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Abstract: Antifouling compounds are widely used in paints applied on ship hulls to prevent
attachment of fouling organisms. However, a certain amount of these chemicals could leach from the
painted surface, enter seawater, and pose deleterious effects on various marine biotas. The present
study aimed to determine the concentration of organotin (OT) compounds and booster biocides in
sediments collected from the seagrass area of Sungai Pulai estuary, Malaysia. The sediment samples
were collected from three points on the seagrass bed, brought back to the laboratory, extracted using
standard extraction procedure, and the analytes were analysed using gas chromatography-mass
spectrometry (GC-MS) method. The results showed that tributyltin (TBT) concentrations in sediments
were within the range of 8.1 ± 0.4 to 10.6 ± 0.5 µg/kg, whereas the values of triphenyltin (TPT) were
between 17.1 ± 0.9 and 19.4 ± 1.0 µg/kg. The range of concentration of booster biocides, namely
diuron, dichlofluanid chlorothalonil, Irgarol 1051, M1, and Sea-Nine 211, were from <0.1 to 22.9 ± 1.1,
48.7 ± 2.4 to 800 ± 40, <0.1 to 6.2 ± 0.3, <0.1 to 1.4 ± 0.1, 44 ± 2.2 to 877 ± 44, and 9.1 ± 0.5 to
170 ± 8.5 µg/kg, respectively. The concentration of organotin was much lower than the previous
study conducted in southern Johor. Meanwhile, the increased concentration of booster biocides
proves the use of these compounds as antifouling paints in shipping systems nowadays.
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1. Introduction

The organisms that settle and grow on the external of submerged or semi-submerged object are
known as marine biofouling [1]. The initial colonisation of organisms occurs when the slime layer
begins to develop in submerged areas, which gains the growth of microscopic (e.g., bacteria and algae)
and calcareous (e.g., mussels and barnacles) organisms [2]. The colonisation of organisms is a serious
problem in the shipping industry. The organisms on ship hulls increase friction, which reduces the
ship speed and increases the fuel consumption in order to maintain the ship speed [3]. The friction of
ship hull will increase about 80% with only 1 mm thick of algal slime and decrease the speed about
15% [4]. Therefore, organotin (OT) compounds are used in ship paints to maintain the effectiveness of
ship functionality in the long term [5] by avoiding the attachment of marine organisms to the hulls.
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Since the early 1960s, OT compounds especially tributyltin (TBT) and triphenyltin (TPT) are
commonly used as the ingredient in antifouling paints. However, these compounds have the potential
to leach into marinas, followed by wide spreads of toxicants resulting in high concentration level of
contamination in the environment. OT compounds are poorly biodegradable and have the potential
to remain long in the aquatic environment, which can cause deleterious effects towards marine
organisms. The effects of TBT in marine environment include acute toxicity [6–10], bioaccumulation
in the organism [11–17], imposex [18–21] followed by a decrease in reproductive viability of marine
organisms. In October 2001, the International Maritime Organization adopted the International
Convention on the control of Harmful Anti-fouling System (AFS Convention) that banned the use of
OT compounds as a substance in ship antifouling paints starting from 2003. However, OT compounds
are still used in several areas, especially in the developing countries, including Malaysia [22].

Since the ban of OT compounds, a number of OT-free antifouling paints have been manufactured.
Booster biocides are highly degradable and require less time to remain in the aquatic environment [23].
Commercial OT-free antifouling paints that are widely used nowadays include chlorothalonil,
dichlofluanid, diuron, Irgarol 1051, Sea-Nine 211, TCMS pyridine, TCMTB, zinc pyrithione, and
zineb [24]. However, these compounds also cause problems in the marine ecosystem. At a very
low concentration, the photosynthesis of plants can be affected in the value of parts per trillion
(ng/L). Irgarol 1051 and Diuron act as herbicides that inhibit photosynthesis by blocking the electron
transfer in photosystem II [25]. This situation interrupts the photosynthetic electron transport chain
in photosynthesis and thus reducing the ability of the plant to convert light energy into chemical
energy (ATP and reluctant potential). Moreover, the accumulation of booster biocides in aquatic life
can reduce the germination and growth of non-target organisms such as algae, Hormosira banksii [26],
and the seagrass, Zostera marina [27]. If the situation continues in the long term, there is a potential for
disturbance of food-web cycle when the producers are under threat. Another major concern about
booster biocides is the accumulation of compounds from the lower trophic level that is then transferred
to the higher trophic level, which involves organisms as the important sources of food for human [28].
High concentration of booster biocides detected in marine food is risky for human health. In Malaysia,
there is a lack of data on the concentration of OT and booster biocides in sediment for further reference.
Due to this fact, the study was conducted to investigate the degree of concentration of OT and booster
biocides in the sediments collected from the seagrass area of Sungai Pulai estuary in southern Johor,
Malaysia. The present paper reports the recent contamination and distribution of butyltins (BTs) and
penyltins (PTs) compound in marine environment including their breakdown products.

2. Materials and Methods

2.1. Study Area

The study was carried out in the seagrass area of Sungai Pulai estuary, located in southern Johor,
(latitude N 01◦20.137′, E 103◦35.158′) as illustrated in Figure A1. The seagrass area varies in size
from 120 to 1000 m in length and 50 to 120 m in width [29]. Seagrass roots and rhizomes stabilize the
sediment on the seagrass bed, which reduces soil erosion. This unique area becomes a protective shelter
for diverse species of marine organisms from all trophic levels [30]. However, human development
activities, mainly shipping activities near the study area, release more OT and booster biocides into
the environment, including sediments. Other human activities around the study site include land
reclamation for port facilities and palm oil plantation, which have the possibility to release herbicides
into the coastal area.

2.2. Sample Collection

Surface sediment samples were collected in triplicate by using a scoop at three different points on
the seagrass bed. All the sediments collected were stored in clean polyethylene bags, kept in a cooler
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box with ice, transported to the laboratory and immediately kept in a deep freezer at −20 ◦C prior to
the next analytical procedures.

2.3. Chemical Analysis

2.3.1. Organotin

Target compounds were extracted from sediment samples according to the method described by
Harino et al. [31] with some modification. About 1 g of sediment in a centrifuge tube was homogenized
with 10 mL of hydrochloric acid (HCl)-methanol/ethyl acetate (1:1) (analytical reagent, Kanto Chemical
Co. Inc., Japan) and 100 µL of surrogate standard solution monobutyltin-d9 (MBT-d9), tributyltin-d27

(TBT-d27), diphenyltin-10 (DPT-d10), dibutyltyin-d18 (DBT-d18), monophenyltin-d5 (MPT-d5), and
triphenyltin-d15 (TPT-d15). The mixture was shaken for 10 min. After shaking, the residue was
again extracted with 10 mL of hydrochloric acid (HCl)-methanol/ethyl acetate (1:1). The combined
supernatant was transferred into a separatory funnel containing 30 mL of 30% sodium chloride (NaCl)
(assay ≥ 99.5%, Wako, Japan) aquatic solution. The analyte was extracted twice with 10 mL of ethyl
acetate:hexane (3:2) (analytical reagent, Kanto Chemical Co. Inc., Japan) for 10 min. The combined
organic layer was mixed into 50 mL of hexane (analytical reagent (96%)), Kanto Chemical Co. Inc.,
Japan) and left to stand for 30 min. Aqueous layer was removed and the organic layer was dried by
adding anhydrous sodium sulphate (Na2SO4) (Kanto Chemical Co. Inc., Japan). The collected analyte
was concentrated to 2 mL. The concentrated analyte was diluted with 3 mL of ethanol (analytical
reagent (assay ≥ 99.5%), Wako, Japan), transferred to a separatory funnel, and added with 1 mL of
acetic acid-sodium acetate buffer solution (pH 5) (Wako, Japan), and 10 mL of distilled water, and
subsequently ethylated by shaking with 1 mL of 2% sodium tetraethyl borate (Wako, Japan) for 30 min.
The solution was saponificated with 10 mL of 1 M of potassium hydroxide (KOH)-ethanol solution
(Wako, Japan) by shaking for another 1 h. Then, the solution was extracted twice with 50 mL of distilled
water, 10 mL of hexane, and shaken for 10 min. Water layer was removed and the combined organic
layer was dried with anhydrous Na2SO4. After being concentrated to 1 mL, the analyte was cleaned
with Florisil SEP-PAK, followed by elution with 10 mL diethyl ether and hexane. The final solution was
concentrated up to 1 mL with N2 before 100 µL of internal standard was injected (TeBT-d36, TePT-d20,
1 mg/L in hexane).

2.3.2. Booster Biocides

The sediment samples for determination of booster biocides were extracted through liquid-liquid
extraction as referred from the method by Harino et al. [31]. In a centrifuge tube, 1 g of sediment was
added twice with 10 mL of acetone (analytical reagent (assay≥ 37%), Sigma-Aldrich, USA) and shaken
for 10 min, followed by centrifugation for another 10 min. The combined supernatant was added with
50 mL of distilled water, 0.5 g of celite (Wako, Japan), and 1 g of zinc acetate dehydrate (Wako, Japan),
and allowed to stand for 30 min. The analyte was filtered with Whatman filter paper into a separatory
funnel, added with 10 mL of dichloromethane (analytical reagent (99.5%)), Kanto Chemical Co. Inc.,
Japan) twice, and shaken for 10 min. The combined analyte was dried with anhydrous Na2SO4 (Kanto
Chemical Co. Inc., Japan). The solution was added with 20 mL of hexane and evaporated to 2 mL.
The analyte was injected with 100 µL of internal standard (atrazine-d5) and adjusted to 1 mL with N2.

2.4. Instrument Analysis

Gas chromatography model of Hewlett-Packard 6890 equipped with a mass spectrometry (5973N)
(GC-MS), (Agilent; Wilmington, USA) was used to analyse OT and booster biocides. The separation
was carried out in a capillary column coated with 5% phenyl methyl silicone (30 m length × 0.25 mm
inner diameter × 0.25 µm film thickness). The column temperature was held at 60 ◦C for the first
2 min, then increased to 130 ◦C at 20 ◦C/min, to 210 ◦C at 10 ◦C/min, to 260 ◦C at 5 ◦C/min, to 300 ◦C
at 10 ◦C/min, and held at 300 ◦C for 2 min. Helium was used as the carrier gas at a flow rate
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of 1.0 mL/min. The interface temperature, ion source temperature, and ion energy were 280 ◦C,
230 ◦C, and 70 eV, respectively. The selected monitoring ions used under this program to quantify
the concentrations OTs included 235 for monobutyltin (MBT), 261 for dibutyltyin (DBT), 263 for
tributyltin (TBT), 253 for monophenyltin (MPT), 303 for diphenyltin (DPT), and 351 for triphenyltin
(TPT), respectively. Meanwhile, monitoring ions for booster biocides were 187 for diuron, 224 for
dichlorofluanide, 266 chlorothalonil, 253 for Irgarol 1051, 213 for M1, and 169 for Sea-Nine 211. Splitless
injection (1 µL) was employed and the injection temperature was 290 ◦C.

2.5. Degradation Index Calculation

OTs compound can be predicted either as ‘old’ or ‘fresh’ using butyltin degradation index (BDI)
and phenyltin degradation index (PDI) [32]. The following equations were calculated based on the
concentration ratios between two main degradation products (MBT and DBT, MPT and DPT) from
the parent compound, by which it was assumed that the degradation rates between both compounds
are similar [33]. BDI values higher than 1 indicate TBT or TPT input in sediment is ‘old’, whereas BDI
values less than 1 show a ‘fresh’ input of TBT or TPT [34].

BDI =
[MBT] + [DBT]

[TBT]
(1)

PDI =
[MPT] + [DPT]

[TPT]
(2)

3. Results and Discussion

3.1. Concentration of Organotin Compounds in Sediments

OT concentrations in sediment are tabulated in Table 1 (Figure 1). Intensive marine activities in
the Peninsular Malaysia release more OT concentration, mainly in the Straits of Malacca, including
Penang and Johor [35]. Therefore, antifouling biocides are expected to be accumulated in this study
area. The concentrations of MBT, DBT, and TBT in sediment ranged from 6.5 ± 0.3 to 12.2 ± 0.6,
<0.1 to 6.1 ± 0.3, and 8.1 ± 0.4 to 10.6 ± 0.5 µg/kg, respectively. The BT compounds in the sediments
represent the direct relationship that exists from the broadly marine transports and industrial materials
of biocides such as large scale use of polyvinyl chloride (PVC) which contains mono- and diorganotin
compounds as stabilizers [36]. A previous study showed higher concentrations of BTs in southern
Johor with the range concentrations from 25 to 240, 20 to 190, and 41 to 230 µg/kg for MBT, DBT
and TBT, respectively [19]. These were due to the poorly flushed water where the water exchange
with the open sea and has limited tidal movement, as well as high shipping activities. Thus, it is
predicted that BTs have been used in the past and persisted for years before the concentrations are
declining nowadays. High temperature in Malaysia might help in accelerating the degradation of
BT compounds [37]. Additionally, other significant factors for OT compounds that degrade in the
environment is ultraviolet breakdown [38–40], and, biotic degradation process by which certain fungi
and bacteria are able to break down the compound [41]. The presence of TBT level in sediments can be
classified as light (TBT = 1.2–8.2 µg/kg) for Point 1 and moderate (TBT = 8.2–41 µg/kg) for Points 2
and 3 [41]. However, the total OT in sediments is much higher at Point 1. Point 1 is exposed to the
open strait of the shipping channel that is possible to absorb OT compounds directly into the seagrass
bed sediment.

Table A1 shows BTs concentrations in sediments from diverse locations around the world.
The ability of sediments to accumulate the compounds varies geographically and geologically.
The geological element is based on the physicochemical characteristics of sediment such as particle
size and organic carbon content [42,43]. Generally, the concentrations of BTs in the sediments collected
from this seagrass area are lower than those reported at other locations, such the studies conducted
in the semi-closed Port of Gdynia [44], fishing ports along the Chinese coast [45], Southern Baltic
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coastal zone [46], Kaohsiung Harbour, Taiwan [47], and Korean Special Management Sea Areas [48].
The results are probably due to the prohibited use of OT as an ingredient in paints on ship hulls since
2008 and the compounds that degrade in sediments due to ecological and physical reactions [18].
Dredging and dumping process that frequently occurs across the seagrass bed develop the potential
to change marine base, such as sediment shifting that release of OT compounds from sediments
into the water column. Moreover, the occurrence of developing activities is possible to release more
oxygen into waters which speed up the degradation process of OTs in aerobic condition rather than
anaerobic [49,50].

Table 1. Concentration of organotin compounds in sediment collected from seagrass area of Sungai
Pulai estuary (µg/kg).

Point n
MBT DBT TBT MPT DPT TPT

Mean ± SD

Point 1 3 6.5 ± 0.3 6.1 ± 0.3 8.1 ± 0.4 <0.1 89.1 ± 0.5 17.1 ± 0.9
Point 2 3 12.2 ± 0.6 <0.1 10.6 ± 0.5 <0.1 10.2 ± 0.5 19.4 ± 1.0
Point 3 3 7.4 ± 0.4 <0.1 10 ± 0.5 16 ± 0.8 9.3 ± 0.5 17.7 ± 0.9

SD: Standard deviation.

The concentrations of MPT, DPT, and TPT in sediments ranged from <0.1 to 16 ± 0.8, 9.3 ± 0.5
to 89 ± 0.5, and 17 ± 0.9 to 19.4 ± 1.0 µg/kg, respectively. These concentrations were much higher
than BTs. High TPT occurred in marine sediments indicates considerable input and persistence.
The concentration detected might be due to intensive palm oil plantation activities taking place around
the location. TPT is a co-toxicant of TBT compound applied in antifouling paint and also widely used
in pesticide formulations in agricultural activities [51]. The detectable values are within the range of
previous study in the south of Peninsular Malaysia [22,37]. Meanwhile, the concentration of PTs in
sediments was relatively lower than the studies conducted in Indonesian coastal waters [31], Gulf of
Thailand, Thailand [52], and Otsuchi Bay, Japan [53]. Among PTs compound, TPT is the dominant
species. TPT residues have the potential to degrade naturally in sediments before the residues are
released into the water column. In the aquatic ecosystem, TPT compounds have low solubility rate.
Therefore, they are able to adsorb onto suspended particulate matter (SPM), lead to TPT scavenging in
sediments, and amounts of TPT, and its degradation products can be detected. TPT is mainly present
in the upper 2–3 cm of the sedimentary column due to recent activities in aquatic systems [54].

The BDI and PDI values of organotin compound are recorded in Table 2. Sediments collected
from Points 1 and 2 had BDI values >1, indicating no recent input and the TBT content in sediments
was ‘old’. Meanwhile, Point 3 had the BDI value of 0.74, indicating a ‘fresh’ input of TBT. For Point 1,
the PDI value was >2, implying a rapid degradation of TPT, DPT, and MPT, and there was no new
TPT input for this point. For Points 2 and 3, the PDI values were 0.53 and 0.52 respectively, indicating
a ‘fresh’ input and low rate of TPT degradation. As the degradation products were detected to be
higher than the parent compound, there was less TBT available in the sediments. The products of OT
degradation are less toxic than the parent compound [55]. TBT compound in surface sediment has a
long half-life ranging between 160 and 775 days before the compound produces other BT products:
MBT and DBT. Both BT products are produced by aerobic biological process but with less oxygen
condition, mainly in deeper sediments, the degradation becomes slower [56].

Table 2. BDI and PDI value for organotin compound.

Point BDI PDI

Point 1 1.56 5.20
Point 2 1.15 0.53
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After the restriction of OT used in the painting system in 2008, the compounds were still
contaminating various marine environment globally. OT compounds detected in Hong Kong
marinas caused ecological risk to local rock shell population, where both imposex levels and tissue
concentrations of OT did not decline since 2004 [57]. After being banned for 10 years in Jinhae Bay,
South Korea from 2003 to 2010, a significant reduction of TBT concentration was detected in seawater
and oysters but there was no significant change in sediments. Therefore, TBT concentration remained
above the global environmental quality control [58]. BTs were still detected in surface sediments and
hermit crabs after the international and Brazilian bans, with the range of 1.32 to 1746 ng Sn g−1 in
biotas and 7 to 1304 ng Sn g−1 in sediments [59]. Otherwise, in Bizerta channel, northern Tunisia,
the TBT levels recorded in the gastropod Hexaplex trunculus decreased over time and the compound
was less frequent among BTs [60]. The ban of TBT also showed the decline of imposex frequency
and concentration of TBT for rock shells in South Korea [61]. The implementation of international
regulations might be effective enough to control the widespread of OT contamination in certain areas.
However, actions from the local managements are also needed to overcome these unsolved problems
in the future.
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Figure 1. Concentration of OTs compound on seagrass bed of Sungai Pulai.

3.2. Distribution of Booster Biocides in Sediments

The replacement of OT compounds used in antifouling paints was carried out in this study,
including diuron, dichlofluanid, chlorothalonil, Irgarol 1051, M1, and Sea-Nine 211 (Table 3) (Figure 2).
The range of diuron concentration in sediments was <0.1 to 22.9 ± 1.1 µg/kg. The concentration
was higher from a previous study reported in 2009 for the sediments from selected regions of
Malaysian coastal areas [37], but in a similar range to a study reported in 2017 for the sediments
obtained from Port Klang, Malaysia [62], with the values of <0.02 to 4.8 and 2.24 to 19.28 µg/kg,
respectively. The concentration of sediments for the current study was also within the range for the
concentration from a study in Panamanian marinas at <0.75 to 14.1 µg/kg [63]. Compared to the
study in Korean coastal areas, the concentration for Malaysian marinas was much lower. The study
reported the concentration of diuron in the range of 2.3 to 62.3 µg/kg in shipping and shipbuilding
areas in South Korea [64] (Table A2). Another study showed that in Busan and Ulsan Bay, South
Korea, the concentrations of diuron were from 6.89 to 29.9 and 15.3 to 39.2 µg/kg, respectively [65],
whereas, the Korean Special Management Sea Areas also reported high values of diuron concentration
(i.e., <0.06 to 144 µg/kg) [48]. The study conducted in Indonesian coastal areas reported diuron
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concentration between 0.04 and 740 µg/kg and this concentration was the highest compared to other
studies conducted in Asian coastal areas.

Table 3. Concentration of booster biocide compounds in sediment collected from seagrass area of
Sungai Pulai estuary (µg/kg).

Point n
Diuron Dichlorofluanid Chlorothalonil Irgarol 1051 M1 Sea-nine 211

Mean ± SD

Point 1 3 <0.1 48.7 ± 2.4 <0.1 0.14 ± 0.01 44 ± 2.2 9.1 ± 0.5
Point 2 3 3.4 ± 0.2 108 ± 5.4 <0.1 <0.1 82.5 ± 4.1 20.2 ± 1.0
Point 3 3 22.9 ± 1.1 800 ± 40 6.2 ± 0.3 1.4 ± 0.1 876 ± 44 170 ± 8.5
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Figure 2. Concentration of booster biocides compound on seagrass bed of Sungai Pulai.

Compared to other countries, Irgarol 1051 in the sediments had low concentration with the
range of <0.1 to 1.4 ± 0.1 µg/kg. In South East Asia, studies on Irgarol 1051 in sediments have
been performed in a number of countries including Thailand [52], Vietnam [66], Malaysia, [37] and
Indonesia [31] with the ranges of <0.03 to 3.27, 0.05 to 4, <0.02 to 14, and 0.1 to 80 µg/kg, respectively.
The highest concentration of Irgarol 1051 in the coastal area of Malaysia was detected in the Malacca
Port where aquaculture activities are conducted and it is a port for the mooring of small fishing boats.
Meanwhile, the highest concentration of Irgarol 1051 in Indonesia was in Bitung, the main area of
fishery industries; besides, large ships from Malaysia and Singapore are moored at and sailing in and
out of Bitung port. The studies have proven that Irgarol 1051 is used as an ingredient in antifouling
paint in South East Asian countries. The concentration of Irgarol 1051 in this study was the lowest
compared to other South East Asian countries. The concentration of Irgarol 1051 in sediments has also
been recorded internationally. The ranges of concentration of Irgarol 1051 for southern England [67],
French Mediterranean coast [68], Californian marinas [69], as well as Busan and Ulsan Bay in Korea [65]
were from <1.7 to 45, 43 to 689, <0.3 to 8.9, 1.79 to 73.5, and <0.02 to 38.8 µg/kg, respectively. The high
concentration of Irgarol 1051 in the French Mediterranean coast was due to ship chandlers and this
value is comparable to the values in other location, for example, Orwell Estuary, United Kingdom [70]
which had the values of <10 to 1011 µg/kg. Although Irgarol 1051 has a relatively low affinity for
particulate matters (log KOC 3.0; log KOW 3.9); however due to low water exchange in ports and
marinas, this might result in the presence of this biocide in the areas and the biocide is able to partially
bind with sediments [71,72].
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The concentration of Sea-Nine 211 in the sediments was in the range of 9.1± 0.5 to 170± 8.0 µg/kg.
These values are comparable with other study sites such as the coast of Indonesia [31], Korea [65],
and also Otsuchi [53] and Hiroshima bay in Japan [73] with the concentration of <0.04 to 150, <0.02 to
281, <0.04 to 150 and 7.6 to 140 µg/kg, respectively. These areas are busy with shipping activities
and there is a possibility for the release of higher booster biocide concentration into the marine
ecosystems. The half-life of Sea-Nine 211 examined in laboratory studies and under controlled field
conditions is less than 24 h [74,75]. Environmental conditions including sunlight reduce the Sea-Nine
211 concentration and the low detection of Sea-Nine 211 in sediments is due to rapid degradation of
the biocide in the water column [76].

In this study, the concentration of chlorothalonil was in the range of <0.1 to 6.2 ± 0.30 µg/kg.
In selected Greece ports and marinas, the values of chlorothalonil detected in sediments were from
8 to 165 µg/kg [77]. Chlorothalonil was also detected in the sediment samples from Blackwater
Estuary, United Kingdom. The concentration was detected with values ranging from 16 to
34.3 µg/kg [78]. The compound is highly and widely spread, and consistent with its use in
agriculture, although its half-life is only about 1.8 days. In another study in the coastal water of
United Kingdom, no chlorothalonil was detected in sediments [74]. Since chlorothalonil has short
half-life, the concentration is mostly low in many regions. This compound involves photodegradation
as the basic mechanism and if it does not degrade in the water column, it will settle into sediments,
where there is no light present and it will possibly give continuous and prolonged influence [79].

Dichlofluanid was detected in the sediments with the concentration of 48.7± 2.4 to 800± 40 µg/kg.
Various studies have detected dichlofluanid with low concentrations. The concentrations recorded
for the studies were <0.1, <0.4 to 14, <0.1 to 13, 12 to 65, and <0.04 to 80 µg/kg for the sediment
samples collected from Peninsular Malaysia [37]; Otsuchi Bay, Japan [53]; Vietnamese coastal areas [66];
Catalonia, Spain [80]; and Indonesian marinas [31], respectively. However, the value obtained from the
current study was comparable with the study of Blackwater Estuary, United Kingdom, which had the
highest dichlofluanid concentration of 688 µg/kg [78]. Many studies have shown low concentrations
of dichlofluanid and this coincides with the shortest half-life in chemical hydrolysis degradation [81].
The degradation of dichlofluanid in the natural environment has a half-life of 18 h, which is a rapid
degradation process [82].

4. Conclusions

The contamination by OTs and booster biocides were widely distributed and detected in the
surface sediment of the seagrass bed in Sungai Pulai estuary. From the investigation, among OTs
compound, PTs were detected to be higher than BTs in the sediments. Meanwhile, the concentration of
booster biocides was greater than OT compounds. This indicates booster biocides have substituted
OT compounds at these sites and contamination by booster biocides is a more serious issue than
OTs in coastal water nowadays. The variations of concentration were associated with the current
activities conducted in this particular area, the ocean tidal that affects the movement of sediment, and
geological condition of marine ecosystem. Further study is needed to monitor OT and booster biocides
in developing countries and evaluate the risk of booster biocides as it is estimated that the demand for
these compounds will increase in the future.
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Table A1. Concentration of organotin compounds in sediment (µg/kg).

Location MBT DBT TBT MPT DPT TPT Reference

Semi-closed Port of Gdynia 134–1125 250–3810 1143–6743 n.r. n.r. n.r. [44]
Indonesian coastal waters 1.5–170 0.9–78 0.4–350 0.2–22 <0.1–39 <0.1–19 [31]
Fishing ports along the Chinese coast <3.6–194 <2.3–41.5 <0.7–86 n.r. n.r. n.r. [45]
Southern Baltic coastal zone 0.54–33.97 0.51–38.66 0.2–115.2 n.r. n.r. n.r. [46]
Kaohsiung Harbor, Taiwan 0.5–83.4 0.5–31.6 1.2–112 n.r. n.r. n.r. [47]
Shipping and shipbuilding areas in
South Korea 15–6212 4–8747 3–55,264 n.r. n.r. n.r. [64]

Korean Special Management Sea Areas <0.1–56.9 <0.1–160 <0.1–2304 <0.1–46.7 <0.1–2.33 <0.1–68.5 [48]

Table A2. Concentration of booster biocide compounds in sediment (µg/kg).

Location Diuron Dichlofluanid Chlorothalonil Irgarol 1051 M1 Sea-Nine 211 Reference

California marinas <0.3–4.2 n.r. n.r. <0.3–8.9 <0.3–5.3 n.r. [69]
Shipping and shipbuilding areas in
South Korea 2.3–62.3 n.d. n.r. n.d.–11.5 <0.2–0.6 <0.2–5.5 [64]

Korean Special Management Sea Areas <0.06–144 n.r. n.r. <0.02–7.79 <0.07–0.9 <0.06–117 [48]
Malaysian coastal area <0.02–4.8 <0.1 n.r. <0.02–14 <0.1 <0.04–1.7 [37]
Thailand coastal area <0.08–25 n.r. n.r. 0.03–3.2 <1 0.09 [52]
Vietnamese coastal areas 0.11–3.0 <0.01–13 n.r. 0.05–4.0 <0.1–0.43 0.09–1.3 [66]
Indonesian coastal waters <0.04–740 <0.04–80 n.r. 0.1–76 0.4–670 <0.04–150 [31]
Panamanian marinas <0.75–14.1 n.r. n.r. <0.08–2.8 n.r. <0.38–81.6 [63]
Busan Bay, Korea 6.89–29.9 n.r. 22–1065 1.79–73.5 n.r. 61.2–269 [65]
Ulsan Bay, Korean 15.3–39.2 n.r. 1.3–422 <0.02–38.8 n.r. <0.02–264 [65]

n.r.: no record; n.d.: not detected.
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