [16–19]. For example, Curran et al. [16] utilised satellite, geographic 

information systems (GIS), and field-based analysis to estimate forest decline in PAs of the Indonesian 

Borneo. The study identified high levels of deforestation across its PAs (<56% forest loss between 1985 

and 2001) caused by logging of trees for international markets. Similar approaches were adopted by [17], 

which assessed spatial changes in land cover across the Pranahita Wildlife Sanctuary in India using a 

combination of medium resolution Landsat and IRS satellite data for deforestation mapping. In the study 

conducted by [18], the authors demonstrated the importance of remote sensing data in providing 

valuable baseline data on deforestation trends in parts of Angola as a preparatory mechanism required 

for the implementation of the United Nations programme “Reducing Emissions from Deforestation and 

Forest Degradation (REDD+)”. In [14], the authors demonstrate the applicability of utilising  

multi-spectral remote sensing Landsat imagery combined with high resolution Satellite Pour 

l’Observation de la Terre (SPOT5) imagery for accuracy assessment to better understand human-induced 

activities on forest cover change across forest landscapes in Italy from 2002 to 2011. The methodology 
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adopted in most of the literature reviewed included estimating forest loss (deforestation) through the 

analysis of spatial changes in forest cover and temporal analysis of classified forest maps. 

Habitat loss and fragmentation have been identified as key issues of concern facing conservation 

efforts of protected areas across the world [19–22]. The occurrence of habitat fragmentation caused by 

interplay of varied anthropogenic and natural disturbances impacts negatively on species dispersion 

and habitat colonisation, decreased connectivity between habitats, population diversity of species,  

and species mortality and rates of reproduction [19,23,24]. Hence, a qualitative analysis of landscape 

structure dynamics is crucial in better understanding the structure of forest PAs. For example, Midha and 

Mathur [23] assessed the level of forest fragmentation within two conservation priority landscapes 

using classified images. The results revealed that forests in one of the PAs was less fragmented and 

had better habitat quality in comparison to the other. This was informed by results of FRAGSTATS: 

Spatial Pattern Analysis program computed class level metrics (such as percentage of forest landscape, 

mean patch size, edge density, mean shape index, mean core area, mean nearest neighbor, and 

interspersion and juxtaposition index). In a similar study, Girvetz et al. [25] used the effective mesh 

size to compare relative impacts of different land use disturbance in a statewide multi-scale study 

across California in the United States of America. These methods of monitoring anthropogenic and 

natural disturbances suggest that the combined uses of habitat transition analysis and landscape 

fragmentation are useful indicators for baseline studies relating to PAs conservation. At present, such 

information is currently lacking for key PAs within the study area thereby further justifying the need for 

this study. A number of studies have demonstrated the use of landscape metrics for better understanding 

the process of forest landscape structural change over time [26–29].  

The establishment of PAs across states in the Niger Delta region is critical in conserving the existing 

biodiversity, which is under immense pressure from a number of factors [30,31]. Hence, for this study 

PAs across two major states (Cross River state (CRS) and Delta state (DS)) with contrasting forest 

policy and management practices were investigated. CRS is one of the very few states across Nigeria 

that has actively reviewed its forestry policies to reflect current issues relating to forest conservation 

and protection of its remaining biodiversity. Though DS is currently taking steps to develop its forest 

policies, CRS has over the years taken more proactive steps to update its forest policies to better 

promote biodiversity and conservation. In 2010, the CRS Government enacted a deforestation 

moratorium in line with the UN-REDD initiative [32,33]. Another review of forest policy in CRS was 

the establishment of a mobile court charged with the responsibility of prosecuting any person(s) 

involved in unlicensed or unlawful harvesting of forest produce and killing or hunting of any animal 

(or endangered species) as listed in the CRS Forestry Commission Law No.3 of 2010 [34] in 2014. 

Considering that forest laws governing Nigeria vary from state to state, there is an urgent need to have 

a harmonised system of governance from state to federal levels to enable forest conservation, 

particularly for forest PAs. In CRS, the approved government agency (CRS Forestry Commission) 

charged with the responsibility of managing forests across the state employs community-oriented 

forest conservation where possible, in addition to other management strategies. This level of 

community engagement in forest management across the state is demonstrated in the establishment of 

Forest Management Committees representing numerous forest-dependent communities [35].  

The overall aim of this study was to provide an up-to-date inventory of forest transitional patterns 

for selected PAs in the Niger Delta region through the use of multi-temporal remote sensing. This was 
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accomplished through implementing the following objectives: (i) to determine the current extent of 

forest transition and rates of change for PAs in the study area; and (ii) to quantitatively estimate the 

extent of forest fragmentation across PAs over 1986, 2000 and 2014.  

2. Materials and Methods 

2.1. Study Areas 

The study areas, Cross River and Delta states, are situated in the south eastern and south western 

parts of the Niger delta region of Nigeria. Cross River State (CRS) lies within latitudes 4°40′ N and  

6°54′ N and longitudes 7°50′ E and 9°28′ E, covering an approximate area of 20,156 square 

kilometres. The ecological zone of CRS is characterised by lowland rain forests, fresh water swamp 

forests, mangrove vegetation, montane forests and savannah vegetation [36]. The southwestern Delta 

state (DS) lies within latitudes 4°50′ N and 6°30′ N and longitudes 4°58′ E and 6°47′ E, covering an 

approximate area of 17,106 square kilometres. The vegetation of DS ranges from fresh water swamp 

forest along the coast to lowland rainforest in the centre areas and derived savannah in the northern 

extremes. Twenty-six forests with protected areas status and spread across both states were investigated 

in this study. These include 15 forest reserves in CRS, 11 forest reserves in DS, one community forest in 

CRS, two national parks in CRS and two game reserves in DS (Figure 1). 

 

Figure 1. Map of study area showing distribution of protected areas in (A) Cross River and 

(B) Delta states, located in the Niger delta region of Nigeria. 
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2.2. Remote Sensing Analysis 

Figure 2 presents the key stages of image processing in this study. The satellite images used for 

subsequent analysis were acquired over three epochs namely 1986/87, 2000/2001 and 2014 

respectively. The Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic Mapper Plus 

(ETM+), NigeriaSat 2 and UK-DMC-2 images were used for image classification and change 

detection analysis. The criteria for the selection of satellite data used in the study were scenes with 

minimal cloud cover or totally cloud free images. The Landsat images were downloaded from the 

United States Geological Survey (USGS) and Earth Explorer website (http://earthexplorer.usgs.gov/) 

while the UK-DMC-2 and NigeriaSat images were supplied by the Nigeria Space Agency, NASRDA 

(National Space Research and Development Agency). Given that the UK-DMC-2 and NigeriaSat sensors 

are cross calibrated with Landsat sensors, the near infrared, red, and green bands of the aforementioned 

images (i.e., bands 1–3) are equivalent to Landsat bands 4, 3 and 2 (http://www.dmcii.com/). Details of 

the satellite images used and characteristics are presented in Table 1 below. All Landsat images used in 

the study had the Scan Line Correctors (SLC) turned on, consequently eliminating issues of line gap 

problems after acquisition. In order to avoid issues of seasonality variation, the satellite images used in 

the study were acquired during the same season (i.e., dry season between November to February) [37]. 

To ensure the raw satellite images covering the study area were geometrically correct, a polynomial 

geometric model in ERDAS imagine was used [38]. In order to maximise spectral information 

contained in the satellite images, the process of eliminating effects from atmospheric particles due to 

absorption and scattering of the earth’s surface radiation as at the time of acquisition was conducted [39].  

Before performing image classification, the spectral radiance of each band contained in the imagery 

used was converted to at-satellite reflectance values using methods outlined in the Landsat 7 Science 

Handbook [40]. The raw digital numbers (DN) of Landsat (TM and ETM+), UK-DMC-2 and 

NigeriaSat-2 images were converted to at-reflectance values in order to remove all forms of noise 

introduced from instrumental errors, changes in views and illumination and atmospheric effects [41,42]. 

Equations (1)–(3) were used for the computation. 
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where Ll/m = Spectral radiance at aperture of Landsat and UK-DMC-2/NigeriaSat sensor  

[W/(m2·sr·µm)]; DNl/m = Digital number values of Landsat and UK-DMC-2/NigeriaSat images; 

Gainl/m = gain values of specific bands in the image header files Landsat & UK-DMC-2/NigeriaSat 

images; Biasl/m = gain values for specific bands in the image header files; π = 3.14159; d = Earth-Sun 

distance [astronomical distance]; ESUNl/m = Mean exoatmospheric solar irradiance [W/(m2·µm)];  

θse = Solar/Sun elevation angle (degrees) [42,43]. It is important to state here that the cosine of solar 

zenith is the same as the sine of solar elevation. The value of solar elevation is provided in the metadata 
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file that comes with the downloaded Landsat image and accompanied with the UK-DMC-2/NigeriaSat 

satellite images. 

After applying atmospheric and geometric corrections, the satellite images were mosaicked and sub-set 

using ERDAS Imagine software. In order to normalise the spatial scale differences between bands of 

imagery used in the study, all bands used were resampled to a pixel size of 28.5 m. The images were 

subsequently used in ISODATA classification and change detection analysis (Figure 2).  

 

Figure 2. Methodology for remote sensing analysis. 

Table 1. Characteristics of space borne satellite images used in the study. 

State Platform/Sensor Spectral Resolution Date of Acquisition Path Row Spatial Resolution (m) 

Cross River 

State 

Landsat-5 TM 

(bands 3–5) 

B3: 0.52–0.60 µm (Green) 

B4: 0.63–0.69 µm (Red) 

B5: 0.76–0.90 µm (NIR)  

12 December 1986 187 55 28.5 

12 December 1986 187 56 28.5 

12 December 1986 187 57 28.5 

19 December 1986 188 55 28.5 

19 December 1986 188 56 28.5 

19 December 1986 188 57 28.5 
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Table 1. Cont. 

State Platform/Sensor Spectral Resolution Date of Acquisition Path Row Spatial Resolution (m) 

 
Landsat-7 ETM+ 

(bands 3–5) 

B3: 0.52–0.60 µm (Green) 

B4: 0.63–0.69 µm (Red) 

B5: 0.77–0.90 µm (NIR) 

27 January 2001 187 55 28.5 

10 December 2000 187 56 28.5 

10 December 2000 187 57 28.5 

17 December 2000 188 55 28.5 

17 December 2000 188 56 28.5 

17 December 2000 188 57 28.5 

 
UK-DMC-2 

(bands 1–3) 

B1: 0.52–0.62 µm (Green) 

B2: 0.63–0.69 µm (Red) 

B3: 0.76–0.90 µm (NIR)  

7 January 2014 N/A N/A 22 

Delta State 

Landsat-5 TM 

(bands 3–5) 

B3: 0.52–0.60 µm (Green) 

B4: 0.63–0.69 µm (Red) 

B5: 0.76–0.90 µm (NIR)  

21 December 1987 189 56 28.5 

15 January 1986 190 56 28.5 

Landsat-7 ETM+ 

(bands 3–5) 

B3: 0.52–0.60 µm (Green) 

B4: 0.63–0.69 µm (Red) 

B5: 0.77–0.90 µm (NIR) 

28 January 2002 189 56 28.5 

17 February 2001 190 56 28.5 

NigeriaSat2 

(bands 1–3) 

B1: 0.52–0.62 µm (Green) 

B2: 0.63–0.69 µm (Red) 

B3: 0.76–0.90 µm (NIR)  

18 January 2014 N/A N/A 22 

2.2.1. Image Classification and Accuracy Assessment 

For image classification, the unsupervised Iterative Self Organising Data Analysis (ISODATA) 

technique was used to analyse the satellite images [44]. This was performed using the ISODATA 

algorithm in ERDAS Imagine software [38]. A total of six broad classes were used in the study, based 

on the Intergovernmental Panel on Climate Change land use classification scheme [45]. The six broad 

classes comprised of forestland, cropland, grassland, wetlands, settlements, and other land classes. 

These classes were further re-categorised into two distinct classes for the purpose of this study, namely 

forest and non-forest.  

The training of the image and performance of accuracy assessment of the classified images was 

performed using independent training and testing data. The sources for these data used for accuracy 

assessment included a combination of global positioning system (GPS) data obtained on site for the 

PAs across the study areas, information from Google Earth, visual interpretation of the satellite 

imagery, and historic aerial photographs. Accuracy assessment was calculated using the ERDAS 

Imagine Accuracy Assessment command.  

2.2.2. Forest Cover Change Analysis 

The forest cover maps for 1986, 2000 and 2014 were generated using the Land Cover Modeler of 

IDRISI 17.0 Selva [46]. The forest transition maps for both time intervals (1986–2000 and 2000–2014) 

showed the extent of deforestation, afforestation, and unchanged forest landscapes across the study 

area. In this study, deforestation referred to the net area converted from forest area in one image to 

non-forest in the next, while afforestation occurred in reverse (i.e., non-forest to forest). 
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In order to calculate annual rates of forest transition, both forest cover and forest transition maps 

were used as inputs. These calculations were based on the assumption that the annual deforestation and 

afforestation in total forest cover will not be constant, as demonstrated in previous studies [47,48].  

The formula for calculating annual deforestation and afforestation rates are presented in Equations (4) 

and (5) below: 

Annual deforestation rate = 
log log( )

100b a

a b

F F B

t t

 



 (4)  

Annual afforestation rate = 
log log( )

100b a

a b

F F C

t t

 



 

(5) 

where Fa and Fb is the forested area in hectares, at times ta (earlier) and tb (later); B is the deforested 

area between earlier and later dates; and C is the afforested area between earlier and later dates. 

2.2.3. Forest Fragmentation Analysis  

In this study, the level of forest fragmentation analysis was derived using FRAGSTATS spatial 

pattern analysis software (version 4.1) designed to compute landscape metrics [49]. Based on results of 

previous studies [23,50,51], the class metrics used in this study included the total number of patches 

(NP), percentage of landscape (PLAND), edge density (ED), mean patch area (MPA), mean  

shape index (MSI), mean core area index (MCAI), and effective mesh size (MESH).  

The class level aggregation metrics (NP and MESH) allow for characterising forest landscape structure 

in the study. Using the core-area, shape, and area-edge derived metrics it is possible to have a better 

understanding of edge effects and interior habitat [26,28,29,52]. PLAND (a class level composition 

metric) is a fundamental measure of the landscape composition that describes how much of the 

landscape is comprised of a particular land cover type. In forest fragmentation analysis, it is essential 

to know how much of the target land cover type (e.g., forests) exists within the landscape [49]. An  

8-cell neighbourhood rule for delineating patches was optimised using the generated “forest and  

non-forest maps” of PAs across each state from 1986 to 2014.  

3. Results and Discussion 

3.1. Forest Classification Accuracy Assessment 

The accuracy assessment results for CRS and DS forest cover classifications for 1986, 2000 and 2014 

are presented in Tables 2 and 3 respectively. The 1986, 2000 and 2014 overall classifications accuracy of 

classified forest maps for CRS were 84%, 88% and 82% while for DS were 91%, 89% and 91%. 
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Table 2. Error matrix of 1986, 2000 and 2014 classified forest maps for Cross River State. 

Forest Map—1986  

Classified Data Forest Non Forest Row Total Users Accuracy (%) 

Forest 370 69 439 84.3 

Non Forest 31 160 191 83.8 

Column Total 401 229 630  

Producer’s Accuracy (%) 92.3 70.0   

Overall Accuracy (%) 83.1  

Forest Map—2000 

Classified Data Forest Non Forest Row Total Users Accuracy (%) 

Forest 298 83 381 78.2 

Non Forest 3 321 324 99.1 

Column Total 301 404 705  

Producer’s Accuracy (%) 99.0 79.5   

Overall Accuracy (%) 87.8  

Forest Map—2014 

Classified Data Forest Non Forest Row Total Users Accuracy (%) 

Forest 155 44 199 77.9 

Non Forest 44 242 286 84.6 

Column Total 199 286 485  

Producer’s Accuracy (%) 77.9 84.6   

Overall Accuracy (%) 81.9  

Table 3. Error matrix of 1986, 2000 and 2014 classified forest maps for Delta State. 

Forest Map—1986 

Classified Data Forest Non Forest Row Total Users Accuracy (%) 

Forest 118 27 145 81.4 

Non Forest 4 183 187 97.9 

Column Total 122 210 332  

Producer’s Accuracy (%) 96.7 87.1   

Overall Accuracy (%) 90.7  

Forest Map—2000 

Classified Data Forest Non Forest Row Total Users Accuracy (%) 

Forest 126 26 152 82.9 

Non Forest 8 160 168 95.2 

Column Total 134 186 320  

Producer’s Accuracy (%) 94.0 86.0   

Overall Accuracy (%) 89.4  
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Table 3. Cont. 

Forest Map—2014 

Classified Data Forest Non Forest Row Total Users Accuracy (%) 

Forest 81 6 87 93.1 

Non Forest 16 137 153 89.5 

Column Total 97 143 240  

Producer’s Accuracy (%) 83.5 95.8   

Overall Accuracy (%) 90.8  

3.2. Forest Cover Transition and Rates of Change 

The spatial extent of forest landscape across PAs in both states was determined using image 

classification techniques applied to multi-temporal satellite data. The total area of forest across PAs in 

CRS for years 1986, 2000 and 2014 was 535,671 ha, 494,009 ha and 469,684 ha respectively. For DS, 

the total forest cover of PAs for the same years was 74,631 ha, 68,470 ha and 58,824 ha. Figures 3 and 4 

are the forest and non-forest maps of PAs in CRS and DS for years 1986, 2000 and 2014. The forest 

transition maps for protected areas across CRS and DS over both time periods (1986–2000 and  

2000–2014) are presented in Figure 5. Tables 4 and 5 present results of forest transition analysis and 

annual rates of change for PAs in CRS and DS. The results showed that for CRS, the percentage of 

deforested landscape declined from 15% in the first 14-year period (1986–2000) to 13% in the second 

14-year period (2000–2014). The percentages of afforested landscape for the same 14-year periods 

were 3.7% and 6.1% respectively. For DS, the percentages of deforested landscape during the first and 

second 14-year periods were 14% and 21% respectively. The percentage of afforested landscape for 

PAs in DS increased from 7% to 10% over the two 14-year periods.  

When compared, the overall annual deforestation rate in the first 14-year period (1986–2000) was 

the same for both states (0.8%). However, the annual deforestation rate of PAs over the second 14-year 

period (2000–2014) was higher in DS (1.9%) in comparison to CRS, which at 0.7%, was one third of 

the rate in DS. Figure 6 shows the percentage of forest transition and average annual rates of change 

across protected areas in CRS and DS from 1986 to 2014. The results show most PAs in CRS and DS 

experienced a rise in the percentage of forest landscape affected by deforestation over both 14-year 

periods investigated (Figure 6A and Table 4). In CRS, the PAs with the highest rise in annual 

deforestation rates over both 14-year periods were PA10 and PA11, with percentage rise of 3.5% and 

2.2%. Similarly, the PAs with the highest rise in annual deforestation rates in DS were PA22 and PA24 

with percentage rises of 3.5% and 3% over the 14-year periods analysed (Figure 6B, Table 5). 

The significant difference in the annual rates of deforestation across PAs in both states between 

2000 and 2014 was an indication of the positive effects that conservation efforts across CRS [53] and 

implementation of government policy have had on forest conservation over the years. CRS has 

consistently made efforts to implement both federal and state government forest conservation policies. 

An example of the positive role conservation organisations and local community participation have had 

in combating deforestation is demonstrated across two PAs (PA7 and PA14) in CRS. These identified 

PAs, Cross River National Park, Okwangwo division (PA7) and Mbe Mountains (PA14), managed by 
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conservation organisations with local community participation [54–56] have experienced decline in the 

annual deforestation rates over both 14-year periods investigated (Table 4).  

 

Figure 3. Forest and non-forest maps of protected areas in Cross River for 1986, 2000  

and 2014. 
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Figure 4. Forest and non-forest maps of protected areas in Delta state for 1986, 2000 and 2014.

 

Figure 5. Forest transition maps of protected areas across Cross River (A and B) and Delta states 

(C and D) for time periods 1986–2000 and 2000–2014. 
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Table 4. Forest transition and annual rates of change for PAs across Cross River from 1986 to 2014. 

Site 

Code 
Protected Area 

Forest Area (ha) Deforested (ha) 
Ann. Deforestation Rate 

(%) 
Afforested (ha) 

Ann. Afforestation Rate 

(%) 

1986 2000 2014 1986–2000 2000–2014 1986–2000 2000–2014 1986–2000 2000–2014 1986–2000 2000–2014 

PA1 Achara Ihe 1309.4 1206.2 924.8 253.9 450.63 0.99 2.90 139.6 180.99 0.64 1.50 

PA2 Afi River 39,606.5 38,602.4 35,610 1297.9 4133.8 0.19 0.63 293.9 1141.4 0.10 0.35 

PA3 Agoi 3899.4 2761.8 2513.3 1390.7 1181.7 3.24 2.26 249.2 935.4 1.36 1.74 

PA4 Boshi 2479.1 2440.7 2351.9 39.2 121.1 0.10 0.28 2.9 37.89 0.05 0.17 

PA5 Boshi Extension 7136.3 7330.9 6452.9 121.1 1415.8 0.03 1.16 315.7 537.8 0.05 0.67 

PA6 CRNP (Oban Block) 286,099 273,160 252,709 22,572.9 28,184.5 0.41 0.61 9658.1 7752.0 0.26 0.34 

PA7 CRNP (Okwangwo) 51,429.9 44,274.1 43,259.7 25,591.8 3601.2 3.14 0.34 198.7 2192.94 0.48 0.23 

PA8 Cross River North 13,484.5 10,112.9 10,621.3 3783 1631.6 2.35 0.37 419 2145.5 1.02 0.55 

PA9 Cross River South 48,703.9 45,369.9 43,771.1 4250.8 5497.4 0.53 0.53 848 3754.9 0.28 0.39 

PA10 Ekinta River 10,569.5 8063.7 5622.2 2945.6 4347 2.25 5.72 437 1917.8 1.01 2.41 

PA11 Ikom 801.7 746.6 573.2 59.1 255.7 0.48 2.65 18.2 73.0 0.30 1.24 

PA12 Ikrigon 574.3 685.3 600.1 414.7 427.6 2.33 4.28 536.6 335.2 4.19 2.95 

PA13 Lower Enyong 878.8 772 952.2 527.6 253.3 3.97 0.31 422.6 430.7 2.86 1.22 

PA14 Mbe Mountain 8973.3 7755.4 8144.8 1291.4 677.7 1.02 0.12 87.8 1047.1 0.49 0.27 

PA15 Obieze-Isu 1848.6 1745.8 1789.7 531.2 796.1 1.30 1.75 432.3 404.1 1.06 0.72 

PA16 Ukpon River 25,866.5 22,425.6 20,621.5 6746.0 6531 1.55 1.44 3322.4 4728.2 0.94 1.07 

PA17 Umon Ndealichi 8378.6 8867.3 10,393.2 3487.1 2843.7 1.37 0.50 791.6 2395.7 0.11 0.32 

PA18 Uwet Odot 23,632 17,688.9 22,773.2 8389.5 10,882.4 2.89 1.23 2458.8 4578.6 1.36 0.09 

Total 535,671.2 494,009.5 469,684 83,693.4 73,232.1 0.83 0.68 20,632.1 34,589.1 0.36 0.37 
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Table 5. Forest transition and annual rates of change for PAs across Delta from 1986 to 2014. 

Site 

Code 
Protected Area 

Forest Area (ha) Deforested (ha) Ann. Deforestation Rate (%) Afforested (ha) Ann. Afforestation Rate (%) 

1986 2000 2014 1986–2000 2000–2014 1986–2000  2000–2014  1986–2000 2000–2014 1986–2000 2000–2014 

PA19 Inyelen 150.8 131.1 120.2 42.3 28.4 1.53 1.29 22.7 17.7 0.95 0.89 

PA20 Akumazi 1334.6 1047 980.7 686.6 551.6 3.79 3.23 399.0 485.4 2.09 2.71 

PA21 Ogiopa 624.5 459.2 418.5 320.1 222.7 4.35 3.08 155.8 180.5 2.09 2.38 

PA22 Niocha 1395.5 1188.4 843.1 576.4 610.7 2.39 5.91 283.1 133.3 1.25 1.86 

PA23 Ute-Ukpu 2612.2 2487.7 1888.5 1754.6 1410.8 3.68 5.97 1630.2 811.6 3.23 3.03 

PA24 Nsukwai 1150.1 977 737.5 365.8 478.1 1.83 4.80 369.2 161.7 1.85 1.91 

PA25 Ogwashi-Uku 1381.5 1054.3 936.6 655.1 505.3 3.59 3.23 327.9 379.7 1.86 2.31 

PA26 Olague 18,442.5 18,311 14,903.8 2067.5 5156.2 0.37 2.28 1935.9 1749.1 0.34 1.20 

PA27 Uremure Yokri 30,964.7 29,003.1 27,476.1 2977.1 4186.8 0.50 0.79 1003.1 2659.8 0.29 0.56 

PA28 Ukpe-Sobo 15,204.2 12,567.6 9407.1 2656.7 5210.7 1.24 3.97 20.2 2050.2 0.56 1.94 

PA29 Isheagu 1370.8 1243.4 1111.5 151 195.3 0.66 1.11 23.6 63.5 0.34 0.62 

Total 535,671.2 68,469.7 58,823.6 12,253.2 18,556.6 0.82 1.92 6170.4 8692.5 0.52 1.13 
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Figure 6. (A) Percentage of forest transition and (B) Average annual rates of change across 

protected areas in Cross River and Delta for (1986–2000) and (2000–2014). 

3.3. Changes in Forest Landscape Structure 

Table 6 presents the changes in forest landscape structure across PAs in CRS and DS from 1986 to 

2014. The extent of forest fragmentation was measured using PLAND, NP, ED, MPA, MSI, MCAI 

and MESH. The PLAND metric of forest PAs in CRS and DS experienced significant decline over 

both 14-year periods investigated (i.e., 1986–2000 and 2000–2014). The decline in percentages of 

forest cover shows dynamics and corresponding impacts on forest landscape spatial structure over both 

states. The decline in percentage cover of forest landscape (PLAND) corresponds to changes in NPs. 

In CRS, PLAND metric declined from 94.3% in 1986 to 87.8% in 2000 and 80.5% in 2014. For DS, 

NP metric increased over both 14-year periods while PLAND metric declined from 83.1% (1986) to 
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75.7% (2000) and 63.5% (2014). The rise in NP indicates increased fragmentation across forest 

landscape while reduction signifies forest re-growth or regeneration. In this study, the MPA refers to 

the average size of patch that corresponds to forest class. A reduction in the MPA indicates more 

fragmentation in the forest landscape. The results indicate that MPA for CRS and DS decreased 

between 1986 and 2014, a further indication of forest fragmentation in designated PAs. For PAs in 

CRS, the ED metric increased from approximately 19 m/ha in 1986 to 76 m/ha in 2000, and further 

declined to approximately 47 m/ha (Table 6). In DS, ED increased over years 1986, 2000 and 2014 

with approximately 39, 40 and 52 m/ha (Table 6). The rise in ED of both states signifies the initial stage 

of forest fragmentation as indicated in [23]. The MSI for PAs in CRS and DS over 1986, 2000 and 2014 

were greater than one, signifying that the average patch shape of forest classes were irregular [23,49]. 

The irregularity of forest cover raster cells analysed indicates occurrence of forest fragmentation in 

CRS and DS from 1986 to 2014.  

The MCAI signifies the average core area of patches that correspond to forest class. A main effect 

of fragmentation to landscapes is the conversion of interior habitat to edge habitat. The amount of core 

area is expected to decrease as a result of fragmentation. In this study, the MCAI metric for CRS and 

DS declined over 1986 to 2014 indicating high levels of forest fragmentation. The effective mesh size 

landscape metric (MESH) shows the possibility of any randomly selected clusters within a region to be 

connected or not. The MESH metric for both states declined over 1986 to 2014, indicating intensified 

forest fragmented across designated PAs. Overall, results of landscape metrics indicate the forest 

landscapes in PAs for both states were highly fragmented over the period analysed.  

The process of land-cover change as demonstrated in this study and others [23,52] has long-term 

effects on the structure of forest habitats and the continued existence of dependent wildlife or native 

plant species. The level of forest fragmentation is a reflection on how well PAs are managed and 

dependent wildlife is conserved. An example is demonstrated in Niocha FR (PA22) situated along the 

east-west road of DS. PA22 (with the highest annual deforestation rate of approximately 6%) is 

affected by combined pressures from intensified agriculture, unsupervised urbanisation, road access 

within the reserve, and rising populations from surrounding communities. These factors have resulted 

in the disturbance of the southern part of the reserve and experienced high levels of forest 

fragmentation (Figure 7A,B).  

Table 6. Results of landscape metrics used in study for Cross River and Delta from 1986 to 2014. 

Metrics 
Cross River  Delta 

1986 2000 2014  1986 2000 2014 

Percentage of forest landscape (%) 94.3 87.8 80.5  83.1 75.7 63.5 

Number of patches 2985 13,694 11,036  1394 1832 3706 

Effective Mesh Size (× 1000 ha) 250 223 182  15 13 10 

Edge Density (m / ha)  19 76.4 46.7  39 40 52 

Mean Patch Area (ha) 179.3 35.6 41.7  53.72 37.24 15.46 

Mean Shape Index (MSI) 1.28 1.30 1.29  1.38 1.31 1.29 

Mean Core Area Index (%) 169.9 28.9 36.5  48.1 30 13 
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Figure 7. Map showing disturbed forest landscape within Niocha forest reserve (PA22) in 

Delta state for (A) 2002 and (B) 2014. (Source: “Niocha forest reserve, Delta state”. 

6°17′08.77″ N, 6°37′27.60″ E. Google Earth. 5 July 2015). 

4. Conclusions 

Despite the importance and significance of PAs in forest conservation, the understanding of their 

current status and distribution across the Niger Delta is inadequate. In response to this gap, we have 

demonstrated the usefulness of utilising medium resolution satellite imagery, aerial photographs and 

ground data to map the distribution changes and structure of forest PAs across parts of the Niger Delta. 

The study provides vital baseline results on forest transition across PAs in CRS and DS for years 1986, 

2000 and 2014. The annual deforestation rates for PAs across both states from 1986 to 2000 were the 

same (0.8%). However, this uniform deforestation rate changed between 2000 and 2014 with DS 

experiencing deforestation rates (1.9%) that are three times higher than the rates in CRS (0.7%).  

The results of landscape fragmentation analysis showed that forest habitats across PAs in both states 

experienced intensified levels of fragmentation.  

These results are a wake up call for the Nigerian government and other key stakeholders involved in 

forest conservation (particularly NGOs, interested parties, and local communities) to intensify 

conservation efforts of forest PAs nationwide. The place of local community participation and 

government policy implementation to the long-term conservation of PAs cannot be over emphasised. 

The decline in annual rates of deforestation across PAs in CRS was influenced by the combined roles of 

conservation organisations, local community participation, and designated government organisations.  
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In conclusion, we have generated valuable information on the current extent, distribution, and 

structure of forest landscapes of designated PAs in the Niger Delta using remote sensing. With such 

baseline data, forest conservation programmes aimed at combating threats from deforestation and 

promoting conservation would have access to current and localised baseline data required for 

successful programme implementation (such as UN-REDD, Conservation Organisation etc.). 
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