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Abstract: While the effect of rainfall and other environmental phenomena on a link budget in
microwave wireless communication has been well studied for network design, it has usually been
done for each microwave-link separately. Recently, attenuation in multiple microwave-links is
being used simultaneously for rainfall mapping over specific areas, and consequently, rain-induced
attenuation fields can be constructed. Dedicated algorithms have been designed to relate attenuation
in multiple microwave-links to its corresponding rain-field. Their performance depends significantly
on the structure of the network. As the topology of a cellular microwave network (CMNs) is
region-dependent, general theory for its effect on performance can only be developed statistically.
In this paper we study the statistical nature of CMNs and lay the groundwork for such models based
on empirical results.

Keywords: cellular microwave-links; rainfall mapping; rain-field estimation; network statistics;
non-linear regression

1. Introduction

In cellular backhaul networks, cellular microwave-links (CMLs) are used as wireless channels
to connect two base stations (BS). Figure 1 portrays a single CML. Each BS is equipped with a
transmitting-receiving antenna. Giuli et al. describe in their work [1,2] how such microwave channels
can be utilized for rainfall mapping. Capitalizing on the use of CMLs in cellular communications,
Messer et al. [3] suggested commercial backhaul networks for environmental monitoring. They suggested
utilizing the commercial network, already set-up and functional, thus offering a cheap and opportunistic
approach to the problem of precipitation monitoring. In that framework, the precipitation field is
modeled as the signal to be reconstructed and the CMLs are modeled as random line projections
which sample the signal and serve as data observation. As the microwave propagates along the CML,
it accumulates attenuation that is attributed greatly to the air’s present moisture, thus providing a
form of spatial sampling of the precipitation field. This physical phenomenon is described in [4] and
is elaborated on in [1]. In [5] it is shown that in order to yield a reconstruction method for a given
sampled field, one must characterize the sampling scheme, i.e., the distribution of CMLs. In order to
do so, we studied the design of a backhaul network.

When a cellular microwave network (CMN) is being initially architected, the chosen topology of
network BS, and thus CMLs, is based on several considerations. One can divide those considerations
to two types, micro and macro.
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Figure 1. A single cellular microwave–link (CML) [6]. 
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for positioning that BS on a specific building’s roof-top rather than another’s. The macro factors, on 

the other hand, will inform the CMN architect what should be the amount of CMLs to deploy in an 

area, how to spatially distribute them, and how their lengths (i.e., distances between linked BS) 

should vary. Insights regarding the design of backhaul networks can be found in [7]. We suggest 

that there is a random factor in the spread of CMLs. This claim, which is the basis of this paper, relies 

on both the micro and macro factors. However, in this paper we focus on the macro factors as they 

impact the spatial distribution of CMLs globally. As will be demonstrated, CMLs’ spatial 

distribution can be divided into subsets of distribution categories, each corresponding to 

characteristic population density and topography.  

As pointed out in [8], CMLs tend to be distributed in clusters. This means that not only is their 

spatial distribution observed to be non-uniform, it also leaves regions with little or no coverage. We 

will make the case that these clusters correspond in their locations to population densities. As this 

hypothesis will be supported, it provides an intuition for the macro factors of CMLs’ distribution 

and volume. 

We analyze CMLs in the context of distribution categories, namely being urban (most dense), 

suburban, and rural (least dense) [9,10]. In [11] one may also find a connection between population 

density and perspective BS service capacity. Population volumes may be high so as to saturate BS 

service capacity, thus calling for the allocation of additional BS to share the load. Table 1 shows 

results of BS density studies.  

BS densities project on CML densities. To witness this relationship, Figure 2 presents the four 

common CML topologies. One can see that for each of these, the number of edges is similar to the 

number of nodes, as they symbolize the CMLs and BS, respectively. 
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cellular microwave-links (CMLs) topologies are such that the number of CMLs is nearly identical to 

the number of BS, this table also reflects spatial densities of CMLs. 
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Micro factors would be those that have a minor impact on the chosen position of the BS.
For instance, after deciding to position a BS on a specific street block, one would consider micro
factors for positioning that BS on a specific building’s roof-top rather than another’s. The macro factors,
on the other hand, will inform the CMN architect what should be the amount of CMLs to deploy in
an area, how to spatially distribute them, and how their lengths (i.e., distances between linked BS)
should vary. Insights regarding the design of backhaul networks can be found in [7]. We suggest that
there is a random factor in the spread of CMLs. This claim, which is the basis of this paper, relies on
both the micro and macro factors. However, in this paper we focus on the macro factors as they impact
the spatial distribution of CMLs globally. As will be demonstrated, CMLs’ spatial distribution can be
divided into subsets of distribution categories, each corresponding to characteristic population density
and topography.

As pointed out in [8], CMLs tend to be distributed in clusters. This means that not only is their
spatial distribution observed to be non-uniform, it also leaves regions with little or no coverage.
We will make the case that these clusters correspond in their locations to population densities. As this
hypothesis will be supported, it provides an intuition for the macro factors of CMLs’ distribution
and volume.

We analyze CMLs in the context of distribution categories, namely being urban (most dense),
suburban, and rural (least dense) [9,10]. In [11] one may also find a connection between population
density and perspective BS service capacity. Population volumes may be high so as to saturate BS
service capacity, thus calling for the allocation of additional BS to share the load. Table 1 shows results
of BS density studies.

Table 1. Statistical base station (BS) densities [10]. BS densities depend on population densities. Since
cellular microwave-links (CMLs) topologies are such that the number of CMLs is nearly identical to
the number of BS, this table also reflects spatial densities of CMLs.

Region Area (km2) BS Amount BS Density (1/km2)

Most Dense City 60 × 40 6251 2.604
Second Densest City 30 × 50 1911 1.274
Third Densest City 40 × 40 977 0.611

Rural 200 × 200 12,691 0.317
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BS densities project on CML densities. To witness this relationship, Figure 2 presents the four
common CML topologies. One can see that for each of these, the number of edges is similar to the
number of nodes, as they symbolize the CMLs and BS, respectively.

Figure 2 and Table 1 suggest that the spatial distribution of CMLs is not, and cannot be
homogenous. However, our study is based on the assumption that any given region can be
partitioned into sub-regions, each homogeneous in the sense of CMLs density, meaning that all
the CMLs in a sub-region have their positions drawn from the same uniform distribution. Here and
throughout this paper, when referring to a CML’s position, it is the position of its midpoint that is
considered. Based on [12], we suggest describing CML distribution in any homogeneous region by
three characteristics:

1. Spatial density of the CMLs;
2. Orientations of the CMLs;
3. Lengths of the CMLs.

The rest of the paper is organized as follows: in Sections 2 and 3 we study the CMLs’ statistical
characteristics as listed above and suggest statistical models. Section 2 addresses the CMLs’ spatial
density, and Section 3 addresses their orientations and lengths. Section 4 suggests a mathematical
model for the relationship between CMLs’ lengths and their spatial density. Section 5 then combines the
statistical derivations from previous sections to suggest a novel computational method for simulating
sets of synthetic CMLs. Section 6 then concludes and discusses the results. The geographical regions
analyzed here are described in the appendix. Note that as this paper is an extension of [13], its novelty
is presented in Sections 4 and 5.

2. Spatial Distribution

In order to be able to characterize the distributions of CMLs in a given region, we suggest
partitioning the region into sub-regions, each with a spatially uniform CML density. Such sub-regions
are expected to correspond to the common environmental terms: urban, suburban, and rural. If such
a partition to homogeneous regions was not performed and the CMLs were clustered together,
their spatial distribution would need to be addressed more meticulously in order to evaluate
reconstruction potential, as it would not have been simply uniform.

When partitioning a region, it is critical to maintain a nominal area size which is appropriate for
capturing relevant rain phenomena. Typical rain clouds over Israel tend to stretch over an area of up
to 10 × 10 (km2) [14]. It is recommended to maintain a minimum of such region size. Accordingly,
in this paper we examined regions that are indeed 10 × 10 (km2).

3. Length and Orientation

The locations and volume of CMLs that were discussed in Section 2 characterize CMLs
collectively. Individual CML attributes present a significant attenuation measurement factor as well.
These characteristics are the orientation and length of the CML. The understanding of all three factors
allows for 2-D modeling of CMLs, as this paper is concerned with. It should be mentioned that if one
were to examine the 3-D modeling of CMLs, the CMLs’ height variability would be a factor as well.

The study presented here regards CMLs in the state of Israel belonging to a single cellular provider,
Cellcom (see Appendix A for further details). All CMLs are operating in the same frequency range,
the K-band.

Results show that in any type of region studied, the CMLs’ orientation takes on any angle with
equal probability. This means the direction of CMLs is distributed uniformly and is not at all correlated
with the type of population density. Figure 3 portrays this conclusion. Moreover, the orientation is
found to be statistically independent of the other factors studied here, the CML’s length and density.
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Figure 3. The distribution of CML angles. (a) all Israel, (b) top of northern Israel as rural, (c) Hasharon
as suburban, (d) Tel Aviv as urban [6].

Sendik [12] studied the distribution of CMLs as well. To do so, a map of Israel was partitioned
into four parts based on latitude (as Israel stretches from latitude 29.5◦ N to 33.29◦ N). These four parts
were used as sub-regions to study CMLs. However, these four regions were heterogeneous in their
environmental types. Here, by isolating sub-regions of homogeneous environment types and then
characterizing CML statistics by such types, we suggest a contribution to Sendik’s work on statistical
modeling of CMLs in Israel.

The study of CMLs’ lengths yielded much different results than the orientations. Unlike orientations,
CML lengths are distributed non-uniformly. CML lengths are distributed exponentially. Moreover,
the lengths’ statistical characteristics depend on the type of environment. Figure 4 illustrates
both findings.
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Figure 4. Lengths distributions for various environments. (a) all Israel, (b) top of northern Israel
as rural, (c) Hasharon as suburban, (d) Tel Aviv as urban [6].

The sample-means specified in Figure 4 are used for the fitting of an exponential distribution.
For an exponential random variable, e.g., T ∼ Exp(1/θ), the probability density function is:

fT(t|θ) =
{

1
θ e−

t
θ t ≥ 0

0 t < 0
, (1)
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where θ = E[T]. This presents a direct tie between the sample mean of the CMLs’ length and the
exponential fitting. Table 2 presents a data summary for CMLs in Israel used in this study.

Table 2. Empirical CML distributions based on environment type. Sub-regions are described in the
appendix. Note that region “Tel Aviv”, for instance, does not apply solely to the city of Tel Aviv but to
a more general region [13].

Region Area (km2) CMLs Amount CMLs Density (1/km2) CMLs Mean Length (km)

- All of Israel 22,770 3624 0.16 3.54

Urban
Tel-Aviv 85.18 264 3.1 1.48

Jerusalem 44.16 141 3.2 1.26
Haifa 56.14 159 2.8 1.58

Sub-urban
Hasharon 235.54 124 0.53 2.5

Caesarea Area 149.27 77 0.52 2.3
Nazareth Area 182.78 89 0.49 2.4

Rural
Top North

Israel 2718.74 278 0.1 4.7

Kseifa Area 1474.73 69 0.05 8.07

4. Modeling the Relationship between Cellular Microwave-Links’ (CMLs) Length and Density

The findings in Table 2 suggest that there may be an underling relationship between the CMLs’
density and their mean length for a given region. Following that intuition, an analysis on a larger scale
was performed. Given the set of CMLs over Israel, a set of 3626 sub-regions was generated. A moving
window with varying dimensions scanned the area of Israel. For every iteration, meaning, for every
one of the 3626 windows, there was a subset of CMLs that were captured within the window’s bounds.
Two features were captured for each such iteration, the CMLs’ density and the CMLs’ mean length.
Thus, 3626 observations of pairs {density, mean length} were observed. Figure 5 presents the scatter
plot of those observations in blue.
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4.1. Approach to Modeling

A non-linear empirical relationship is hinted at in the scatter plot, thus calling for non-linear
modeling. With the wide range of non-linear models available, we were only interested in an analytical
mathematical formula and not a black-box model. Thus, parametric non-linear regression was chosen.

4.2. Methodology

The data set of 3626 observations was split randomly into two, holding out 20% (725) of the
observations to be designated as the test set. These observations were not used for model selection or
for model training. The test set was used to report model performance after the model was chosen and
trained. The remaining 80% (2901 observations) were used for training and validating.
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We conducted model selection for a variety of parametric formulas. We constrained the pool of
models to those having up to two parameters. The motivation for this constraint was to present a
simple model.

The following models were examined:

d̂1(l) =
a1

l
, d̂2(l) =

a1

la2
, d̂3(l) =

1
a1(l − a2)

, d̂4(l) =
1

la1 − a2
. (2)

Here d̂ is the estimator of d, being the CMLs’ density (CMLs/km2), and it is noted as an explicit
function of l, the CML’s mean length (km). a1 and a2 are constant coefficients to be optimized via
non-linear regression. They are chosen to be those that minimize the mean squared error (MSE).
For example, this is the optimization process for the third model:

min
a1,a2
{MSE} = min

a1,a2

{
1
I

I

∑
i=1

(
d[i]− 1

a1(l[i]− a2)

)2
}

. (3)

Here, I is the number of train observations.
We performed a 5-fold cross validation for the training of every model out of the four. The MSE

of the five validation iterations was calculated for each model by averaging the five MSEs. The best
model was found to be the third model, achieving the lowest averaged validation MSE:

d̂(l) =
1

a1(l − a2)
. (4)

The coefficients were derived to be (rounded to two decimal places), a1 = 3, a2 = 1.14, yielding
an averaged validation MSE = 0.221, and a test MSE = 0.229.

d̂(l) =
1

3(l − 1.14)
⇔ l̂(d) =

1 + 3.42d
3d

(5)

The regressed model is plotted in Figure 5 in black.

5. Simulating CMLs for Computational Experiments

Capitalizing on the statistical derivations of previous sections, we are now introducing a novel
method for synthesizing a data set of CMLs. The motivation behind using computer simulated CMLs
rather than real-world CMLs data revolves around these virtues:

1. It allows for a controlled study. Simulated CMLs allow one to account for every attribute
they possess.

2. It strengthens the integrity of the results. When deducing an outcome of an experiment, since the
simulation of the CMLs is controlled, one can determine a clear set of assumptions under which
the outcome holds.

3. It provides statistical robustness of the results. When simulating CMLs, the amount of CMLs is
not limited, thus allowing one to utilize as many CMLs as necessary for the statistical experiment.

4. It introduces a new experimental feature, sensitivity analysis. The computer simulation allows
one to tweak the CMLs’ parameters and evaluate their effect.

5.1. Modeling a Single CML as a Computational Structure

In [5] we discuss the modeling of rain-field reconstruction to a great length. The modeling of
CMLs is only discussed shortly, here we elaborate on that.

The computational structure that represents a single CML is a 2-D array. The dimensions of the
array represent the physical area of interest (e.g., a 10 × 10 (km2) area), each array element represents
a pixel, and thus the size of the array is directly derived from the chosen resolution. A pixel that the
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CML crosses has a positive value equal to the length of the overlap that the CML has with that pixel.
A pixel that the CML does not cross is zeroed. Here we use the terms “pixel” and “array element”
interchangeably. Figure 6 portrays how an array models a CML.
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5.2. Key Simulation Factors

Two key factors are to be determined when simulating CMLs. The first is the CMLs’ mean length,
which is a physical parameter, and the second is the spatial resolution, translating to number of pixels
per area, which is not a physical feature but a computational one. Since a CML is represented as a
numerical array, the spatial resolution dictates how many elements will be in that array. The higher
the resolution, the more pixels the area is being partitioned to.

It may be easy to understand why we do not proclaim the CMLs’ orientation to be a key factor.
Since we have established that the orientation is completely random and distributed uniformly, there is
no distribution parameter that needs to be pre-set to model it. What is not so straightforward is
the reason spatial density of CMLs is not declared as a key factor. The answer is computational
modularity. Sets of CMLs are generated such that they allow for all relevant spatial densities to be
utilized in the experiments they mean to serve. All sets are generated with a sufficiently high number
of CMLs that allows for the highest spatial density of CMLs. This way, when lower spatial densities
are desired, smaller randomly selected subsets of the CMLs can be utilized. For instance, for an area of
10 × 10 (km2), a set of 1000 CMLs is generated. The experiment of interest requires a density of 2 CMLs
per km2, thus 200 CMLs are randomly selected, and the fact that there is a “sufficiently high” number
of CMLs allows for many Monte-Carlo iterations with different subsets of CMLs. Here “sufficiently
high” refers to a number so high that it allows for the maximal number of CMLs to be randomly
selected out of the set, multiple times. The contrary would be to limit the set to having “just enough”
CMLs, thus allowing only one manner for selecting the maximal number of CMLs by simply selecting
the entire set. The latter would not allow for repetitions of the experiment in a Monte-Carlo setting.

5.3. The CMLs Simulation Algorithm

Pre-set variables (i.e., variables that are constant throughout the run):

1. Region Area: This is a physical parameter, e.g., 10 × 10 (km2).
2. Spatial Resolution—N: N is the number of pixels the area is being partitioned to.
3. Environment Type—Mean CML Length: As established in Section 3, simulating a different

environment corresponds to choosing a different mean CML length. Values typically range from
1.5 to 10 (km).
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4. The Number of CMLs to Generate nset: Given the region area and the maximum spatial density
desired for the experiment, let nset be sufficiently high so to allow for multiple random draws of
the maximal number of CMLs.

The computation of the CMLs set:

1. Generate an Array of nset Objects, Each is a CML Length Value: Each length is drawn randomly
from an exponential distribution with the above pre-set mean length.

2. Assign Each Object an Orientation: Each of the generated objects is assigned an angle drawn
uniformly from [0, π).

3. Assign Each Object a Position: Each object’s beginning point is drawn uniformly in a square of
dimensions

√
N ×
√

N. Then, the end point is defined by drawing a line based on the length and
orientation of the object. Note that in this step, each CML object is defined by “continuous”, i.e.
not discrete, measures.

4. Calculate Quantized Pixels Values: In order to suit the discrete model, the CML is being
represented as an array. For each CML object, partition the

√
N ×

√
N area to

√
N ×

√
N

squares, each represents a pixel. Set 0 to a pixel that does not have the CML pass through it. For a
pixel that the CML does pass through, assign a positive value equal to the physical length of
the CML’s overlap with the pixel’s region (i.e., overlapping with the square). See Figure 6 for a
graphical description.

Figure 7 portrays the density, lengths, and orientations of a synthetic CML set.

Environments 2018, 5, x FOR PEER REVIEW  8 of 11 

 

As established in Section 3, simulating a different environment corresponds to choosing a 

different mean CML length. Values typically range from 1.5 to 10 (km).  

4. The Number of CMLs to Generate nset:  

Given the region area and the maximum spatial density desired for the experiment, let nset be 

sufficiently high so to allow for multiple random draws of the maximal number of CMLs. 

The computation of the CMLs set: 

1. Generate an Array of nset Objects, Each is a CML Length Value:  

Each length is drawn randomly from an exponential distribution with the above pre-set mean 

length. 

2. Assign Each Object an Orientation: 

Each of the generated objects is assigned an angle drawn uniformly from  [0, 𝜋). 

3. Assign Each Object a Position:  

Each object’s beginning point is drawn uniformly in a square of dimensions  √𝑁 × √𝑁. Then, 

the end point is defined by drawing a line based on the length and orientation of the object. 

Note that in this step, each CML object is defined by “continuous”, i.e. not discrete, measures. 

4. Calculate Quantized Pixels Values:  

In order to suit the discrete model, the CML is being represented as an array.  

For each CML object, partition the √𝑁 × √𝑁 area to √𝑁 × √𝑁 squares, each represents a pixel.  

Set 0 to a pixel that does not have the CML pass through it. For a pixel that the CML does pass 

through, assign a positive value equal to the physical length of the CML’s overlap with the 

pixel’s region (i.e., overlapping with the square). See Figure 6 for a graphical description. 

Figure 7 portrays the density, lengths, and orientations of a synthetic CML set. 

 
(a) (b) (c) 

Figure 7. Portraying the main attributes of the synthetic CMLs. (a) spatial distribution, (b) lengths 

distribution, (c) angles distributions [6]. 

6. Conclusions 

CMLs possess three random features: spatial-distribution, orientation, and length. All three 

were addressed in this study and empirical conclusions were derived. The simplest of the three is 

the orientation, appearing to be statistically independent of the other two features, and distributed 

uniformly across all angles [0°, 180°]. The CMLs’ spatial distribution was empirically found to be 

dependent on the environment type in the sense of population density. The denser the population is 

in the observed region, the denser the network is. This finding which relates population density to 

network density supports prior studies regarding backhaul BSs densities [10]. The CMLs’ lengths 

were found to suit an exponential random variable. Moreover, CMLs’ mean length, l , which we 

claim corresponds to the distribution parameter   (see Equation (1)), was found to be dependent 

on population density as well. The denser the population, the shorter the CMLs. Thus, by 

Figure 7. Portraying the main attributes of the synthetic CMLs. (a) spatial distribution, (b) lengths
distribution, (c) angles distributions [6].

6. Conclusions

CMLs possess three random features: spatial-distribution, orientation, and length. All three were
addressed in this study and empirical conclusions were derived. The simplest of the three is the
orientation, appearing to be statistically independent of the other two features, and distributed
uniformly across all angles [0◦, 180◦]. The CMLs’ spatial distribution was empirically found
to be dependent on the environment type in the sense of population density. The denser the
population is in the observed region, the denser the network is. This finding which relates population
density to network density supports prior studies regarding backhaul BSs densities [10]. The CMLs’
lengths were found to suit an exponential random variable. Moreover, CMLs’ mean length, l,
which we claim corresponds to the distribution parameter θ (see Equation (1)), was found to be
dependent on population density as well. The denser the population, the shorter the CMLs. Thus,
by association, statistical dependence is suggested between the CMLs’ lengths and their spatial density.
Such dependence was modeled using a non-linear model.
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The ability to apply statistical models to CMLs allows a much needed understanding of the
study of CML-based precipitation monitoring. Through these models one may design reconstruction
algorithms engineered for the nature of these random projections. Moreover, as presented in Section 5,
these statistical models allow for the computational simulations of CMLs.
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Appendix A

This section provides descriptions for the regions analyzed to derive CML statistics. All CMLs
belong to a single cellular provider, Cellcom, and are dated to January 2013. Figure A1 presents the
distribution of these CMLs. As Table 2 specifies eight sub-regions, their coordinates are specified in
Tables A1–A3.
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Table A1. The urban regions analyzed [13].

Geographic Boundary Tel Aviv Jerusalem Haifa

Min. latitude coordinate 32.013 31.74 32.765
Max. latitude coordinate 32.096 31.81 32.825

Min. longitude coordinate 34.776 35.175 34.985
Max. longitude coordinate 34.8739 35.235 35.075

Table A2. The suburban regions analyzed [13].

Geographic Boundary Hasharon Caesarea Nazareth

Min. latitude coordinate 32.15 32.41 32.615
Max. latitude coordinate 32.3 32.52 32.732

Min. longitude coordinate 34.83 34.91 35.224
Max. longitude coordinate 34.98 35.04 35.374

Table A3. The rural regions analyzed [13].

Geographic Boundary Top North Area Kseifa Area

Min. latitude coordinate 32.7 31.4
Max. latitude coordinate 33.09 31.008

Min. longitude coordinate 35.15 35.26
Max. longitude coordinate 35.82 34.905
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