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Abstract: Ecologically Valuable Areas play an important role in providing ecosystem services,
however, human activities such as land conversion and urban sprawl pose pressures and threats to
these areas. The study assessed the land use/land cover and urban sprawl in the Mount Makiling
Forest Reserve (MMFR) Watersheds and Buffer Zone from 1992 to 2015 using remote sensing
and Geographic Information System (GIS). Results showed that the land use/cover within the
MMFR buffer zone has changed from 1992 to 2015 with built-up areas increasing by 117% despite
Proclamation 1257, s. 1998 which regulates human activities in the zone. Based on the Shannon
entropy analysis the land development in the MMFR buffer zone tends to be dispersed and sprawling.
However, when the magnitude of change of urban sprawl in the buffer zone from 2002 to 2015
was calculated, a decrease in the entropy value was observed which implies a compacting pattern
as the human settlement in the buffer zone increases over time. Proclamation 1257, s. 1998 needs
to be strengthened to protect MMFR and its buffer zone from further encroachment and pressure.
Moreover, remote sensing and GIS proved to be useful tools for assessing urban sprawl in ecologically
valuable areas such as MMFR.

Keywords: ecologically valuable areas; watershed; buffer zone; Mount Makiling Forest Reserve
(MMFR), urban sprawl; remote sensing and GIS

1. Introduction

Ecologically valuable areas (e.g., forest reserve, national parks, and protected areas) [1] within the
borders of urban areas provide many ecosystem services for urban [2] and neighboring population.
These areas are especially valuable for the protection of biodiversity ([3–5]; as cited in [6]). Despite
their importance, ecologically valuable areas are threatened with the continuing urbanization [1].
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The impacts of urbanization along the fringes of these areas include fragmentation of habitats, loss of
rare species, edge effects, the introduction of alien species, degradation of the environment, reduced
tourism potential and the loss of ecosystems services vital for the wellbeing and health of urban
residents ([1,7,8]; as cited in [9]). According to Mutuga [9], the harmful effects of urbanization
is particularly caused by urban sprawl. Urban sprawl is the expansion of human settlement or
development outside of an urban city center [10]. As urban areas expand they take up more land
and extends further to ecologically valuable areas [9]. A disproportionate increase in the population
growth near the boundaries of ecologically valuable areas may threaten their ability to conserve
biodiversity [11]. Urbanization near the borders of ecologically valuable areas creates a conflict
between biodiversity protection and demands for housing and economic development. These conflicts
are more frequent and intensive in areas with a greater number of rare and endangered species and in
areas with severe population and development pressures ([12]; as cited in [9]).

In response to these problems, buffer areas have been designed to protect and enhance the
conservation value of ecologically valuable areas. However, Rathore [13] notes that most forest buffers
have already been reduced to a degraded status due to the massive pressures from adjacent settlements.
McDonald, Kareiva, and Forman [14] observed the shrinking distance between protected areas and
cities in some parts of the world. Considering these threats and pressures, periodic assessment [15]
and monitoring of the urban development are important for conservation [16] and protection of
ecologically valuable areas from further degradation, to evaluate natural resources and the effectiveness
of management [15] and to make effective and appropriate measures using remote sensing and
Geographic Information System (GIS) [16]. Remote sensing is a cost-and-time efficient tool [17]
that can be used for monitoring urban expansion [16,18] and the impact of human activities on the
landscape [17] of forest reserves, national parks or protected areas. Remote sensing is a science and
art of acquiring information about the Earth’s surface and atmosphere using sensors designed to
detect electromagnetic radiation either ground-based, aerial or spaceborne platforms [19,20]. It is a
reliable source of data, provides spatially consistent coverage of large areas with temporal frequency,
and high spatial detail, which is useful for analyzing time-dependent phenomenon such as urban
expansion [21,22].

This study assessed the land use/land cover change and urban sprawl in the Mount Makiling
Forest Reserve (MMFR) Watersheds and its buffer zone from 1992 to 2015. Shannon’s entropy was
calculated to characterize and measure the relative trends in the dispersion or compaction of urban
sprawl in the MMFR watersheds and its buffer zone. The magnitude of change of urban sprawl in the
watersheds and its buffer zone over time was also analyzed.

2. Materials and Methods

2.1. Study Site

The Mount Makiling Forest Reserve (MMFR) is an important landscape and “training laboratory
for the advancement of science and technical knowledge for the conservation and development of
forests and associated ecosystems” [23]. Mount Makiling is also an important catchment area for
Laguna de Bay [24,25] providing a water supply for industrial, agricultural and residential sectors
of the CALABARZON (Cavite, Laguna, Batangas, Rizal, and Quezon) region [26]. MMFR is also
classified as a national park ([27]; as cited in [28]) and was declared as the 33rd ASEAN (Association
of Southeast Asian Nations) Heritage Park on 3 October 2013 [29]. By virtue of Republic Act 6967
(Section 3), the exclusive control, jurisdiction, and management of MMFR was handed to the University
of the Philippines Los Baños (UPLB) [23]. MMFR covers a total land area of 4224 hectares and lies
between 14◦06′ to 14◦15′ north latitude and 121◦09′ to 121◦16′ east longitude [24]. The forest reserve
covers parts of the municipalities of Bay, Calamba City and Los Baños in the province of Laguna,
and Santo Tomas in the province of Batangas [30]. There are four watersheds in MMFR and these
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are the Molawin-Dampalit Watershed, Cambantoc Watershed, Tigbi Watershed and the Greater Sipit
Watershed. In this study, they are collectively referred to as MMFR Watersheds.

Proclamation 1257 or “Designating Certain Areas Surrounding the Makiling Forest Reserve as
Buffer Zone and Prescribing Guidelines Thereof” institutionalize the coverage of MFFR buffer zone.
Accordingly, areas adjacent to the MMFR boundary with 18% slope and above (Figure 1. Map of
Mount Makiling Forest Reserve Buffer Zone) forms part of the park’s buffer zone. Proclamation
1257 was passed in 1998 “to guide the local government units (LGUs), entrepreneurs, developers,
businessmen, landowners and other interested individuals on the use of the buffer zone surrounding
the MMFR. It was also intended to avoid further encroachment on the forest reserve that would create
disturbances or damage to the ecology of the area and reconcile socio-economic undertakings and
environmental protection on the use of the buffer area to minimize negative off-site effects of land
developments therein” [31]. However, despite the Proclamation, MMFR is continually being threatened
by the expansion of human settlements, agricultural areas, and urban and industrial zones [24].
The urbanization along the borders of MMFR and the development of residential subdivisions on its
lower slopes also adds pressure on the forest reserve [32], which may eventually have tremendous
impacts on the communities depending on it [33].

The buffer zone covers portions of the alienable and disposable land of the municipalities of Bay,
Los Baños, and Santo Tomas, and the city of Calamba. The population density in these areas averages
as more than 1000 individuals per km2 (Table 1. Population, Land Area and Population Density of
Areas portions of which are covered by the Mount Makiling Forest Reserve). Among the municipalities,
Bay is the smallest in terms of land area with only 42.66 km2. It is a second-class municipality with a
population of 62,143 [34]. The municipality of Los Baños is a first-class municipality with a land area
of 54.22 km2 and a population of 112,008 [34]. Los Baños is also considered as a Special Science and
Nature City of the Philippines [35]. Calamba City is a first-class city and the most populated city in
the province of Laguna. Calamba City is the center of commerce and industry in the province and
has attracted many job seekers from nearby provinces which have led to a significant increase in its
population [36]. The population in Calamba City has increased from 389,377 in 2010 [37] to 454,486 in
2015 [34]. Santo Tomas is also a first-class municipality and one of the oldest towns of Batangas [38].
The municipality has a land area of 95.41 km2 and a population of 179,884 [34].

Figure 1. Geographical location of Mount Makiling Forest Reserve (MMFR) watersheds and buffer
zone using the 2015 Landsat 8 [39].
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Table 1. Population, Land Area and Population Density of Areas portions of which are covered by the
Mount Makiling Forest Reserve [34].

Municipality/City Population Land Area (km2)
Population Density

(person/km2)

Bay, Laguna 62,143 42.66 1457
Calamba City, Laguna 454,486 149.50 3040

Los Baños, Laguna 112,008 54.22 2066
Santo Tomas, Batangas 179,844 95.41 1885

2.2. Urban Sprawl Detection and Assessment

Various procedures were utilized to assess the urban sprawl in the buffer zone of MMFR,
Philippines (Figure 2). These include data acquisition, image preprocessing, classification and analysis,
post-processing, accuracy assessment, and Shannon’s entropy calculation.

Figure 2. Flowchart for urban sprawl detection and assessment.
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2.2.1. Spatial Data Acquisition

The study utilized information in vector and raster format including those acquired through
remote sensing platforms. The different data used in the study are summarized in Table 2. Vector data
include the physical boundary of MMFR watersheds, MMFR boundary, and MMFR buffer zone
boundary which were requested from Makiling Center for Mountain Ecosystems (MCME) in UPLB.
The Landsat satellite images were acquired from 26 January 1992 (Landsat Thematic Mapper (TM)) [40],
4 April 2002 (Landsat 7 Enhanced Thematic Mapper Plus (ETM+)) [41] and 29 July 2015 (Landsat 8
Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS)) [39]. These were downloaded from
the USGS Earth Explorer website [39–41] in October 2017. The selected images were either cloud-free
or present cloud cover of less than 10% to achieve more accurate results of the study. All vector and
raster files were projected into Universal Transverse Mercator (UTM) System, Zone 51 North and
World Geodetic System (WGS) 84 datum.

Table 2. Different data used in the study.

Data Sensor Date Acquired Scale/Resolution Data Source Projection

MMFR Watersheds
(shapefile) - 12 November 2017 - UPLB-MCME WGS 84 UTM 51N

MMFR Buffer Zone
Boundary
(shapefile)

- 12 November 2017 - UPLB-MCME WGS 84 UTM 51N

MMFR Boundary
(shapefile) - 12 November 2017 - UPLB-MCME WGS 84 UTM 51N

Landsat 5 MSS 26 January 1992 30 m USGS Earth
Explorer WGS 84 UTM 51N

Landsat 7 ETM+ 4 April 2002 30 m USGS Earth
Explorer WGS 84 UTM 51N

Landsat 8 OLI/TIRS 29 July 2015 30 m USGS Earth
Explorer Survey WGS 84 UTM 51N

MSS—Multi-spectral Scanner. ETM+—Enhanced Thematic Mapper Plus. OLI/TIRS—Operational Land
Imager/Thermal Infrared Sensor. UPLB-MCME—Universitey of the Philippines Los Baños-Makiling Center for
Mountain Ecosystems. USGS—United States Geological Survey. WGS—World Geodetic System. UTM—Universal
Transverse Mercator.

2.2.2. Image Preprocessing

Image preprocessing prepares and restores band data by recalculating Digital Number (DN)
values and eliminating external and space-borne platforms errors. A standard radiometric calibration
was applied to enhance DN values and extract the Top-of-Atmosphere (TOA) reflectance [42] of the
satellite images covering the MMFR that were taken at different periods. The preprocessing of the
Landsat images was conducted using the ENVI 5.2 software (Exelis Visual Information Solutions,
Boulder, CO, USA). Only a subset containing the MMFR boundary was extracted and processed for a
more focused analysis and better data handling.

The surface reflectance free from clouds and other atmospheric components was also determined
which is vital in many remote sensing applications [19,43]. Pan-sharpening of the Landsat 7 and 8
satellite images was completed using the Gram Schmidt method in the ENVI 5.2 software to maximize
the available high-resolution panchromatic band (15-m) by combining it with a low-resolution
multispectral image (30-m).

2.2.3. Classification and Analysis

The supervised classification method employs the Maximum Likelihood Classification (MLC) to
classify and segment the pre-processed Landsat satellite images. MLC quantitatively analyze remote
sensing data [19,44–46] by classifying each cell based on the highest probability of being a member
and spectral pattern represented in class mean vectors and covariance matrices [46]. For Supervised
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classification, representative pixels or training data [46] for each land cover classes to be segmented
were selected and utilized in the classification algorithm. Ten (10) training points per land cover class
were identified and randomly selected from Google Earth [47] online [48,49] for Landsat 8 (Table 3).
The land cover classes of these training points were determined using the Food and Agriculture
Organization (FAO) land cover classes and description [50]. Likewise, the land cover classes of these
training points were identified from Landsat 5 (81 random points), Landsat 7 (104 random points) and
Landsat 8 (72 random points) satellite images for change analysis.

Table 3. Land cover classes and descriptions used in the study (Source: [50]).

I.D. NO. Land Cover Classes FAO’s FRA 2010

1 Forest

Vegetation or tree cover more than 5 m in height with more than
two species, and the canopy or crown ranges from 10% to 40% for
open forest and above 40% for closed forest and the forest includes

the riverine and mangrove.

2 Agricultural Areas/Land All other non-forested land, including grassland, agricultural land,
and cropland.

3 Built-up All other non-forested land, such as urban areas, human settlements
and road networks.

4 Water Inland water bodies generally include major rivers, lakes and water
reservoirs.

2.2.4. Accuracy Assessment

Classification accuracy refers to the extent of correspondence between remotely sensed data and
reference data [51]. The generated land cover data from Landsat 8 were assessed through a selection
of 30 sampling points [45] per class using the Google Earth [47] online [44,52]. It was assumed that
the 2015 classified map accuracy was enough to justify the overall accuracy of the study area in the
different periods [53]. The accuracy assessment of the classified images was performed using the
ArcGIS 10.5 software (Environmental Systems Research Institute, Redlands, California, CA, USA) and
the results were shown in a confusion matrix. The overall accuracy was generated which shows the
overall quality of the data by dividing the total correct pixels by the total number of pixels. Kappa
coefficient was also used to measure the classification accuracy. Kappa coefficient (K) is a discrete
multivariate technique commonly used in accuracy assessment that provides a more unbiased estimate
of overall agreement [48,54]. The K interpretation values range from poor to excellent agreement
ranging from 0 to 1. The closer the value of K to one (1.0) the more acceptable the classification [48].
The error of commission and omission were also calculated. The error of commission represents pixels
or the reliability of the map since it indicates how accurate the maps are to represent what is actually
seen on the ground while the error of omission represents pixels that belong to the truth class but fail
to be classified into the proper class. User and producer accuracy was also generated using the correct
classified pixel per category (row and column) divided by the total pixel per class (row and column).

2.2.5. Classification Post Processing

Final data editing, consolidation, and integration are important procedures to enhance the quality
of the final map [44]. The post-classification change detection technique, which detects the nature, rate,
and location of changes was used in this study. Vectorization using unsimplified polygons [44,55] of
the classified images was executed to generate the total area and land cover change per class in hectare
per satellite scene. Final data editing and integration were implemented for doubtful areas (e.g., clouds
using secondary data such as land cover maps [56], Google Earth [47] and personal knowledge in the
study site). The MMFR landscape patterns were determined based on the post edited final results of
the image classification. The overlay analysis e.g., intersection of the final MMFR watersheds’ land
cover maps and the MMFR buffer zone was conducted to extract the landcover patterns inside the
MMFR buffer zone for 1992, 2002 and 2015.
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Using an overlay procedure in GIS, spatial changes in the Land Use/Land Cover (LULC) of the
Mount Makiling Forest Reserve watersheds and buffer zone in two phases (i.e., 1992–2002, 2002–2015)
were determined. This technique resulted in a cross-tabulation matrix describing the main types of
change in the study area. The cross-tabulation obtained was analyzed on a pixel-by-pixel basis and this
procedure consequently facilitated the determination of the number of conversions from a particular
class to other land use classes and their corresponding area and weight of change (in percent). As a
result, a new thematic map stating different combinations of “from to” change classes were produced.

2.2.6. Calculation of Shannon’s Entropy

Quantifying urban sprawl is crucial to monitor urban development especially in areas adjacent
to Ecologically Valuable Areas like MMFR. Spatial metrics are numeric measurements that quantify
spatial structure and pattern of a landscape ([57,58]; as cited in [59]). Shannon’s entropy is a spatial
metric commonly used to efficiently identify and characterize the degree of spatial concentration
or dispersion in a geographic area [60]. The Shannon’s entropy (Hn) was computed to analyze the
degree of dispersion or compactness of the spatial expansion in the MMFR watersheds and buffer
zone. Shannon’s entropy (Hn) can be used to measure the degree of spatial concentration or dispersion
of a geographical variable (Xi), e.g., built-up area [60–62]. The value of entropy ranges from 0 to
log(n) [60,63]. The value of 0 [63] or closer to 0 indicates that the distribution of the built-up areas is
compact while values closer to log(n) indicate that the distribution of built-up areas is dispersed [60,63].
The high values of entropy indicate the occurrence of sprawl. The halfway mark of the log(n) value
is generally considered as the threshold and if the value crosses the threshold the area is considered
sprawling [63].

The land cover classes from the three periods (1992, 2002, and 2015) were re-classified into
two categories: built-up and non-built-up areas. In the analysis, the MMFR watersheds’ boundary
was divided into 500 m by 500 m grids (Figure 3) [64] in ArcGIS 10.5 software using the Fishnet
Tool. To overlay the fishnet with the MMFR watersheds and the land cover data per period, the
overlay toolset (i.e., intersect) was used. Afterward, the land cover area for each class in the grids
was calculated using the field calculator. The output table was converted into an Excel matrix to
complete the computation of the entropy values [65]. The same procedure was used for the calculation
of the entropy values for the MMFR buffer zone. The computation of the entropy was done using this
formula [60]:

Hn =
n

∑
i

pi log(
1
pi
) (1)

where pi is the probability or proportion of occurrence of a phenomenon in the ith zone, and thus, is
given by:

pi = xi/
n

∑
i

xi (2)

where Xi is the area of built-up at the ith zone and n is the total number of zones. Moreover, the relative
entropy was measured to scale the entropy value into a value that ranges from 0 to 1. The formula for
relative entropy (H’n) [62] is:

H′n =
n

∑
i

pi log(
1
pi
)/ log(n) (3)

To determine the magnitude of change of urban sprawl in the study area over time, the difference
of entropy values between time t and t + 1 was measured [60,66]. A decrease in entropy over time
shows that the urban development is compact while an increase in entropy shows a dispersed urban
development [65]. The formula [60] for measuring the difference is:

∆H = Hn(t + 1)− Hn(t) (4)
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where ∆H is the change in the entropy between time (t + 1) and (t).

Figure 3. The Mount Makiling Forest Reserve (MMFR) Watersheds divided into 500 m × 500 m grids
using the Fishnet Tool.

3. Results and Discussion

3.1. Land Classification Change Analysis

The study assessed urban sprawl in the buffer zone for MMFR from 1992 to 2015. The land
cover data during the years 1992, 2002 and 2015 were initially examined to describe the historical
land cover change in the MMFR watersheds and its buffer zone. The land cover classifications of
MMFR watersheds and buffer zone include forest, agricultural areas, built-up, and water (Figures 4
and 5). As shown in Table 4, the forest area in the MMFR watersheds had significantly decreased
over time. The forest area of the MMFR watersheds decreased by as much 35% from 7884.90 has
in 1992 to 5149.76 has in 2015. Moreover, there were only 1235.88 hectares of built-up areas in 1992
which more than doubled to 3368.63 hectares by 2015. During these periods, the agricultural area
also increased from 5526.36 in 1992 to 6130.60 hectares in 2015. The decrease in the forest area and
increase in agricultural areas and built-up areas in the MMFR watersheds can be attributed to the
growing population in Bay, Los Baños, Calamba, and Sto. Tomas (Table 1). Population growth may
consequently increase the need for a higher income to meet the household basic needs and in some
cases, landowners may decide to give-off and trade their lands to support the growing needs of
the family. Gradinaru et al. [67] stated that the landowner’s anticipation of higher profits from the
sale of land with urbanization may lead to the abandonment of agricultural land to give way to
built-up development.
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Figure 4. Land Cover Maps of MMFR Watersheds in 1992, 2002 and 2015 generated using the
Supervised Classification Approach.

Figure 5. Land Cover Maps of MMFR Buffer Zone in 1992, 2002 and 2015 generated using the
Supervised Classification Approach.



Environments 2019, 6, 9 10 of 20

Table 4. Land Cover and Percentage of Land Cover Change in Mount Makiling Forest Reserve
Watersheds in three periods: 1992, 2002, and 2015.

Class
1992 2002 2015 1992–2002

Area Changed
(ha)

2002–2015
Area Changed

(ha)
Class

Area (ha) % Class
Area (ha) % Class

Area (ha) %

Forest 7884.90 53.77 5783.63 39.44 5149.76 35.12 −2101.28 −633.87
Agricultural Areas 5526.36 37.68 7466.02 50.91 6130.60 41.80 1939.66 −1335.42

Built-up 1235.88 8.43 1398.60 9.54 3368.63 22.97 162.72 1970.0325
Water 17.28 0.12 17.28 0.12 16.54 0.11 0.00 −0.7425
Total 14,665.00 100.00 14,665.00 100.00 14,665.00 100.00 - -

(−) indicates decrease.

3.2. Land Cover Change Detection

Table 5 shows the land cover change in the buffer zone for MMFR. Results show that the forest
area in the buffer zone decreased by 28% from 1193 hectares in 1992 to 860.15 hectares in 2015
(Figures 6 and 7). The significant increase (96%) in the agricultural area in the buffer zone occurred
between 1992 and 2002 when the agricultural land area increased from 225.06 ha to 441.98 ha. During
these periods, 95% (from 22.67 has to 44.18 has) increased in the built-up area was also observed
in the buffer zone. Panaguiton, Eustaquio, and Campo [68] stated that the increasing settlements
near the forest reserve constantly threaten its stability and sustainability. They further explained that
the slow but steady encroachment of communities near the borders of the forest reserve could have
resulted from unclear government policies dealing with these communities and occupants. In 1998,
Proclamation 1257 was issued as a response to the increasing settlements and to limit the human
activities in the buffer zone of MMFR. Despite the Proclamation 1257, s. 1998, the built-up area still
increased by 11% and the forest area decreased by 10% from 2002 to 2015. The authors believe that the
government needs to “strengthen” Proclamation 1257 and not just a “law enforcement” considering
that a legislative act is required for this.

Figure 6. Change Maps of the MMFR Watersheds from 1992–2002 and 2002–2015. The two insets show
the same zoomed area for its land cover change.
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Table 5. Land cover and Percentage of Land Cover Change in Buffer Zone for Mount Makiling Forest
Reserve Watersheds in three periods: 1992, 2002, and 2015.

Class
1992 2002 2015 1992–2002

Area Changed
(ha)

2002–2015
Area Changed

(ha)
Class

Area (ha) % Class
Area (ha) % Class

Area (ha) %

Forest 1193.62 82.82 955.14 66.27 860.15 59.68 −238.48 −94.98
Agricultural Areas 225.06 15.61 441.98 30.67 531.59 36.88 216.92 89.62

Built-up 22.67 1.57 44.18 3.07 49.22 3.41 21.52 5.03
Water 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00
Total 1441.30 100.00 1441.30 100 1441.30 100 - -

(–) indicates decrease.

Figure 7. Change Maps of MMFR Buffer Zone from 1992–2002 and 2002–2015. The two insets show the
same zoomed area for its land cover change.

3.3. Classification Accuracy Assessment

The indispensable procedure after various image processing techniques is the accuracy
assessment [19,44,46]. Accuracy refers to the correctness of data [69]. It measures the agreement
between the reference data and the output of the image classification of unknown quality [44,46,69,70].
It is ought to be done since it gives the degree of confidence and reliability of the data output [19,46] In
essence, it aims to determine the percentage of pixel values that have correctly classified against the
reference data. Many researchers incorporated the accuracy assessment in their studies [44,52,69,71–74].
It is important and ought to be done in the conduct of image classification for the following
reasons [70,75]:

1. The legal standing of maps and reports derived from remotely-sensed data.
2. The operational use of such data for decision making e.g., watershed management.
3. The validity as input for scientific research.
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In this study, a confusion matrix was utilized based on 93 sampling points with the help of ArcGIS
10.4.1 [44–46,74]. After image classification, at least 30 samples per class [45] were generated using the
random sampling to target at least 90% overall accuracy [46]. The sampling points were the input to
the accuracy assessment of the Landsat 8 classified image. Jensen [45] emphasized that the sampling
points and signature data should be collected during the same period. Due to the time and resources
constraints, the accuracy of the classified image was based on the available higher resolution online
maps (e.g., Google Earth) [44,52,55] and other relevant secondary information available such as land
cover maps from National Mapping and Resource Information Authority (NAMRIA) [56]. The matrix
(Table 6) tallied the correctness of the classification generated through the application of sampling
points [44–46,48,70,74]. The matrix was constructed based on the reference data as represented in the
columns and compared against to the classified data in rows (Table 6). The major diagonal of the table
shows the agreement between these two datasets.

Land cover classes such as forest, agricultural areas, built-up and water were extracted from
Landsat TM, Landsat ETM+, and Landsat OLI/TIRS. The kappa and overall accuracy values of 0.91
and 93.55% were generated for the 2015 land cover map. Table 6 shows the confusion matrix with the
user, producer, overall accuracies and kappa coefficient. The overall assessment result suggests that the
classified land cover of MMFR Watersheds and Buffer Zone has very high accuracy and acceptability.

Table 6. Confusion matrix of the 2015 classification maps derived from the Landsat OLI data of
MMFR Watersheds.

Classes Forest Agricultural
Areas Built-Up Water Total Commission

Error (%)
User’s

Accuracy (%)

Forest 30 1 0 0 31 3.23 96.77
Agricultural areas 0 26 2 0 28 7.14 92.86

Built-up 0 3 28 0 31 9.68 90.32
Water 0 0 0 3 3 0.00 100.00
Total 30 30 30 3 93

Omission Error (%) 0.00 13.33 6.67 0.00
Producer’s Accuracy (%) 100.00 86.67 93.33 100.00

Overall Accuracy (%) 93.55
Kappa Coefficient 0.91

The accuracy of at least 85% is required for satisfactory use of land cover data for resource
management [52,76]. Due to the absence of higher resolution images for 1992 and 2002, only data in
2015 were assessed accordingly [52,53]. The assumption was 2015 accuracy was sufficient to shed light
on the overall accuracy of the land cover change mapping procedures [53] conducted in the study.
Thus, the statistical values of the following parameters were created to evaluate the quality of the 2015
classified image [44–46,70,74]:

1. Overall accuracy—shows the overall quality of the data and computed as:

Overall Accuracy = Total Correct (sum of the major diagonal)/Total number
of pixels in the matrix

2. Producer’s accuracy—measures the error of omission or samples that are omitted from the correct
classification since it indicates the probability that a reference sample will be correctly classified.
It is called the producer’s accuracy since the analyst is concerned in mapping the Earth surface
correctly. Computed as:

Producer’s Accuracy = Total number of correct pixels in a category/Total number
of pixels of that category as derived from the reference data (column total)



Environments 2019, 6, 9 13 of 20

3. User’s Accuracy—measures the error of commission or the reliability of the map since it indicates
how accurate the maps to represent what actually seen on the ground. Computed as:

User’s Accuracy = Total number of pixels in a category/Total number
of pixels that were actually classified in that category (row total)

4. Kappa Coefficient (K)—provides a more unbiased estimate of the overall agreement [48,54]. The K
interpretation values range from poor to excellent agreement ranging from 0 to 1. The closer
the value of K to one (1.0) the more acceptable the classification [48] and computed using the
formula [45]:

K = N∑(Xij) −∑(rowi total)(colj total)/N2 −∑(rowi total)(coljtotal)

where:

N—total number of observations; Values of K interpretation:
Xij—sum of the major diagonal; <0 No agreement
rowi—marginal total for rowi; 0.0–0.20 Slight agreement
colj—marginal total for columnj; 0.21–0.40 Fair agreement

0.41–0.60 Moderate agreement
0.81–1.00 Almost perfect agreement

The confusion matrix of the classified image (Landsat 8) was exported into table format (Excel file)
as the basis of the quality of the classification [44] and analyzed the needed parameters (e.g., Overall
Accuracy) [77].

3.4. Urban Sprawl in the MMFR Watersheds

The Shannon’s entropy (Hn) was computed to analyze the degree of dispersion or compactness of
the spatial expansion of built-up areas in the MMFR watersheds and buffer zone from the three periods
(1992, 2002, and 2015). The results of Shannon’s Entropy analysis are summarized and illustrated
in Table 7 and Figure 8, respectively. Table 7 shows that the highest value of Shannon’s entropy
[Log(670)] is 2.83. The entropy results obtained for the three study periods were 2.34, 2.50, and
2.49, respectively. Moreover, the entropy values for each period is greater than the threshold value
[Log(n)/2] of 1.41. Several authors stated that when the entropy value is greater than the threshold
value the land development is dispersed [60,63] and sprawling [63].

However, when the magnitude of change of urban sprawl over time was calculated, a different
pattern of urban sprawl in the MMFR Watersheds was observed. The results showed a difference in
entropy values of 0.16 from 1992 to 2002 and −0.01 from 2002 to 2015. The decrease of entropy values
was also observed in the study of Chong [68], where she explained that a decrease in entropy values
over time implies a reduction on the proportion of low-intensity urban land cover across the zones
resulting from the increase of high or medium intensity urban land cover or conversion to a different
land cover type. An urban development is dispersed when there is an increase in entropy values over
time and compact when there is a decrease in entropy values [68].

Table 7. Shannon’s entropy values for three years in the study area (MMFR Watersheds).

Year Built-Up
Area (ha)

Value of
Shannon’s

Entropy

Value of Relative
Shannon’s

Entropy
Log(n) Log(n)/2 ∆H

1992–2002
∆H

2002–2015

1992 1235.88 2.34 0.83 2.83 1.41 0.16 −0.007
2002 1398.60 2.50 0.88
2015 3368.63 2.49 0.88

Log(670)

(−) indicates decrease.
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Figure 8. Urban Sprawl in MMFR Watersheds from 1992–2002 and 2002–2015.

3.5. Urban Sprawl in the MMFR Buffer Zone

The results of Shannon’s entropy (Hn) for MMFR buffer zone is presented in Table 8 and Figure 9.
A similar pattern of urban development was observed in the buffer zone of MMFR. The entropy values
for the three periods is 1.29, 1.47, and 1.46, respectively. All Hn values were greater than the halfway
mark of the log(n) value (1.085) which implies that the land development in the zone is dispersed
and sprawling.

Table 8. Shannon’s entropy values for three years in the study area (MMFR buffer zone).

Year Built-Up
Area (ha)

Value of
Shannon’s

Entropy

Value of Relative
Shannon’s

Entropy
Log(n) Log(n)/2 ∆H

1992–2002
∆H

2002–2015

1992 22.67 1.29 0.59 2.17 1.085 0.18 −0.01
2002 44.18 1.47 0.68
2015 49.22 1.46 0.67

Log(147)
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The magnitude of change of urban sprawl over time in the buffer zone of MMFR was likewise
analyzed. The magnitude of change from 1992 to 2002, that is prior to the enactment of Proclamation
1257, s. 1998 up to its early years of implementation, showed a dispersed pattern of urban sprawl with
a difference value of 0.18. However, from 2002 to 2015, a difference value of−0.01 was observed, which
implies a compacting pattern as the human settlement in the zone increases over time. Chong [65]
stated that a decrease in entropy values over time indicates that the land development in an area is
becoming compact or concentrated while an increase in entropy values indicate that it is developing in
a dispersed manner.

Figure 9. Urban Sprawl in MMFR Buffer Zone from 1992–2002 and 2002–2015.

4. Conclusions

The study analyzed the urban sprawl in the MMFR watersheds and its buffer zone using time
series assessment based on Landsat data. The land cover was characterized through a supervised
classification approach. The Shannon’s entropy (Hn) was also calculated to describe the spatial patterns
of urban sprawl in the area. Results showed that the land cover within the buffer zone of MMFR
changes from 1992 to 2015 with a 117% increase in built-up areas despite the existence of policies
concerning the management of the zone. In 2015, the total built-up area in the buffer zone was 49.22
ha representing 3.4% of the total area of the buffer zone. From 2002 to 2015, a few years after the
enactment of Proclamation 1257, s. 1998, the magnitude of change of urban sprawl in the buffer
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zone shows to be compact as the human settlement in the area increases. The study suggests that the
assessment and monitoring of urban sprawl in the buffer zone be conducted regularly using remote
sensing and GIS to effectively implement policies, e.g., Proclamation 1257, s. 1998 and other related
laws and to avoid further disturbance, encroachment, and pressure. The study also suggests that a
policy gap analysis need to be conducted to understand more the pattern of human settlement in the
buffer zone of MMFR in relation to the implementation of Proclamation 1257, s. 1998 and other related
laws. The utilization of remote sensing data and GIS technology should also be considered in the
assessment and monitoring of urban sprawl in ecologically valuable areas as their applicability and
importance were showcased in this study.
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