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Abstract: Reedbeds across the UK are amongst the most important habitats for rare and endangered
birds, wildlife and organisms. However, over the past century, this valued wetland habitat has
experienced a drastic reduction in quality and spatial coverage due to pressures from human related
activities. To this end, conservation organisations across the UK have been charged with the task of
conserving and expanding this threatened habitat. With this backdrop, the study aimed to develop
a methodology for accurate reedbed mapping through the combined use of multi-seasonal texture
measures and spectral information contained in high resolution QuickBird satellite imagery. The key
objectives were to determine the most effective single-date (autumn or summer) and multi-seasonal
QuickBird imagery suitable for reedbed mapping over the study area; to evaluate the effectiveness
of combining multi-seasonal texture measures and spectral information for reedbed mapping using
a variety of combinations; and to evaluate the most suitable classification technique for reedbed
mapping from three selected classification techniques, namely maximum likelihood classifier, spectral
angular mapper and artificial neural network. Using two selected grey-level co-occurrence textural
measures (entropy and angular second moment), a series of experiments were conducted using
varied combinations of single-date and multi-seasonal QuickBird imagery. Overall, the results
indicate the multi-seasonal pansharpened multispectral bands (eight layers) combined with all eight
grey level co-occurrence matrix texture measures (entropy and angular second moment computed
using windows 3 ˆ 3 and 7 ˆ 7) produced the optimal reedbed (76.5%) and overall classification
(78.1%) accuracies using the maximum likelihood classifier technique. Using the optimal 16 layer
multi-seasonal pansharpened multispectral and texture combined image dataset, a total reedbed
area of 9.8 hectares was successfully mapped over the three study sites. In conclusion, the study has
demonstrated the value of utilizing multi-seasonal texture measures and pansharpened multispectral
data for reedbed mapping.
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1. Introduction

The need for an effective, accurate and robust system designated for wetland mapping is a crucial
tool for agencies charged with the responsibility of protecting and managing such delicate habitats.
Reedbed habitats in the UK have been identified as a priority habitat for most regional Biodiversity
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Partnerships, thus making the mapping of this threatened wetland habitat crucial. The regional
Biodiversity Partnership was set up across different regions of the UK as part of Britain’s response to
ratifying the Convention on Biological Diversity following the Rio Earth Summit in 1992. It delivers
a wide range of biodiversity conservation, communication and public education across different
local areas. The partnership usually comprises of a number of organizations drawn from one (or
more) local authority area with contributions from national agencies or local biodiversity authorities.
Such information is vital in developing suitable management plans for the conservation and expansion
of reedbed sites across the UK. Because reedbeds tend to exist as small patches across large landscapes,
there is need to use high resolution satellite data containing sufficient spectral information for its
mapping. The availability of high resolution satellite data, such as IKONOS or QuickBird imagery,
has facilitated the mapping of wetlands and other land-cover types [1–5], and proven to be an
effective and cost efficient method of mapping [6]. However, the mapping of different land-cover
types having similar spectral responses is an issue that has restricted the use of single-date image
datasets [7]. Studies have shown that using multi-seasonal images could improve the accuracy of
image classification owing to the amount of phenological data contained in the vegetation cover [7–16].
Davranche et al. [10] combined multi-seasonal reflectance data contained in SPOT-5 images with field
campaign data to estimate the area of marshes covered with common reeds (Phragmites austrillis) and
other submerged land cover types.

The use of fine spatial information contained in high resolution satellite data has proven to be
valuable for land-cover classification systems in areas with complex landscapes. In particular, textural
measures, such as gray level co-occurrence matrix (GLCM) measures [17,18], have been shown to
improve image classification accuracies when combined with spectral ones [19–27]. As demonstrated
by Onojeghuo and Blackburn [28], the combination of GLCM texture images and multispectral data
was shown to significantly improve the delineation of reedbed habitats from surrounding land cover
classes. The study indicated that the most effective texture measures for reedbed mapping using
high resolution QuickBird imagery were entropy and angular second moment. However, the study
was limited to the use of a single image data set and concentrated on further refinement using other
datasets such as elevation models and implementing the use of spectral degradation to minimize
noise and consequently improve classification accuracy. This current research goes a step further, as
it aims to investigate in more detail the place of multi-seasonal textural and spectral information in
reedbed mapping.

Several studies have compared the performance of different classifiers such as the maximum
likelihood classifier (MLC), artificial neural network (ANN) or spectral angular mapper (SAM) in
classifying single-date and multi-seasonal images. Murthy et al. [13], for example, compared the
performance of MLC and ANN for the classification of wheat crops using multi-seasonal images.
Two approaches to classification were evaluated, namely: (1) MLC with different strategies: sequential
MLC, MLC with Principal Components and iterative MLC; and (2) ANN with the back-propagation
method. The ANN method was found to perform best for this application. In other studies,
Principal Component Analysis (PCA) has been successfully used to derive thematic information
from multi-temporal images [29]. Furthermore, SAM has been used in numerous studies [30–34] which
have demonstrated the advantages of this classifier in terms of its speed and ease in mapping spectral
similarity between the image and reference spectra. Nevertheless, despite the extensive testing of these
classification approaches, no particular technique has emerged as the universal optimum and there
remains the need to identify the most effective method for specific application. Consequently, this
study aimed to develop a methodology for accurately mapping reedbed through the combined use
of multi-seasonal texture measures and spectral information contained in high resolution QuickBird
satellite imagery. The objectives of the study included:

(1) to determine the most effective single-date (autumn or summer) and multi-seasonal QuickBird
imagery suitable for reedbed mapping over the study area;

(2) to evaluate the effectiveness of combining multi-seasonal texture measures and spectral
information for reedbed mapping using a variety of combinations; and
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(3) to evaluate the most suitable classification technique for reedbed mapping from three selected
classification techniques, namely maximum likelihood classifier, spectral angular mapper and
artificial neural network back propagation technique.

2. Materials and Methods

2.1. Study Areas

In this study, three key sites of interest were investigated, namely: River Leven situated in
Cumbria, NW England (2˝291 W, 54˝211 N) with an approximate land mass of 300 hectares (ha) is
dominated by a distribution of small reedbed patches spread across the landscape; Rusland Valley
(3˝001 W, 54˝161 N) and Helton Tarn (2˝531 W, 54˝151 N) respectively, each with an area of 300 and
34 ha (Figure 1). The three sites were selected based on the extent and diversity of reedbed identified
from existing information held by the Cumbria Wildlife Trust and Environment Agency. Some of
the key reedbed sites include: Crook Moss, Chapel Beck, Miller Beck, South Windermere, Newbly
Bridge, Rusland Moss, Hulleter Moss and Helton Tarn. These reedbed sites incorporate a range of
combinations of different plant species existing alongside the dominant reed species Phragmites austrillis
and Phalaris arundinacea, making these useful areas for testing remotely sensed mapping methods.
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2.2. Satellite Image Acquisition and Processing

The remotely sensed data used for the study were high resolution QuickBird sensor panchromatic
(0.6 m) and multispectral (2.4 m) images acquired over the same area in late autumn (5 November
2008) and early summer (1 June 2009), respectively. The basis for these dates were aimed to depict
distinct phonological stages of reedbed habitats in comparison to surrounding land cover types as
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demonstrated in Ouyang et al. [35]. The autumn imagery represented the reedbed during the leaf-off
stage while the early summer image represented reeds in the early stage of leaf development.

The QuickBird imagery for both dates were re-projected from WGS 84 coordinate system to
the British National Grid and geometrically corrected using a rational polynomial coefficients (RPC)
geometric model. The RCP file contained coefficients which are based on the satellite position during
image capture. The final georectification of the multispectral and panchromatic images was done
using 10 evenly spread ground control points extracted from the Ordnance Survey (OS) reference map.
The root mean square (r.m.s) error results for the autumn panchromatic and multispectral images
were 0.32 and 0.11, while the summer r.m.s values were 0.12 and 0.28, respectively. The images were
radiometrically corrected, and a dark object subtraction [36] was applied to reduce atmospheric effects
before they were used for further analysis. Using individual panchromatic bands for both dates, each
multispectral image was pan-sharpened using the resolution merge tool in ERDAS Imagine [37] and
subsequently used for analysis in the study.

The data used for training and testing were collected using a combination of methods and sources,
namely: DGPS field positions, Phase 1 habitat survey base-map, recent Ordnance Survey (OS) vector
maps, aerial photographs and the QuickBird image (for visual interpretation of certain features such as
cloud and shadow only). Pixels for training and testing the classifier were independent of each other
and randomly selected. The process of sampling was performed using a stratified random sampling
approach. This approach was selected as it allows for a proper representation of key land cover types
within the study area. With stratified random sampling, the allocation of a larger amount of strata with
more variance and a smaller sample size of strata with less variance is achievable. Hence, the approach
allows for a more precise representation of ground verification samples during data acquisition for
ground truthing and training. The land cover types used as strata for this study were extracted from
existing Phase 1 habitat survey base-maps and OS vector maps covering the study area. The training
and testing dataset used for processing the single-date images (autumn and summer) for the main
study site were 589 polygons and 521 points, respectively, while the training and testing dataset
common to both single-date images used for the multi-seasonal image classification were 459 polygons
and 498 points. The sampling scheme used in the study was a simple random selection, an unbiased
selection procedure with excellent statistical properties [38,39].

2.3. Texture Measures Calculation

The texture measures used in the study were the GLCM angular second moment (glcm4) and
entropy (glcm5) (Equations (1) and (2)):

entropy pglcm4q “ ´
ÿ

i,j

P pi, jqlogP pi, jq (1)

angular second moment pglcm5q “
ÿ

i,j

P2 pi, jq (2)

where P(i,j) are elements of the co-occurrence matrix space; P(i), P(j) are the row and column values of
the co-occurrence matrix, respectively.

The optimal window sizes for calculating entropy (glcm4) and angular second moment (glcm5)
were based on semivariograms derived from sub-scenes of panchromatic images over the major land
cover types (i.e., broadleaved forest, coniferous forest, improved grassland and marshy grassland and
reedbeds) mapped in this study.

The semivariograms for major land cover types indicated reedbeds, improved grasslands and
marshy grasslands started to saturate at lag distance of 3, while coniferous and broadleaved forest
saturated at lag distance of 7 (Figure 2). Based on these results, the window sizes 3 ˆ 3 and 7 ˆ 7
were selected for computing glcm3 and glcm4 textural measures. The aforementioned GLCM texture
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measures were calculated from four directions (0˝, 45˝, 90˝, 135˝) of a co-occurrence matrix and the
corresponding mean of all four directions was used as the output.
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The outputs from each texture measures (entropy—glcm4 and angular second moment—glcm5)
were combined with the corresponding pan-sharpened multispectral image of each date, and
a series of classifications performed using supervised training and MLC. In addition, principal
component analysis was applied to different combinations of the texture measures generated using
both window sizes. The resulting first and second principal component images were combined with
the pansharpened multispectral data for classification. A detailed description of the datasets generated
for classification and methodology used is presented in the following section.

2.4. Texture Measures Calculation

Table 1 describes the image datasets used for the single-date and multi-seasonal image
classifications. The image datasets used in this study comprised of single-date images (autumn
and summer) and multi-seasonal imagery. Additional multi-seasonal image datasets were generated
using PCA transformation and image differencing, respectively. The PCA transformation was applied
to the GLCM textural measures entropy and angular second moment computed using windows 3 ˆ 3
and 7 ˆ 7 for each single date image (autumn and summer). The first two PC bands, PC1 and PC2,
of the GLCM texture measures were subsequently combined with the pan sharpened multispectral
bands of each single date image. Amongst the multi-seasonal image datasets evaluated in this study
was the combination of the eight multispectral bands of both dates and PC bands 1–4 of GLCM
texture measures—entropy and angular second moment computed using windows 3 ˆ 3 and 7 ˆ 7
for autumn and summer. All the PC bands selected in each phase of the study represented over
98% of the information contained in original image datasets before PCA transformation was applied.
The difference images of the autumn and summer image datasets were classified.

The single-date and multi-seasonal image datasets were classified using the supervised classifier
MLC. The MLC was performed using a decision rule which operates based on the probability that
a pixel belongs to a particular class. For this study, the assumptions of the maximum likelihood
parametric rule, which are that the probabilities for all the classes are equal and the input bands have
normal distributions, were satisfied. The output land-cover types identified in the study included
broadleaved forests, built-up areas (comprising of roads and buildings), coniferous forests, improved
grassland, marshy grassland, reedbeds, water bodies, shadow and cloud cover.
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Table 1. Description of image datasets used for single-date and multi-seasonal classifications.

Image Dataset Description Number of Bands

pansharp MS
(single-date) Multispectral bands only (summer and autumn separately) 4

glcm45pca
(single-date)

Multispectral bands combined with principal components 1–2 of GLCM
entropy and angular second moment computed using windows 3 ˆ 3 and
7 ˆ 7 (autumn and winter)

6

pansharp Combination of multispectral bands for autumn and summer QB images. 8

glcm45pca
Combination of eight multispectral bands and principal components 1–4 of
GLCM texture measures (entropy and angular second moment computed
using windows 3 ˆ 3 and 7 ˆ 7) for autumn and summer QB images

12

all glcm45
Combination of 8 pansharpened multispectral bands and 8 GLCM texture
measures (entropy and angular second moment computed using windows 3
ˆ 3 and 7 ˆ 7) for autumn and summer QB images

16

pansharp
difference Image difference of autumn and summer pansharpened multispectral images. 4

glcm45pca
difference

Image difference of autumn and summer pansharpened and texture combined
image datasets 6

all glcm45
difference

Image difference of autumn and summer datasets each having four spectral
and four GLCM texture measures—entropy and angular second moment
computed using windows 3 ˆ 3 and 7 ˆ 7

8

pansharp PCA First 3 principal components of spectral bands for both dates 3

glcm45pca PCA First 3 principal components of autumn and summer datasets—glcm45pca 3

all glcm45 PCA First 3 principal components of autumn and summer datasets—all glcm45 3

Note: Pansharp, QuickBird pansharpened multispectral bands with a spatial resolution of 0.6 m; Image
difference = autumn image ´ summer image; GLCM, grey level co-occurrence matrix; glcm45pca, PCA output
of window sizes 3 ˆ 3 and 7 ˆ 7.

2.5. Evaluating Image Classification Techniques for Reedbed Mapping

The optimal multi-seasonal image identified using the MLC technique was further evaluated
using the ANN and SAM classifiers in order to determine the best classifier for reedbed mapping.
The ANN analysis was performed using a Multi-Layer Perceptron (MLP) hard classifier algorithm
using back-propagation (this shall be referred to as ANN in further sections of the paper). The ANN
network architectures used in this study consisted of 16 input units (eight QuickBird multispectral
bands for autumn and summer plus relevant texture measures computed using panchromatic images
for both dates). A single hidden layer with 16 nodes and an output layer of eight nodes representing
each class were used. The network was trained with a learning rate of 0.01 and learning momentum
of 0.7, to ensure stable learning. The network was trained until the RMSE was minimised, after
20,000 cycles. A sigmoid function constant of 1 was used and the acceptable RMSE set to 0.0001.
The training and testing RMSE were 0.0007 and 0.0015 respectively, while the accuracy rate of the
network was 93%. These parameters were selected after a series of rigorous tests using different
parameter settings. For the SAM classification algorithm, the endmember spectra used were extracted
directly from the image as a region of interest (ROI) average spectra. The ROI files were generated
from the training dataset. The ArcGIS polygon shapefiles were imported as vectors and used to extract
the endmembers. A series of maximum thresholds ranging from 6 to 90 degrees (0.10–1.57 radians)
were set as thresholds in the single value mode of the SAM classifier and the optimal threshold for
reedbed and other land cover classification identified.

2.6. Accuracy Assessment

In this study, the reedbed user’s and overall accuracies were used as measures of estimating the
quality of reedbed mapping. The user’s accuracy was selected as it provides vital insight as to the level
of classification accuracy from the user’s perspective, identifying within a classified map the number
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of pixels that actually represent the class it depicts. Also, the Kappa discrete multivariate analysis
technique was used to statistically assess the accuracy of the different classification error matrices
generated in the study [40], while the Z statistic was used to test for significant differences [41–45].
This method calculates the difference between the kappa coefficients of two classifications and divides
this by the square root of the sum of variances of both classifications. This test statistic is employed
for testing if two independent error matrices are significantly different as is the case in this study.
The Z-values larger than 1.96 and 2.58 (positive or negative) indicated that two classification results
were significantly different at the 95% and 99% confidence levels, respectively.

3. Results and Discussion

3.1. Single-Date Classification Accuracies

Figure 3A,B shows the classification accuracies achieved overall and for reedbed specifically
when applying the MLC technique to the single-date and multi-seasonal image datasets, respectively.
Table 2 present the accuracy assessment results for single-date classifications. The results show that
for both dates, inclusion of textural measures increased the reedbed user’s and overall accuracies,
respectively. These results are in agreement with results obtained in previous studies [19–22,24–27,46]
which demonstrated that adding textural measures to spectral information increases the classification
accuracy of land use and cover mapping. The results of statistical tests, shown in Table 3, revealed
the combination of spectral information and texture measures for the single-date image datasets
significantly increased the reedbed (99% confidence level) and overall classification (95% confidence
level) accuracies compared to using only spectral information contained in the pansharpened image
datasets. For the single-date pansharpened and texture combined image datasets, the statistical tests
show that reedbed accuracy of the autumn image i.e., glcm45pca (autumn) was significantly higher (99%
confidence interval) than the glcm45pca (summer) image, an increase of 15%. However, the overall
classification accuracy of both single-date pansharpened and texture combined image datasets was not
significantly different for the autumn and summer image datasets, being 70.2% and 70.0%, respectively.
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Hence, the implication of the significance tests and classification accuracies for the reedbed and
other land-cover types was that the autumn pansharpened and texture combined image dataset was
the most effective single-date image for classification. The higher reedbed accuracy could be attributed
to timing of the reedbed growth cycle when the image was acquired. During early autumn, the
reedbed canopy is characterised by a mixture of dry stems and leaves with purple-brown panicles, a
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sharp contrast to that of surrounding wetland vegetation types and other land cover types. However,
in early summer, the reedbed canopy and surrounding wetland vegetation are both dominated
by photosynthesizing leaves which makes it difficult to spectrally differentiate reeds from other
surrounding vegetation.

Table 2. Accuracy assessment result of single-date classification generated using MLC technique.

Image
Dataset

Classified
Total

Number
Correct

Reedbed
PA

Reedbed
UA

Overall
Accuracy

Reedbed
Kappa

Overall
Kappa

pansharp
(summer) 26 11 32.35 42.31 64.68 0.38 0.53

glcm45pca
(summer) 17 9 26.47 52.94 68.14 0.5 0.58

pansharp
(autumn) 22 14 41.18 63.64 52.12 0.61 0.4

glcm45pca
(autumn) 6 4 11.76 66.67 73.34 0.65 0.66

Note: UA, User’s accuracy for reedbed; OA, overall classification accuracy; GLCM, grey level co-occurrence
matrix; glcm45pca, PCA output of window sizes 3 ˆ 3 and 7 ˆ 7; multi-date = autumn + summer images.

Table 3. Results of tests for significant differences in the accuracy of single-date classifications using
the MLC classifier. Kappa coefficients and associated variances for each classification are given in the
upper part of the table.

Class Error Matrix KAPPA Statistics Variance

Reedbed only

pansharp (summer)-(SP) 0.2490 0.000492101
glcm45pca (summer)-(SP+T) 0.3901 0.000446294

pansharp (autumn)-(AP) 0.4075 0.000495398
glcm45pca (autumn)-(AP+T) 0.5110 0.000438014

Overall class

pansharp (summer) 0.6485 0.000492101
glcm45pca (summer) 0.7124 0.000446294
pansharp (autumn) 0.6512 0.000495398

glcm45pca (autumn) 0.7160 0.000438014

Class Pairwise Comparison Z Statistics Confidence Level (%)

Reedbed only

SP vs. (SP+T) ´4.6061 99% significant
AP vs. (AP+T) ´3.3877 99% significant

SP vs. AP 5.0438 99% significant
(AP+T) vs. (SP+T) 4.0656 99% significant

Overall class

SP vs. (SP+T) ´2.0860 95% significant
AP vs. (AP+T) ´2.1210 95% significant

AP vs. SP 0.0859 Not significant.
(AP+T) vs. (SP+T) 0.1211 Not significant

3.2. Comparison of MLC Single-Date and Multi-Seasonal Classification Accuracies

The results of the multi-seasonal image classification experiment (Table 4 and Figure 3B) indicated
that the multi-seasonal pansharpened and texture combined image comprising of 16 layers (eight
spectral and the eight GLCM texture measures) had the best combination of reedbed accuracy and
overall classification accuracy, which were 76.5% and 78.1%, respectively. These results indicated
that the optimal multi-seasonal image was more effective than the single-date images for reedbed
delineation and general land-cover mapping. The increased performance of the multi-seasonal images
could be attributed to the quality of phenological data contained in the combination of the two
single-date images [7,11,47,48]. Guerschman et al. [7] observed that at a particular date, for two land
cover types that have similar biophysical properties or are at the same phenological stage, the use
of spectral data for discrimination would be low. However, the use of more than one satellite image
would enhance the classification accuracy because it contains subtle phenological differences that are
vital in discriminating between different land cover types during image classification.
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Table 4. Accuracy assessment result of multi-seasonal classification.

Image Dataset Total Correct R-PA R-UA OA R-KP O-KP Number

pansharp 18 13 38.24 72.22 78.11 0.7 0.7 8
glcm45pca 17 13 38.24 76.47 77.51 0.69 0.75 12
all glcm45 17 13 38.24 76.47 78.11 0.7 0.75 16

pansharp difference 31 11 32.35 35.48 72.89 0.63 0.31 8
glcm45pca difference 35 14 41.18 40 71.08 0.6 0.36 6
all glcm45 difference 40 16 47.06 40 74.7 0.66 0.36 8

pansharp PCA 61 31 91.18 50.82 80.72 0.76 0.47 3
glcm45pca PCA 59 13 38.24 22.03 70.88 0.64 0.16 3
all glcm45 PCA 61 31 91.18 50.82 81.33 0.76 0.47 3

Note: Total = Classified total; Correct = Number correct; R-PA = Reedbed Producer Accuracy; R-UA = Reedbed
User’s Accuracy; OA = Overall accuracy; R-KP = Reedbed kappa statistic; O-KP = Overall kappa statistic; and
No. = Number of bands; GLCM, grey level co-occurrence matrix; glcm45pca, PCA output of window sizes
3 ˆ 3 and 7 ˆ 7; multi-date = autumn + summer images.

3.3. Comparison of Classification Techniques Using Optimal Multi-Seasonal Dataset

The MLC derived optimal multi-seasonal dataset was evaluated further using two other classifiers,
namely ANN and SAM. The results show that the ANN classifier had the highest overall classification
accuracy of 85%, followed by MLC (84%) and SAM (77%), respectively (Figure 4). In this study,
the effectiveness of the back propagation ANN classifier for the overall classification was similar
to results obtained by Murthy et al. [13]. The classifier with the highest reedbed accuracy was the
MLC (76.5%), while the ANN and SAM classifiers were 51.4% and 36.8%, respectively. A similar
trend is demonstrated in Dai and Liu [49] in which the authors evaluated the performance of six
classifiers: MLC, support vector machine (SVM), ANN, SAM, minimum distance classifier (MD) and
decision tree classifier (DTC). Using the same number of training and testing data for classification and
accuracy assessment, four broad classes (broadleaved forest, scrubland, cropland and water bodies)
were accurately mapped and the order of performance was as follows: SVM (91.2%), MLC (90.5%),
DTC (87.4%), ANN (83.3%), SAM (80.3%) and MD (76.9%). The three top classification techniques in
the order of performance that overlapped with this current study were MLC, ANN and SAM (similar
to earlier reported results).
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In addition to accuracy assessment, the reedbed and overall classification accuracies of each
classifier were tested for significant differences using the Z statistics (Table 5). The pairwise comparison
result of the MLC vs. the ANN classifiers indicated that the MLC produced a significantly higher
accuracy for the reedbed class (99% confidence level). However, there was no significant difference in
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the overall accuracies of the MLC and ANN. This result indicates that for the reedbed classification
MLC is preferred to the ANN, while for general land cover mapping either of the classifiers could be
used. Figure 5a shows the reedbed map generated using the MLC. As can be seen in Figure 5b, the
ANN classifier overestimates the reedbed area and confuses it with other land cover types particularly
broadleaved forests and marshy grasslands while the SAM underestimates areas classified as reeds
(Figure 5c).

Table 5. Results of tests for significant differences in the accuracy of the classifiers (MLC, ANN, and
SAM) applied to the most effective multi-seasonal image. Kappa coefficients and associated variances
for each classification are given in the upper part of the table. Here, MLC = maximum likelihood
classifier; ANN = artificial neural network; and SAM = spectral angular mapper.

Class Error Matrix KAPPA Statistics Variance

Reedbed only
MLC 0.7186 0.0003620
ANN 0.5878 0.0003101
SAM 0.5094 0.0004674

Overall class
MLC 0.7988 0.0003620
ANN 0.8253 0.0003101
SAM 0.7110 0.0004674

Class Pairwise Comparison Z Statistics Confidence Level (%)

Reedbed only
MLC vs. ANN 5.0454 99% significant
MLC vs. SAM 2.8116 99% significant
ANN vs. SAM 2.8116 99% significant

Overall class
MLC vs. ANN ´1.0222 Not significant
MLC vs. SAM 4.0990 99% significant
ANN vs. SAM 4.0990 99% significant
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3.4. Inventory of Mapped Reedbed Habitats

Figure 6 presents the spatial extent of mapped reedbed sites across Rusland valley, River Leven
and Helton Tarn using the optimal multi-seasonal spectral and textural combined dataset. The results
showed the total mapped reedbeds area across all three sites was 9.8 hectares. Across Rusland Valley,
the total area of mapped reedbeds ranged from 0.02 ha (south of Crook’s Bridge 2) to 1.9 ha (Crooks
Bridge 1, the largest patch of reedbeds across the three study sites). In River Leven, the spatial extent
of mapped reedbed sites ranged from 0.15 ha in Crook Moss to 1.34 ha in South Windermere while
for Helton Tarn this was approximately 1.5 ha (second largest patch of mapped reedbed patches
across all three sites). Figures 7–9 display the vectorised reedbed habitats for Rusland valley; River
Leven and Helton Tarn generated using optimal multi-seasonal dataset. The results demonstrate
the effectiveness of mapping reedbed habitats of varied sizes and spatial distribution across large
landscape areas. These results highlight the distinct and unique pattern of spatial variability associated
with the mapped reedbed habitats across all three sites. With the dominant presence of large reedbed
areas to sparse distribution of small reedbed patches across the landscapes, the effectiveness of this
proposed methodology is demonstrated.
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4. Conclusions

The results described in this paper demonstrate the importance of combining multi-seasonal
textural measures with pansharpened multispectral data as a means of improving reedbed
classification, all based on the use of a suitable classification technique such as MLC. The increased
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performance of multi-seasonal images could be attributed to subtle phenological differences that are
vital in discriminating between different land cover types during image classification. Summarised
below are the key findings of the study:

(1) There was a significant increase in the classification accuracy of reedbeds and other land cover
types when GLCM texture measures were combined with the spectral information for both single-date
images and multi-seasonal image datasets. The GLCM texture measures used for this experiment were
the angular second moment and entropy. The results are synonymous with outputs of Laba et al. [50],
which suggested that the combination of per-pixel classification and incorporation of texture measures
with spectral bands increased the classification accuracy of wetland habitats.

(2) The most effective of the single-date image datasets was the autumn texture combined
image which produced reedbed and overall classification accuracies of 54% and 76%, respectively.
However, the optimal multi-seasonal image dataset produced significantly higher reedbed and overall
classification accuracies of 76.5% and 78.1%, respectively. The optimal multi-seasonal image dataset
was identified as the multi-seasonal pansharpened and texture combined image comprising of 16 layers
(eight spectral and the eight GLCM texture measures). The increased performance of the optimal
multi-seasonal image was attributed to the quality of vegetation phenological data contained in the
images. The use of multi-seasonal reflectance data contained in satellite images has the advantage of
increased phenological information that consequently results in increased classification accuracy as
demonstrated by Davranche et al. [10]. Using a similar approach, Davranche et al. [10] showed that
multi-seasonal spectral information contained in SPOT-5 satellite data was used to effectively map the
spatial distribution of marshes covered with common reeds (Phragmites austrillis) and other submerged
land cover types.

(3) The results obtained by applying three classifiers (MLC, ANN, and SAM) to the optimal
multi-seasonal dataset indicated that the MLC and ANN classifiers produced the same overall
classification accuracy which was significantly higher than the SAM. The MLC produced significantly
higher reedbed accuracy than the other two techniques.

In view of future research, the authors note the limitation of using only the available cloud free
high resolution satellite data as provided by the data supplier in this study. Hence, the use of freely
available high to medium resolution satellite with better temporal resolutions (such as Sentinel 1 or 2
Earth Observation Missions) shall be investigated for further research.
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