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Abstract: This review paper highlights feasible and practicable approaches for managing end-of-life
rolling stocks. It aims to promote and enable sustainable procurement policy for rolling stocks.
Firstly, it demonstrates that modern rolling stocks can potentially gain the environmental benefits
since almost all of their materials used in the rolling stock manufacturing can be recycled and
reused. In this study, a brief definition and concept of various train types are introduced and
discussed, accompanied by some demonstrative illustrations. Then, component analyses, recovery
rates and percent proportion of each material in various rolling stock assemblies have been evaluated.
The estimation of material quantities that can potentially be recycled has been carried out using
industry data sources. The suitable management procedures for end-of-life rail vehicles are then
discussed, together with the life cycle of the key materials in which the recyclability criteria take into
account the environmental risks and the best and safest approaches to deal with them. The aim of
this study is to increase the awareness of the public, train manufacturers and rail industries on the
benefits to the environment from rolling stock recycling, which could result in sustainable society
and urban livings.
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1. Introduction

This research study portrays the importance and significance of having an appropriate disposal
management of the end-of-life rolling stocks. Besides the social responsibility, manufacturers and
owners of rolling stocks must respect ecological aspects and ensure that necessary activities are carried
out to minimize environmental impacts. When producing new rolling stocks, the manufacturers
must consider the whole vehicle life cycle, including production (design, building and manufacture),
use (operation and maintenance) and, finally, the end of life (vehicle disposal), which is the main point
of this research. The last stage of life cycle of rolling stocks can be considered successful if it achieves
the principle of the ‘3R’: reduce, reuse and recycle. Considering the future environmental impacts,
the procurement and design stages of new rail vehicles should consider a reduction in the amount of
waste generated after the disposal of rolling stock materials. Also, the amount of the generated waste
should be recycled as much as possible.

Since the amount of waste from end-of-life rolling stocks is much greater than general motor
vehicles (e.g., cars, trucks, busses), the importance for the development of recycling programs becomes
even higher and more prioritized [1]. For instance, the disposal of a single cargo railcar, in relation to the
weight of the waste, is the same as 16–20 passenger motor vehicles (e.g., road vehicles). Furthermore, the
disposal of a tram with an average length of 30 m results in a waste equivalent to that of 36–42 passenger
motor vehicles (e.g., 30–40 t) and a disposal of a passenger railcar also generates a considered amount
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of waste—48–57 passenger motor vehicles (e.g., 50–60 t). In the same way, a three-part electric multiple
unit (EMU) can originate as much waste as 126–156 passenger motor vehicles (e.g., >160 t) [1–5].

Besides those facts mentioned above, other benefits obtained from the recycling of rail vehicles
should also be taken into consideration. The other benefits related to the rail vehicles with improved
environmental friendliness also include reduction of the exploitation of resources, lower costs of
production of those recycled materials, or even the profits from a good product image (market premium).
Hence, an effective end-of-life rail vehicle treatment is needed to resolve major global concerns such
as carbon footprint (or greenhouse gas emission), energy efficiency issues, higher raw materials costs,
rigorous landfill legislation and need for landfilled waste minimization, and others environmental
regulations associated with the manufacturers’ responsibilities, the increase in customers’ environmental
requirements, and the benefits and profits earned from the eco-friendly products [1,6–8]. A clear example
for recyclability requirements of vehicles is the European Directive 2000/53/EC [2]. At this stage, this
Directive on end-of life vehicles (ELV) aims only at making dismantling and recycling of ELVs more
environmentally friendly (mostly for road industry). However, voluntary railway policy on waste
management of rolling stock has not been well adopted (such as Union des Industries Ferroviaires
Européennes (UNIFE) method) due to its dominant presence of stakeholders (i.e., manufacturers, sales).
The dominance of rolling stock manufacturers discourages the public participation and interest, which
in turn yields negative perception on conflict of interest. Based on this ground, this paper is very timely
in presenting an independent critical review of recyclability of rolling stocks and highlights potential
applications to enhance the effectiveness of recycling rolling stocks.

2. Methods and Materials

2.1. Components Analysis

Rolling stocks are generally classified into different groups according to their purposes and services.
In European practice, the main types of trains are: passenger trains, high-speed rail and freight trains [3].
Each type is designed using different designed components and materials, as illustrated below.

2.1.1. Passenger Trains

A passenger train (e.g., metro, tram, light rail or urban rail vehicles) is the passenger-carrying vehicle
that, usually, consists of great-length carriages and generally need to be operated at a higher speed. It can
be a self-powered railcar, or a combination of one or more locomotives and one or more trailers (known as
carriages) or coaches. The function of passenger trains is to provide a way of transport for passengers
between the stations. They are operated in accordance with fixed schedules and have higher occupancy
than other types of train. The conductor (or driver) of passenger trains has operational assistance from
others crew members. Some passenger trains still may use bi-level (double deck) cars to carry more
people per train [1]. Figure 1 shows an example of passenger trains and its internal components:
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At the end of a vehicle life, there should be appropriate disposal management, which includes
reuse, recycling, and recovery. Reuse means “any operation by which components of end-of-life
rolling stock are used for the same purpose for which they were designed”; recycling is a method of
“processing the waste materials for the original purpose or for other purposes, excluding processing
as a means of generating energy”; and recovery applies to the concept of “processing the waste
materials for the original purpose or for other purposes, including processing as a means of generating
energy” [4,5]. In this study, the recovery rate takes into account the reusable and recyclable rates of
each material.

The materials, which are derived from rail vehicles, can be divided into seven main categories:
metals; glass; fluids (lubricants, oils, chemical fluids); polymers, excluding elastomers, i.e., polymer
compounds, reinforced polymers; modified organic natural materials (MONM—cotton fleece, wood,
leather); elastomers (rubbers); and others, such as components not built using a unique or predominant
constituting material (e.g., composites) and/or made by different subparts, for instance, electronics
and electrics as stated in ISO 22628 [4–14].

Trains are largely made of aluminum, steel or stainless steel, which are metals that are usually
easy to recycle. The costs of steel production from materials, which have been recovered from wasted
rolling stocks, are much lower compared to the iron ores production from mining sector. Although
aluminum does not lose its properties after recycling, the versatile shapes and dimensions of the alloys
utilized to build rail vehicles makes the process more difficult [1].

However, compared with freight trains, passenger trains are relatively difficult to recycle, due to
the multiple units in particular and to a diverse and large variety of material structures. In addition,
there is no current recycling technology economically efficient enough to recover composite materials,
such as carbon fibers (Carbon Fiber Reinforced Polymer) or glass fiber reinforced polymer, as new
technological solutions [1]. As such, the residual waste of composite materials remains considerable in
practice [14–31].

The percentage data that is going to be presented in Tables 1–3 were based on drawings obtained
from articles available to the public and from industry partners, as can be seen in Figures 2 and 3:
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Table 1. Components Analysis of Passenger Train (calculated from industry sources [28–31,34,35]).
The drawings and some component weights are available from the industry. Some data have been
taken from the manufacturers’ documents available on Union des Industries Ferroviaires Européennes
(UNIFE) and train companies’ websites. The furniture weights have been estimated from the drawing.

Passenger Train Components
Components of Train

[28–31,34,35] Type of Material Recovery Rate (%) Percentage (% by Mass)

Wheels Steel R7 (carbon content % <0.52) 90–98 13.48

Window Glass 50–100 0.37

Roof Aluminum/Steel 80–95/90–98 4.30

Table Polypropylene, polyethylene 50–70 0.22

Seat Polypropylene, polyethylene 50–70 1.87

Door Aluminum/Steel 80–95/90–98 1.80

Battery Box CRCA sheet and rolled sections of
carbon steel

CRCA sheet and rolled sections of
carbon steel (90–98) 0.09

Pantograph High-strength tubular steel or alloy
frame; alloy of carbon, copper

High-strength tubular steel or
alloy frame (90–98); alloy of

carbon, copper (60–80)
0.04

Carbody/frame/tumblehome Aluminum/Steel 80–95/90–98 54.42

Brake Control Unit Aluminum/Cast Iron/reinforced
carbon–carbon 80–95/80–90 0.39

Condenser Copper, brass, aluminum, or
stainless steel

Copper (60–80), brass, aluminum
(80–95), or stainless steel (80–90) 0.11

Compressor Aluminum 80–95 0.22

Coupler Steel or composites 90–98 0.45

Gangway Bellows Silicone-coated fabric 50–70 5.24

Electrical Auxiliary
Equipment

Battery Polypropylene, polyethylene or
plastic-coated steel 50–70 0.15
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Table 1. Cont.

Passenger Train Components
Components of Train

[28–31,34,35] Type of Material Recovery Rate (%) Percentage (% by Mass)

Generator Magnetic steel and copper Magnetic steel (90–98) and copper
(60–80) 0.13

Alternator Steel 90–98 0.03

Converter Silicon Carbide 50–70 0.08

Bogie Components

Bogie Frame Steel plate/cast steel 90–98 7.49

Bogie Transom Steel plate/cast steel 90–98 3.37

Brake Cylinder Aluminum 80–95 0.75

Primary Suspension Coil Steel 90–98 0.30

Motor Suspension Tube Steel 90–98 0.28

Gearbox Steel 90–98 1.68

Motor Steel 90–98 2.62

Secondary Suspension Air Bag Textile-reinforced rubber 50–70 0.09

2.1.2. High-Speed Rail

A high-speed rail belongs to the long-distance passenger train category as shown in Figure 4.
They can run at speeds above 250 km/h and be operated on specific and dedicated tracks prepared to
support the high speeds. Japan’s Shinkansen is the first successful example of a high-speed passenger
rail system, which begun to operate in 1964. The fastest train, currently running on rails, is France’s
TGV (Train à Grande Vitesse—“TGV high speed train”). In most situations, when distances do
not exceed 900 or 1000 km, the high-speed rail travel is more time- and cost-competitive than air
travel. The use of tilting technology is common nowadays to improve train stability in curves. It is
an artificially dynamic form of superelevation, which allows both low and high-speed traffics to utilize
the same track and produce a more comfortable ride for the passengers. This technology can be found,
for instance, in Advanced Passenger Train (APT) [11–13]. Table 2 shows the component analysis of
a typical high speed train.
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Table 2. Components Analysis of High-Speed Trains (calculated from industry sources [28–31,34,35]).
The drawings and some component weights are available from the industry. Some data have been
taken from the manufacturers’ documents available on Union des Industries Ferroviaires Européennes
(UNIFE) and train companies’ websites. The furniture weights have been estimated from the drawing.

High Speed Train Components

Components of Train
[28–31,34,35] Type of Material Recovery Rate (%) Percentage (% by Mass)

Wheels Steel R7 (carbon content % <0.52) 90–98 16.63

Window Glass 50–100 1.85

Roof Aluminium/Steel 80–95/90–98 5.31

Seat Polypropylene, polyethylene 50–70 3.00

Table Polypropylene, polyethylene 50–70 0.28

Door Aluminium/Steel 80–95/90–98 2.77

Battery Box CRCA sheet and rolled sections of
carbon steel

CRCA sheet and rolled sections of
carbon steel (90–98) 0.12

“Grand Plongeur Unique”
Pantograph

High-strength tubular steel or alloy
frame; alloy of carbon, copper

High-strength tubular steel or
alloy frame (90–98); alloy of

carbon, copper (60–80)
0.92

Main Transformer Steel/Aluminium 90–98/80–95 0.74

Thyristor controlled-rectifier
bridge Silicon Steel 90–98 0.09

Traction Inverters Aluminium 80–95 0.60

Synchronous AC traction motor Steel 90–98 1.85

Mechanical Transmission Aluminium alloys/steel 80–95/90–98 0.92

Impact absorption block Aluminium 80–95 2.13

Carbody/tumblehome Aluminium/Steel 80–95/90–98 7.83

Brake Control Unit Aluminium/Cast Iron/reinforced
carbon–carbon 80–95/80–90 36.96

Condenser Copper, brass, aluminum, or
stainless steel

Copper (60–80), brass, aluminum
(80–95), or stainless steel (80–90) 0.33

Compressor Aluminium 80–95 0.08

Signalling Antennas Aluminium 80–95 0.01

Coupler Steel 90–98 0.81

Gangway Bellows Silicone-coated fabric 50–70 3.23

Electrical Auxiliary Equipments

Battery Polypropylene, polyethylene or
plastic-coated steel 50–70 0.23

Braking rheostat/Dynamic Brake Aluminium/steel 80–95/90–98 0.43

Common Block/DC circuit
breaker and the main filter

capacitor

Insulation sheet, bimetallic strip,
silver point, ceramic RFI/EMI

suppression capacitors
60–85 0.09

Generator Magnetic steel and copper Magnetic steel (90–98) and
copper (60–80) 0.55

Alternator Steel 90–98 0.15

Converter Silicon Carbide 50–70 0.25

Bogie Components

Bogie Frame Steel plate/cast steel 90–98 8.32

Bogie Transom Steel plate/cast steel 90–98 3.70

Brake Cylinder Aluminium 80–95 0.92

Primary Suspension Coil Steel 90–98 0.37

Motor Suspension Tube Steel 90–98 0.35

Gearbox Steel 90–98 2.08

Motor Steel 90–98 3.23

Secondary Suspension Air Bag Textile-reinforced rubber 50–70 0.12
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2.1.3. Freight Trains

A freight train contains the locomotives and the freight wagons (or freight cars) that enable
logistics and transportation of materials and goods. Transporting freight by trains can generate more
economical advantages and efficiency compared to transporting freight on road. The rail transportation
is highly profitable when the freight is being carried in bulk and over a long distance; however, it is
less appropriate for small loads and short distances. On the other hand, the lack of flexibility is the
main disadvantage of rail freight. Consequently, freight trains are less required for small payloads.
In fact, governments are trying to fortify transportation onto trains, due to the advantages that the rail
industry would bring to regional development.

There is a range of different types of freight trains especially with many different types of wagons,
which are utilized based on the type of goods or burdens they have to carry [1]. Table 3 shows the
component analysis of a long-wagon freight train as shown in Figure 5. Container trains are one of the
most conventional types of modern rolling stock, since containers can be lifted off from the train by
cranes and loaded off onto trucks and ships. “Piggy-back” trains or rolling highway trucks are used
in some countries. The trucks can also drive straight onto the train and when the final destination
is reached; and they can drive off again. A similar system is utilized through the Channel Tunnel
that interconnects England and France. Roadrailer is an alternative type of “intermodal-vehicle”
designed to be attached to the train. Furthermore, there are many other types of wagon: well wagons
or “low loader” wagons for the interchanging transportation with road vehicles, open-topped wagons
for the transportation of minerals and bulk material, refrigerator cars for the transportation of food,
and tankers for the transportation of gases and liquids. Nowadays, hopped wagons are used for
transporting most coal and aggregates due to the convenience of enabler facility for quickly discharging
and filling [1].
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Cargo railcars are the easiest to recycle, since around 60 to 80% of their mass is composed of cast
iron and steel [1]. Freight trains are, basically, divided into two parts: the locomotive and the cargo
railcars. The components analysis and their respective percentages of recycling are recorded in the
table below [14–16]:
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Table 3. Components Analysis of Freight Trains (calculated from industry sources [28–31,34,35]).
The drawings and some component weights are available from the industry. Some data have been taken
from the parts manufacturers’ documents available on Union des Industries Ferroviaires Européennes
(UNIFE) and train companies’ websites.

Freight Train Components
Components of Train

[28–31,34,35] Type of Material Recovery Rate (%) Percentage (% by Mass)

Diesel Engine (large cylinder
block) Cast iron/aluminum alloys 80–90/80–95 4.22

Main Alternator Steel 90–98 0.21

Auxiliary Alternator Steel 90–98 0.14

Motor Blower Cast iron/aluminum alloys/Steel 80–90/80–95/90–98 0.18

Air Intakes Steel/Aluminum 90–98/80–95 0.11

Rectifiers/Inverters
Heavy-gauge aluminum sheet
metals with powder-coated or
anodized and stainless fittings

80–95 0.49

Battery Polypropylene, polyethylene or
plastic-coated steel 50–70 0.09

Traction Motor Steel 90–98 0.70

Pinion/Gear Steel 90–98 0.56

Fuel Tank Steel/Aluminum 90–98/80–95 0.35

Air Reservoirs Steel/Aluminum 90–98/80–95 0.09

Air Compressor Aluminum 80–95 0.98

Drive Shaft Aluminum alloys 80–95 0.60

Gearbox Steel 90–98 2.32

Radiator and Radiator Fan Aluminum, brass or copper cores Aluminum (80–95), brass or
copper cores (60–80) 0.02

Turbo Charging Cast Aluminum 80–95 0.11

Truck Frame or Bogie Frame Steel plate/cast steel 90–98 18.98

Wheels Steel R7 (carbon content % <0.52) 90–98 20.02

Roof Steel 90–98 2.11

Door Aluminum/Steel 80–95/90–98 0.53

Carbody/tumblehome Steel 90–98 45.67

Sand Box Cast iron 80–90 0.53

Battery Box CRCA sheet and rolled sections of
carbon steel

CRCA sheet and rolled
sections of carbon steel (90–98) 0.18

Brake Control Unit Aluminum/Cast Iron/reinforced
carbon–carbon 80–95/80–90 0.08

Brake Cylinder Aluminum 80–95 0.34

Condenser Copper, brass, Aluminum, or
stainless steel

Copper (60–80), brass,
Aluminum (80–95), or
stainless steel (80–90)

0.42

3. Mechanisms and Current State of Practices

3.1. End-of-life Rail Vehicle Procedure

The disposal of rail vehicles can be compared to the disposal process of motor vehicles.
The disposal process of rolling stock is divided into five stages [1,2]:

1. Forwarding the rolling stock for recycling

The first decision that has to be made is the decommissioning of a vehicle and the place where
the dismantling activities are environmentally safe and the recovery rate could potentially be high.
In general, rail vehicles have a life cycle of approximately 30–40 years. The decision whether to
decommission a train or not is commonly based on rolling stock damage, costs of retrofit and repairs,
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malfunctions, and operating and maintenance costs in comparison with those of new train models
available on the market [1,2].

2. Pre-treatment

The end-of-life rolling stock can be toxic and bio-hazardous. It should then be inspected and
treated as hazardous disposal [1] since the waste must guarantee safety for human health and the
environment at all stages of recycling process. Accordingly, the initial treatment usually involves the
removal of pollutants and hazardous waste. After being removed from the vehicle components, the
operating fluids, such as brake fluids, oils and antifreeze must be stored in containers separated from
each other so that they can later be forwarded to specialized recycling facilities responsible for energy
recovery (oils), material recycling and residual waste management. Some of the components to be
reused as spare parts might not need to be drained. Gases, fire extinguishers, greases, explosives,
braking sand, batteries and catalytic capacitor must be removed totally due to environment hazards
and health.

3. Dismantling

Parts of rolling stock that can be further recycled in the dismantling process are first removed.
Initially, subcomponents and the parts that can be reused are retrieved, such as, wheel sets, bogies, bogie
frames, buffers, springs, couplings, doors, brake systems and control valves. Some of them can be used
directly whilst others in other rail vehicles will need additional refurbishment to regain the original
operating parameters. Those parts that are going to be reused must have a special care when being
removed to avoid any damage and they must pass through an inspection in order to determine the
possible admittance for uses and the extent of refurbishment if needed. The rest of the elements, such
as glazing, seats, wire harnesses, flooring and electronic parts are then dismantled for further material
recycling. The greater the extent of the dismantling, the easier the separation of individual material
fractions, and the more effective becomes the recycling process. Based on this approach, the elements of
rolling stock should be dismantled as many as possible at this stage. However, since it is a costly process,
its extent should be economically justified. Moreover, the dismantling process should also take into
consideration the energy saving in order to enhance its effectiveness [2]. Therefore, at the design stage, the
manufacturers must embrace the quality of materials, the simplification of fitting and assembly, and their
classification of the materials that would really enhance future environmental and economic benefits.

After dismantling, the subcomponents and elements removed are forwarded to specialized recycling
facilities, where they are sorted, separated and undergone an appropriate recycling process [17–19].

4. Shredding

After the dismantling process of rolling stock for material recycling, the remaining of the vehicle
goes to the industrial shredder for scrapping. There are three methods to shred: shearing, tearing
and fracturing. All of the three actions can be present simultaneously while a shredder is being used.
However, by considering the energy saving in the dismantling process, shearing method would be
the most efficient reduction action to be reinforced. Before transferring it to the shredder, the waste
is compressed to reduce the space needed for the transportation, which decreases the cost of the
freight. Then, the packed materials are grinded into small pieces for further treatment. The aim of the
industrial shredder is for the separation and recovery of smaller material and metal fractions. In this
process, the large pieces of rolling stock material are milled and grinded into smaller pieces for further
processing. These smaller prices of materials can then be sorted into different material fractions using
magnetic properties and eddy current separators [14]. Consequently, the waste is segregated in ferrous
metals (steel and irons), non-ferrous metals (Aluminum, zinc, copper, magnesium) and light shredder
residue (a mixture of different substances and materials, for instance, fibers (textiles, wood), plastics
(including foam and textiles), elastomers, glass and ceramics, residue (dust, paint coatings, rust) and
remaining minerals (soil, sand). Ferrous and non-ferrous metals receive treatment to become recycled
materials. Light shredder residue must be segregated for reuse or partly combusted for energy recovery,
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since it has a high calorific value. Around 50% of the light shredder residue contains a combustible
portion that can be thermally treated. Although there are new technologies that enable sorting and
using up to two-thirds of the mass of the shredder residue, in practice, approximately 67% of the
remains, after the shredding process, are landfilled [20–24]. It is noted that the materials derived from
shredding process cannot be classified as reusable. Some of the remains could be recycled depending
on the material characteristic, properties, residual substance and composition and safety risks.

5. Treatment of separated and recovered materials

All the components and elements dismantled, except for those which are appropriate for direct
reuse, are forwarded to specialized recycling facilities. Batteries, elements containing hazardous
substances, operating fluids, electronics, parts for refurbishment, plastic and electric elements must
receive dedicated recycling. In the same way, the materials segregated in the shredding process are
forwarded to steelworks or non-ferrous metal recycling facilities. Some separated fractions of the
shredder residue can be directly used in the industry, for example, fibers and foams can be utilised in
sewage sludge conditioning and polymer granulate can be used in a blast furnace [1].

3.2. Life Cycle of the Materials

3.2.1. Steel

A life cycle assessment (LCA) of a steel product looks at energy, resources and emission, from the
steel production stage to its end-of-life stage, including recycling. Without any significant loss of its
inherent properties, steel could be recycled over and over again. Note that in some cases, quality loss
of steel could be observed [22–29]. In general, the steel industry has many competitive advantages
over other competing materials due to four keywords: reduce (over the past 50 years, steelmakers have,
significantly, reduced the amount of energy required and raw materials to make steel. Furthermore,
through investments in research and technology, the steel industry is developing the use of high-strength
and advanced high-strength steel grades in many applications, in which less steel is needed to provide
the same strength and functionality); reuse (due to its durability, steel can be reused with or without
remanufacturing); remanufacture (many steel products can be remanufactured for reuse) and recycle
(steel is 100% recyclable to create new steel products). Figure 6 illustrates the life cycle of steel [12].
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3.2.2. Aluminum

The Aluminum industry generally manages three activities: initial processing and ore extraction,
transformation into semi-products and, to finish off, the lifecycle of the finished goods, which can be
fully recycled. Approximately 75% of all the Aluminum ever made is still in productive use [36,37].
Almost 100% of Aluminum is infinitely recyclable as shown in Figure 7 [38,39].
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3.2.3. Plastic

Although some plastics may be biodegradable or compostable, evidence indicates that this feature
does not reduce waste [40–45]. Compostable plastics do not degrade in landfills either. Composting and
biodegradation processes release carbon dioxide (CO2) into the atmosphere. Note that plastics on trains
are not biodegradable as they are required to safely reach their design life. Figure 8 illustrates the life
cycle of plastics in general. The primary environmental impacts associated with plastic manufacturing
are the Global Warming Potential, due to CO2 emissions from raw materials and Primary Energy
Demand, for which the main contribution is the upstream production of energy, specifically, natural
gas [44].
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3.2.4. Glass

As shown in Figure 9, the life cycle of glass can be divided into 7 steps. Transportation of cullet
and raw materials used in glass production represents less than 10 percent of the total energy utilized
in the production of glass. The CO2 savings from glass recycling are larger than the transportation
emissions [46–48].
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3.3. Applications of the Rolling Stocks’ Recycling

As it has been recorded in the tables above, some rolling stock materials present a high recovery
rate, which can be recycled and used in different applications. Reusing metal implies the reduction
of CO2 emissions. One ton of reused metal displaces one ton of new metal of which its production
demands much more significant energy and emits much more global warming gasses [8]. It is important
to note that ‘reuse’ only has emission implications at the time of construction or manufacture. In this
section, the applications of the main materials recycled from the trains [49–63] are discussed:

3.3.1. Steel

Steel is considered to be a recoverable material since it can be conveniently recovered by using
the magnetic separation. Among the materials studied in this research, steel is the one with the highest
recovery rate, between 90–98%. Note that some losses of alloying elements can incur from shredding
and contamination because their presence is rarely considered [20–22]. The steel production from the
recovered material has low costs compared to the iron ores’ production. It is an essential material
used within railway industry. For instance, 20–25% of mass of passenger and high-speed trains are
composed of steel. The bogies (the structure underneath the trains, such as wheels, bearings, axels
and motors) are the main steel components. Freight trains are made totally of steel. Steel is also
presently used in the railway track sleepers and fasteners, bridges, stations and overhead power lines
(catenary poles). An example of reusable steel can be seen from the fact that its durability enables the
steel rails to be reused by swapping over from the left to the right on the curved track. This practice
was common in the past when curved-worn outer rail is replaced by inner rail. It can still be seen in
third-class tracks around the world. When the steel rails are no longer suitable for main-line use, the
rails can be tested for crack and then reutilized them again on secondary lines with lighter traffics.
Recycling the steel at the end of its life results in a significant reduction in the energy cost associated
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with the material and the environmental impacts. After train components achieve the end of their life
(around 40 years), almost all the steel will be recovered [9–12,20–28].

3.3.2. Aluminum

Currently, more than a half of all Aluminum produced in the European Union is originated from
recycled raw materials. Similar to steel, Aluminum can be recycled without any loss of its properties.
Recycling Aluminum considerably conserves energy and other natural resources. It saves more
than 95% of the energy required for primary Aluminum production, then avoiding the emissions of
greenhouse gases [36,37]. Recycled Aluminum can be used in several applications, such as computers,
automobiles, siding, gutters, wire, boats, bicycles, cookware and many other products, which need
a strong lightweight material, or a material with a high thermal conductivity. Global Aluminum
recycling rates are generally high, for example: up to 60% for beverage cans and approximately 90% for
construction applications and transport (mostly from rail sector). In this way, all the train components
made of Aluminum can be reused after specific treatments. Furthermore, the recycling process is very
economical since it uses less energy and recycling market is self-supported by commercial businesses
due to the high value of used Aluminum [38].

3.3.3. Plastic

Different type of rolling stocks can comprise of various types of polymeric and plastic materials
depending not only on the design and manufacture, but also on the modification and utilization of
trains over the time. Recycling plastics can save economic resources, reduce greenhouse gas emissions,
and minimize wastes to landfills. In general, terminology for plastic recycling is complex since
there is a wide range of recovery and recycling activities. There are four recycling categories for
plastics: primary (mechanical reprocessing into a product with equivalent properties, often referred
to as “closed-loop recycling”), secondary (mechanical reprocessing into products that require lower
properties, “downgrading”), tertiary (recovery of chemical constituents, applies when the polymer
is de-polymerized to its chemical constituents, “chemical” or “feedstock recycling”) and quaternary
(recovery of energy, from waste or valorization) [9,39–43].

Closed-loop recycling is mostly used when the polymer constituent can be effectively separated
from contamination sources or stabilized against deterioration during reprocessing or future reuse.
In some cases, recovered plastics are used to make a new plastic product. This product can then
displace all or a proportion of virgin polymer resin in primary recycling process. Some examples
are plastic bins and crates manufactured from HDPE of milk bottles, and PET fiber from recovered
PET packing (e.g., derived from polyester seats, tables or floors on a train, and so on). Secondary
recycling happens when recovered plastic is put into an application that would not use virgin polymer,
for example “plastic lumber” or “synthetic timber” (used in the trains such as in the office tables)
as an alternative solution to the high cost and small lifetime of timber. In tertiary recycling, there
is an advantage of recovering the petrochemical constituents of the polymer, which can be used to
make other synthetic chemicals or to re-manufacture plastics. Chemical recycling of PET is considered
more successful since de-polymerization under delicate conditions is possible. For example, glycolysis,
hydrolysis or methanolysis can break down PET resin to make unsaturated polyester resins [39–43].

3.3.4. Glass

Recycling glass provides unmatched production efficiencies and considerable environmental
benefits such as it lessens the demand for energy, cuts CO2 emissions, decreases the number of
raw materials used, extends furnace life without any processing by-products and saves on overall
manufacturing costs. Therefore, it is essential to recycle the glasses recovered from the trains in order
to gain financial and environmental benefits [8,46–48]. If lamination or coating was applied to the glass,
a mechanism to remove the film should be in place. Moreover, recycled glass is being used nowadays
as aggregate in concrete. Based on its thermal properties of the glass aggregates, concrete made
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with recycled glass aggregates have shown better thermal insulation and better long-term strength.
An ordinary application is the ‘pipe bedding’ located around sewer or water pipes to transfer weight
from the surface and to protect the pipe. Other applications of recycled glass include: ceramic sanitary
ware production, fiberglass insulation products, recycled glass countertops, abrasives, and agriculture
and landscape applications, such as top dressing, root zone material or golf bunker sand [46].

4. Discussion on the Potential of Rolling Stock Recycling

Currently, there is a group of manufacturers (e.g., Bombardier, Alstom, Siemens, etc.) offering
rolling stock vehicles that are fully designed to meet the needs for rolling stock recovery and recycling.
For instance, Bombardier Transportation has adopted a resolution that all manufactured vehicles will
aim at a 100% recovery rate. This will be possible by minimizing the utilization of hazardous materials
and substances, by increasing the applications of recycling-friendly materials, such as Aluminum and
steel, and avoiding excess number of materials [47–56].

As discussed earlier, there are a number of possible applications for the materials recycled from
the rolling stocks (based on industry resources in References: [56–63]). During all recycling processes,
the manufacturers should consider the costs needed and the quality of each material, in order to
achieve the highest efficiency and benefit/cost ratio. By the same analogy, energy requirements, carbon
emissions and environmental impacts also have to be analyzed throughout the whole life-cycle process.
Firstly, steel has the recycling process that helps to save landfill space while it provides a valuable
scrap resource for steel industry. Using recycled steel to make new products preserves energy and
natural resources. For instance, for every ton of steel recycled, 635 kg of coal, 1134 kg of iron ore and
54 kg of limestone are conserved. Furthermore, the steel industry preserves correspondent energy to
power around 18 million homes for 12 months [31,34,35].

Aluminum possesses the recycling process that enables cost savings over the production of new
Aluminum and also conserves energy and natural resources. Recycling Aluminum needs around only
5% of the energy required to create Aluminum from bauxite [33]. It also reduces the uses of natural
resources and chemicals (aluminum fluoride, caustic soda and lime) and eliminates the necessity for
bauxite ore to be mined. In addition, it produces 95% fewer greenhouse gas emissions (GHG) than
manufacturing primary Aluminum. In terms of GHG saving, this is equivalent to taking 900,000 cars
off the road during 12 months [30]. Also, 1 ton of Aluminum recycled avoids the emissions of around
9 tons of CO2 emissions [36–38].

For plastics, their recycling results in a reduction of oil consumption since manufacturers make
plastics from crude oil derivatives or natural gas: 1 ton of recycled plastic saves 16.3 barrels of
oil [34–38]. Therefore, it helps to save the remaining fossil fuel reserves. Moreover, 1 ton of recycled
plastic saves the equivalent of 5,774 kilowatt-hours of electric energy. It also reduces the amount of
waste: 1 ton of recycled plastic saves around 6.40 m of landfill space [39]. In addition, glass enables the
recycling process that can also bring several significant environmental benefits. It broadly saves raw
materials: for every 1 ton of recycled glass, over a ton of natural resources are conserved, such as 186 kg
of soda ash, 590 kg of sand, 73 kg of feldspar and 173 kg of limestone [22,46–48]. As already mentioned,
recycling glass lessens the demand for energy and cuts CO2 emissions: for every 6 tons of recycled
glass used, a ton of carbon dioxide is reduced. Furthermore, since glass recycling is a closed-loop
system, it does not create additional waste [53].

There are opportunities to improve vehicle design for rolling stock manufacturers. For instant,
the design consideration should include the applications of recyclable materials, proper material
assemblages (composites, bonding adhesive, etc.), ease for dissemble, retrofitability and material
marking. These aspects in design play an important role at the end of life for rolling stocks because
these rolling stocks may contain operational damages, biohazard materials, wear, tear and distortion
during the life cycle. They could result in additional costs that discourage recycling of the rolling stock.
The design considerations could be embraced by having a quicker dismantling and separation of the
materials fractions. Based on our investigations, the combined recycling and recovery rate for rolling
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stock can potentially reach up to 95%. This rate can be commonly found in motor vehicles. In fact,
some train procurement contract has already included this rate in the selection criteria. However,
it is always important to note that the actual recyclability and recovery rates will indeed depend on
many local factors such as: accessibility to recovery technologies, demand for recycled materials and
refurbished parts, new types of materials [64–68]. Regardless of the recoverability rate of the rolling
stock, the recycling of rolling stocks cannot be successful without the technology enablers (such as
train recycling business, material technologies, recycled material applications, and so on).

5. Conclusions

Despite the fact that there is neither legislation nor innovative procurement with respect to rail
vehicle recycling, the European policy on waste management (e.g., Voluntary Policy of Union des
Industries Ferroviaires Européennes or UNIFE) should be supported by rolling stock manufacturers,
governments and its users: the public. Similarly, there should be no limitation to the scope of the
applications of various disposal types (energy recovery, recycling). At present, modern vehicles are
often prepared for their end-of-life recycling. Based on various recycling approaches, a wide range
of materials can be re-processed and then secondary raw materials can be re-used. It is important
that, when designing a vehicle, rolling stock manufacturers should embrace the necessity of recycling,
which can be seen through the applications of recyclable materials, proper material assemblages,
ease for dissemble, retrofitability and material marking. These approaches could occur in order to
have a quicker dismantling and separation of the materials fractions. Based on our investigations,
the combined recycling and recovery rate for rolling stock can potentially reach up to 95%, which is
similar to motor vehicles. The actual recyclability and recovery rates will depend on many factors such
as: accessibility to recovery technologies, demand for recycled materials and refurbished parts, new
types of materials. Moreover, it also depends on expectations and environment protection policies
applied by the rolling stock owners and users, legal regulations to force business entities to achieve
required recovery rates and the existence of infrastructure for specialized material recycling facilities.
Finally, it is vital to embrace rolling stock recyclability in every modern rolling stock procurement
contract to ascertain that sustainability and environmental values can be achieved at the end of life of
the rolling stocks.
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