
environments 

Article

Detection of Vegetation Cover Change in Renewable
Energy Development Zones of Southern California
Using MODIS NDVI Time Series Analysis, 2000
to 2018

Justin Nghiem 1,2, Christopher Potter 1,* and Rebecca Baiman 1,3

1 NASA Ames Research Center, Moffett Field, CA 94035, USA; Justin.Nghiem@nasa.gov (J.N.);
rebecca.baiman@nasa.gov (R.B.)

2 University of California, Berkeley, CA 94701, USA
3 Metro Nashville Public Schools, Nashville, TN 37011, USA
* Correspondence: chris.potter@nasa.gov; Tel.: +1-650-604-6164

Received: 3 February 2019; Accepted: 15 March 2019; Published: 28 March 2019
����������
�������

Abstract: New solar energy facilities on public lands in the deserts of southern California are being
monitored long-term to detect environmental impacts. For this purpose, we have developed a
framework for detecting changes in vegetation cover region-wide using greenness index data sets
from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor. This study
focused on three sites, Joshua Tree National Park (JOTR), Mojave National Preserve (MOJA), and a
proximal group of solar energy Development Focus Areas (DFAs). Three MODIS vegetation indices
(VIs), the normalized difference (NDVI), enhanced (EVI), and soil-adjusted (SAVI), all at 250-m spatial
resolution, were evaluated using the Breaks for Additive Season and Trend (BFAST) methodology to
estimate significant time series shifts (“breakpoints”) in green vegetation cover, from February 2000
to May 2018. The sample cross-correlation function with local precipitation records and comparison
with timing of wildfires near the study sites for breakpoint density (proportion of area with a
breakpoint) showed that NDVI had the strongest response and hence greatest sensitivity to these
major disturbances compared to EVI and SAVI, supporting its use over the other VIs for subsequent
analysis. Time series of NDVI breakpoint change densities for individual solar energy DFAs did not
have a consistent vegetation response following construction. Bootstrap-derived 95% confidence
intervals show that the DFAs have significantly larger kurtosis and standard deviation in positive
NDVI breakpoint distribution than protected National Park System (NPS) sites, but no significant
difference appeared in the negative distribution among all sites. The inconsistent postconstruction
NDVI signal and the large number of detected breakpoints across all three sites suggested that
the largest shifts in greenness are tied to seasonal and total annual precipitation amounts. Further
results indicated that existing site-specific conditions are the main control on vegetation response,
mostly driven by the history of human disturbances in DFAs. Although the results do not support
persistent breakpoints in solar energy DFAs, future work should seek to establish links between
statistical significance and physical significance through ground-based studies to provide a more
robust interpretation.
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1. Introduction

Modern energy demands have prompted the United States Bureau of Land Management (BLM)
to develop utility-scale solar energy installations and transmission infrastructure in parts of southern
California’s Mojave and Lower Colorado Deserts. The BLM and Department of Energy’s Programmatic
Environmental Impact Statement (PEIS) for Solar Energy Development in Six Southwestern States
(2012) and the BLM Desert Renewable Energy Conservation Plan (DRECP) (2016) have shaped the
design of solar development in southeast California. The DRECP covers parts of seven California
counties: Imperial, Inyo, Kern, Los Angeles, Riverside, San Bernardino, and San Diego. Approximately
91,000 km2 of federal and nonfederal California desert land are part of the DRECP area. A key objective
of the DRECP is to “provide effective protection and conservation of desert ecosystems while allowing
for the appropriate development of renewable energy projects” [1]. On BLM public lands in California,
solar energy zones (SEZs) established through the PEIS and Development Focus Areas (DFAs) for
DRECP solar energy development provide a mechanism to facilitate installation of renewable energy
production sites.

Vegetation cover change from renewable energy development is receiving increasing attention
due to potential impacts on protected area conservation, endangered species, and air quality [2].
The objective of the study is to assess the influence of solar energy development sites in parts of the
Mojave and Sonoran Deserts on changes to vegetation indices (VIs), and to develop a reproducible
framework for detection of variable ecological change. Abrupt changes, or “breakpoints,” in vegetation
cover may adversely affect habitats for wildlife, which may not adapt sufficiently quickly to new
conditions. These impacts would then disrupt both the primary and secondary productivity of the
desert ecosystem. Change detection using remotely sensed data offers an opportunity for federal, state,
and local agencies to jointly monitor and respond to major changes in ecological conditions that might
occur in and near solar facilities.

Numerous published studies [3–9] have reported the close correlation between the normalized
difference vegetation index (NDVI) from satellite sensors and measurements of percent cover of green
vegetation canopies in arid ecosystems. More specifically, Ramsey et al. [10] found that NDVI from
Landsat was tightly correlated (r = 0.88; p < 0.05) with total percent cover of live vegetation in a
semi-arid sagebrush ecosystem in south-central Utah. Potter [2] reported that interannual variations in
precipitation accounted for nearly all the periodic changes in Landsat NDVI in shrubland communities
observed since 1985 across the Lower Colorado Desert of California.

The focus of this study is on the influence of the construction and operation of solar energy
facilities on the past and present natural vegetation cover, as expressed in MODIS VIs (for live green
vegetation density). For this research, we use a 19-year vegetation index (VI) time series from Collection
6 of the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) satellite with the Breaks
for Additive Season and Trend (BFAST) method to detect significant changes in vegetation cover in
southern California deserts. First, we evaluated the suitability of three VIs for use with the BFAST
model in the study area and determine the best suited VI. Next, we examined change detection time
series results at several solar energy sites to infer any vegetation response patterns. Finally, we analyzed
distributional statistics for breakpoints to characterize more general responses at each study area.

Our results will help to locate regions sensitive to disturbances and, in turn, inform future policy
decisions. Furthermore, this methodology is fully extensible to incorporate newly released MODIS
observations because aggregation of observations minimizes issues like cloud cover and thus ensures
a consistent regularly-spaced VI time series. This fact enhances the utility of the method to long-term
monitoring efforts, as required by the BLM.

2. Study Area

In our study area, the Mojave Desert is transitional between the lower, hotter Lower Colorado
Desert to the south and the colder high desert of the Great Basin to the north [1]. The first set of study
sites was comprised five solar energy facilities (Genesis, Imperial Solar Energy Center West, McCoy,



Environments 2019, 6, 40 3 of 26

Desert Sunlight, and Desert Stateline), constituting the analysis at the finer spatial scale (Figure 1).
At the larger regional scale, the main areas of interest for this study were Joshua Tree National Park
(JOTR), Mojave National Preserve and Wilderness (MOJA), and a proximal group of solar energy DFAs
in Imperial, Riverside, and San Bernardino counties, California (Figure 1) on BLM lands. NPS sites
provide controls as more protected and undisturbed landscapes.
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The main perennial vegetation cover type in the study area is creosote bush (Larrea divaricata)
and white bursage (Ambrosia dumosa) [1,2], although ironwood (Olneya tesota), palo verde (Cercidium
floridum), Joshua tree (Yucca brevifolia), and ocotillo (Fouquieria splendens) are also found throughout
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the region. Low annual rainfall (50–300 mm) and high temperatures (exceeding 45 ◦C in the summer)
make this area one of the most arid in North America [1].

The five solar energy facilities examined here featured two general spatial patterns of solar arrays.
The first pattern is characterized by rows/columns of solar installations with wider spacing (Figure 2a),
and was apparent at three sites (Genesis, McCoy, Imperial). The second pattern is characterized by
tighter spacing in between blocks of arrays (Figure 2b), and was exhibited at two sites (Desert Sunlight,
Desert Stateline).
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Figure 2. (a) Genesis site. Wider array spacing is representative of the McCoy and Imperial sites
as well. Image from Google Earth, dated 6 February, 2016. (b) Desert Sunlight site. Smaller array
spacing is representative of the Desert Stateline site as well. Image from Google Earth, dated 6 February
2016. The red boxes are 250 m on all sides, representing the nominal MODIS vegetation index (VI)
spatial resolution.

3. Methods

The conceptual framework of the method follows a broad sequence of (1) processing, (2) selection,
and (3) analysis. The inputs to the processing stage are the data for the proposed VIs (EVI, NDVI, and
SAVI). Each spatiotemporal VI dataset is first preprocessed for data quality. Then, BFAST time series
analysis results are produced for each preprocessed VI dataset.

The goal of the selection phase is to choose the most suitable VI for the final analysis phase. Here,
“suitability” is taken to be the strength of the response to known vegetation influences (precipitation
and wildfire). The preprocessed VI dataset and BFAST results are jointly used for this determination.

The final stage, analysis, uses the BFAST result from the selected VI in the previous phase to
perform statistical analysis at two spatial scales, at the scale of solar energy facilities and the regional
scale. Thus, two statistical techniques, spatial kernel density estimation and bootstrapping, are adopted
to address the varying analysis scales. The key outputs of this method, then, are the spatiotemporal
BFAST results and the statistical analyses, which summarize the BFAST results within discrete units of
the study area at two spatial scales. The details follow in the remainder of this section.

3.1. Processing Phase: Vegetation Index Selection

The VIs considered in this study were the normalized difference vegetation index (NDVI),
enhanced vegetation index (EVI), and the soil-adjusted vegetation index (SAVI). NDVI was selected
because of its simplicity and ease of interpretation, while EVI and SAVI were selected as alternatives
that tend to reduce the interference of the canopy background signal [11,12]. In addition, these VIs
were chosen because of their prevalence and extensive documentation in the scientific literature [11,12].
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These VIs are calculated as a function of the reflectance in different spectral bands (Table 1). Each VI
ranges from −1 to 1, with higher values indicating more greenness and denser vegetation.

Table 1. Normalized difference (NDVI), enhanced (EVI), and soil-adjusted (SAVI) vegetation
indices’ definitions.

Vegetation Index Definition Reference

NDVI (NIR − Red)/(NIR + Red) NASA Earth Observatory [11]
EVI G(NIR − Red)/(NIR + C1 × Red-C2 × Blue + L1) Huete et al. [12]

SAVI (1 + L2)(NIR − Red)/(NIR + Red + L2) Huete [13]

Where NIR, Red, and Blue are the reflectance in the near-infrared, red, and blue wavelengths, respectively, G = 2.5 is
the gain factor, C1 = 6 and C2 = 7.5 are aerosol resistance coefficients, and L1 = 1 and L2 = 0.5 are canopy background
adjustment terms.

3.2. Processing Phase: Satellite Imagery

Time series for NDVI, EVI, and SAVI are derived from Collection 6 vegetation index 16-day
aggregate raster grids (MOD13Q1) from the Terra MODIS sensor at 250-m resolution [14]. The satellite
observations range from February 2000 to May 2018 at 16-day intervals, having been composited from
daily data. Terra MODIS data were chosen for this study because of the relatively higher number of
observations for a given time period, which avoids most atmospheric issues, and reasonable spatial
resolution. In contrast, Landsat data have a much finer spatial resolution but its comparatively lower
number of observations for a given time, and thus higher risk of atmospheric contamination, make it
less reliable for time series analysis in which consistent and regularly-spaced data points are necessary.

The VI datasets were obtained using the “MODIStsp” R package [15] to automate creation of
time-series rasters from MODIS data. NDVI and EVI data are directly available as prepackaged
products, but SAVI must be computed from the MODIS spectral band reflectances. Any pixel
observations with cloud, snow, or ice cover were eliminated from each dataset according to pixel
reliability values [16].

Each VI dataset was reaggregated to monthly observations based on the maximum VI value
in a given month. Reaggregation was necessary to reduce processing time for subsequent steps.
The maximum VI values served as the reaggregation statistic to further reduce any chance of
atmospheric contamination, which would tend to decrease the VI reading. Any remaining missing
data were interpolated linearly only if the time series did not have greater than 5% missing data or
did not have four or more consecutive missing data points. The final result was a raster dataset for VI
values for monthly observations from February 2000 to May 2018 for a total of 220 observations.

3.3. Processing Phase: Time Series Change Detection

In order to quantify the significance of fluctuations in the VI signal, we use the BFAST time series
analysis method. BFAST models a time series according to the following general algorithm:

yt = St + Tt + et (1)

where yt is the observed values of the time series, St is the seasonal cycle, Tt is the linear trend
component, and et is the residual error [17]. BFAST decomposes a time series into seasonal and
linear trend components. By isolating the linear trend component from the seasonal signal, significant
changes not attributable to seasonality may be identified from structural change tests. These “trend
breakpoints” (called “breakpoints” from here) are significant changes, detected by BFAST, in the
linear trend component of the model, and represent anomalous perturbations in a time series [17].
In the context of the VI time series, the concept of the breakpoint assigns statistical significance to
changes in the VI value. The presence of a breakpoint thus flags a large change in the VI that is not
attributable to previous periodic or linear trends within statistical certainty, and so may be related to
disruptions like solar energy development. The ordinary least squares (OLS) residuals-based Moving
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Sum (MOSUM) procedures for changes in the mean were applied to test for one or more breakpoints
in a time series [18]. If the test indicated significant structural change (p < 0.01), then breakpoints were
estimated. In this specific case, breakpoints index the timing and location of significant changes in the
VI time series based on the method described.

BFAST fulfills two key requirements from the nature of the VI data. First, the method must
separate seasonal trends from linear trends in the VI time series because vegetation conditions tend
to be naturally tied to yearly seasonal cycles. BFAST accomplishes this through the decomposition
of seasonal and linear signals. Second, the method must run relatively quickly to maintain feasible
processing times because time series must be evaluated through space as well (at each cell in the
raster grid). BFAST satisfies this requirement, specifically at the spatial resolution of the MODIS data.
Computing resource constraints from this requirement also supported the use of MODIS data instead
of data at finer spatial resolution.

BFAST methods were implemented by adapting an existing R package for BFAST to iterate
over raster grids [17]. All R code and routines, including previous preprocessing steps, were also
written into an R package to encourage reproducibility and similar types of analysis for other regions.
We obtained change detection results by running this modified code for each VI dataset in the study
areas. The BFAST model was parametrized to find a maximum of five breakpoints at a minimum
time length of 11 months apart to capture only larger changes at an approximately yearly time scale.
The significance level for structural change was set to p < 0.01.

3.4. Selection Phase

The suitability of each VI for accurate vegetation change detection in this study was assessed in
two ways. First, the sample cross-correlation function between the VI time series and precipitation time
series from nearby weather stations was computed for the JOTR, MOJA, and DFA sites. This procedure
computes the linear correlation between the time series at positive lags, marking future values of a VI
from a given point in time for precipitation.

Second, the time series of the proportion of an area with a breakpoint, or “breakpoint density,”
was computed within wildfire boundaries. Breakpoint density, which varies with time for a given area,
records the spatial extent of breakpoints and, in turn, the magnitude of the event(s) underlying the
appearance of breakpoints. Breakpoints and breakpoint density may further be specified as “positive”
or “negative” depending on whether the breakpoint is associated with an increase or decrease in the
time series, respectively. Comparisons of negative breakpoint density time series and the timing of
the wildfires reveal the sensitivity of each VI to wildfires, which should appear as peaks by visual
inspection of the breakpoint density. These events, precipitation and wildfire, are chosen as selection
criteria because they represent large magnitude controls on vegetation in the study region, and as
such their signatures should appear in well-suited VI data. As additional notes, no assumptions were
made on the ignition source of wildfires. We also assume all time series are stationary, which is a valid
condition based on visual inspection.

3.5. Analysis Phase

The first piece of the analysis centers on the scale of solar energy facilities. Five solar energy sites
were selected for this portion (Figure 1). The effective area of each solar energy site consisted of the
fenced project footprints of the solar installations plus a 2-km buffer surrounding them to establish a
“region of influence” where human activities related to solar energy development may extend as well.
Additionally, two control sites (one in JOTR, one in MOJA) each with areas approximately equal to the
mean area of the buffered solar sites (~56 square km) were selected for the same analysis. These sites
were chosen for their locations in valley bottoms, which are common characteristics of the solar energy
sites, and their lack of steep elevation relief.

To capture the signature of the construction of solar energy sites in time and space, two statistical
methods were adopted. First, spatial kernel density estimation was used to evaluate spatial distribution
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of breakpoint intensity (breakpoints/area) at the scale of solar energy facilities. This procedure was
performed using a Gaussian kernel and a rule-of-thumb bandwidth. For a given length of time and
location, the density estimates were summed and normalized to create a probability density surface.
Differences in probability density were computed as differences between the surfaces at different
times; probability densities for these specific results were also computed to characterize the overall
change distribution. This method was performed for five solar energy sites (Figure 1). The effective
area of each solar energy site consisted of the fenced project footprints of the solar installations plus
a 2-km buffer surrounding them. Additionally, two control sites (one in JOTR, one in MOJA) each
with areas approximately equal to the mean area of the buffered solar sites (~56 km2) were selected for
the same analysis. These sites were chosen for their locations in valley bottoms, which are common
characteristics of the solar energy sites, and their lack of steep elevation relief. However, spatial
kernel density estimation aggregates over time and thus does not detect potential changes related
to construction over time. To address this issue, a second method was adopted in which variance
was computed for the postconstruction phase of the breakpoint density time series at each site. 95%
confidence intervals for the preconstruction variance in breakpoint density were constructed to test
significance. Variance is used here because significant changes in variance imply changes in the
fundamental phenomena producing breakpoints, which could be related to construction tasks.

The goal of the above two methods is to quantify the change between pre- and postconstruction
conditions. One feature of BFAST is that, for a given time series, it estimates each component according
to the entire time series. This may be a problem if the two time periods contrast dramatically in
the VI pattern. An extreme example would be a complete lack of seasonality after construction, in
which there would be no change in VI (no breakpoints) but large changes could appear as breakpoints
following the joint pattern of seasonality from the entire time series. However, this issue was not
apparent here because of the specific nature of the data and study. First, three of the five solar facilities
(Genesis, Imperial, McCoy) considered in this study featured relatively wide spacing among solar
installations. The 250 m spatial resolution of the MODIS imagery thus aggregated responses of the solar
installations and ground, which both respond according to the same seasonality as undeveloped lands
because precipitation, the dominant meteorological phenomenon, would not be constrained. Although
adjustments in the seasonal amplitude may occur as a result and would constitute an altering of the
seasonality, they would not pose a problem to the BFAST methodology because they would simply
represent seasonally-recurring breakpoints which would still be valuable to detect. An additional
consideration is that the remaining two solar facilities (Desert Sunlight, Desert Stateline) featured
tighter packing of solar installations, resulting in less ground space in between arrays. Although
the time series on this surface would be expected to be more different from that on an undeveloped
surface, visual inspection of time series at these locations in the BFAST method revealed that the
period/frequency of seasonality did not differ greatly. Thus, as in the first point, the use of BFAST is
appropriate because the amplitude is free to change and would be suitably detected in the breakpoints.

To generalize further to the regional scale, a nonparametric bootstrap procedure was used to
examine sampling distributions using 95% confidence intervals for estimators of variance and kurtosis
for the magnitude of the VI change at a breakpoint (call “breakpoint shift” from here; may also be
“positive” or “negative”) for the JOTR, MOJA, and DFA sites. These statistics were chosen because they
indicate “extremeness” in the breakpoint responses, and so are sensitive to the presence of very large
breakpoint shifts that may be correlated with the construction of solar energy facilities. This method
resampled 10,000 replicates of the sample data with replacement, computing the statistic in question,
and then taking the quantiles of the resulting distribution to determine statistical significance.
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4. Results

4.1. Vegetation Index Assessment

BFAST analysis was performed across the study regions using MODIS VI datasets for NDVI, EVI,
and SAVI. Sample output results for JOTR, MOJA, and DFA sites illustrated the typical time series
decomposition (Figure 3). In general, the BFAST method tended to estimate five breakpoints, the
maximum allowed, for each pixel in the study regions regardless of which VI was used. Specifically,
the means of the total number of breakpoints for all study sites and all VIs were all larger than 4.5,
with a maximum at the MOJA site of 4.96 breakpoints on average at a cell using the SAVI dataset.
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Figure 3. Sample BFAST NDVI results for the three main study areas, February 2000 to May 2018.
The MODIS time series NDVI (Yt) was decomposed into seasonal (St), trend (Tt), and remainder (et)
components. The seasonal component is estimated by taking the mean of all seasonal subseries (e.g.,
for a monthly time series the first subseries contains the January values). Breakpoints are indicated by
dashed vertical lines and yellow highlights. Vertical axis units are NDVI × 10,000.

The suitability of each VI for this study was assessed using sample cross-correlations with
precipitation time series from nearby weather stations and comparisons against the timing of burns
within fire boundaries. Precipitation should have a direct relationship with the VIs because greater
rainfall tends to lead to more plant growth [2]. Intense precipitation may waterlog plants and/or
remove vegetation due to flood conditions, but these possible reductions in vegetation cover were
considered as second-order impacts and thus not as influential. To compare the VI and precipitation
time series by site, monthly precipitation time series were taken from three weather stations closest to
each site (Figure 1; Table 2).

The sample cross-correlations between precipitation and the three separate VI time series showed
that NDVI was best correlated with precipitation in terms of significant non-negative lags within
one year (Figure 4). The VI time series for comparison were aggregated as the mean of VI values in
a 5 by 5 (1.25 km by 1.25 km) grid centered on the cell closest to the weather station. This spatial
scale was selected to reduce any noise in the data while still remaining small enough remain within
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the same localized weather regime. Negative lags are not considered because, at a given time,
precipitation should correlate with present or future responses in the VI. Lags were considered
only if they were equal to or less than 12 months, as any lags afterwards would most likely not be
related to precipitation response.

Table 2. Weather stations for each study site. Locations are indicated in Figure 1.

Site Weather Station Observations

Joshua Tree Lost Horse Feb. 2000–Dec. 2017
Mojave Mid Hills Feb. 2000–Dec. 2017

Selected DFAs Eastern Riverside County Blythe Airport Feb. 2000–Apr. 2015
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For all sites, sample cross-correlation between the NDVI and precipitation time series had
significant positive correlation at non-negative lags (at the p < 0.05 level) within 0 and 4 months.
On the other hand, EVI and SAVI time series did not have any significant positive correlation at
non-negative lags. Even considering negative correlations, the EVI and SAVI time series had only one
lag within a year (the 10-month lag) that had a significant negative correlation. The lack of significant
negative correlations also supported the hypothesis that precipitation is more closely tied to vegetation
greening rather than removal.

In addition, sample cross-correlations with breakpoint results were computed to directly compare
change detection results for each VI with precipitation. For each VI, the breakpoint density time series
was computed and the sample cross-correlation with precipitation was calculated. To gauge the impact
of precipitation, which would tend to raise the VI value, only breakpoints that produced an increase in
the VI were retained for this comparison. The sample cross-correlations between breakpoint density
and precipitation indicated that the NDVI-derived time series had significant non-negative lags at all
sites excepting the Mid Hills/Mojave site. The EVI-derived time series only had at least one significant
non-negative lag within 12 months at the Mid Hills site, while the SAVI-derived time series had at
least one lag fulfilling the criteria at the Blythe Airport/DFA site and Mid Hills/Mojave site.

Comparisons between wildfire burns and VI time series were made at two burn sites, one near
Joshua Tree National Park and the other in Mojave National Preserve (Figure 1; Table 3). The NDVI
time series showed a peak of approximately 70% and 50% in negative breakpoint density around the
corresponding month of burning for both the Millard and Hackberry fires, respectively (Figure 5).
In contrast, EVI and SAVI did not experience a peak at those times.
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Table 3. Wildfire names and timing.

Name Timing Reference

Millard 9–21 July 2006 De Atley [19]
Hackberry 22–27 June 2005 National Park Service [20]
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The combination of cross-correlation and wildfire results between the VIs supported the use
of NDVI for further analysis because of their greater sensitivity in NDVI than EVI or SAVI to
environmental perturbations. First, precipitation would tend to produce positive breakpoints at
or after the corresponding time point in the positive breakpoint density. Consistent significant
correlations at non-negative lags between positive breakpoint density from NDVI and precipitation
supports application of NDVI. Although the NDVI breakpoint density time series was shown to be
uncorrelated with precipitation at the Mid Hills MOJA site, the direct cross-correlation between NDVI
and precipitation yielded the strongest relationship in terms of significant non-negative lags. The lack
of a relationship between NDVI breakpoint density and precipitation at Mid Hills may arise from
the assumption that precipitation will only produce positive breakpoints; any negative breakpoint
response (e.g., flash flooding that uprooted vegetation) was not accounted for. Second, wildfires would
tend to produce negative breakpoints. The fact that such major disturbances, at least in the two cases
examined, registered in the NDVI (both in the VI itself and negative breakpoint density) but not EVI
or SAVI additionally supported a focus on NDVI change for this study. All further analyses were
performed using the MODIS NDVI dataset.

4.2. Change Detection at the Solar Energy Development Scale

Five solar energy sites (Figure 1) were selected to examine results from BFAST change detection,
each including a 2-km linear buffer from the visible perimeter of solar installations in which human
disturbances related to solar energy development may operate as well. As a further note, the choice of
such a “region of influence” was arbitrary so changing the scale of the analysis by varying the buffer
distance may produce different conclusions as shown in the following results by examining sites with
and without the buffer. Two additional sites from the JOTR and MOJA regions with similar area and
low relief were included as controls. A hypothetical or “proxy” construction date was selected for the
two control sites, as the date of the “start of construction” was assumed to be the construction date for
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the closest of the five solar energy sites. The selection of the control sites also assumed that the chosen
area was similar in topography and land cover to those of the solar facilities. Therefore, the results on
this subsection must be considered with these assumptions and limitations in mind.

Time series of breakpoint density were plotted, and then segments of the time series were
compared before and after the start of construction at each site (Figure 6; Table 4a).
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Table 4. (a) Construction start dates for solar energy sites. (b) Counts of breakpoint sign by
site and timing relative to construction date. (c) Bootstrap confidence intervals for variance of
breakpoint density.

(a)

Site Construction Start Date Reference

Desert Stateline October 2014 Southern Power [21]

Desert Sunlight September 2011 First Solar [22]

Genesis December 2010 National Renewable Energy
Laboratory [23]

Imperial Solar Energy Center West November 2014 Imperial Valley Economic
Development Corporation [24]

McCoy November 2014 United State Energy Information
Administration [25]

Joshua Tree control September 2011 taken from Desert Sunlight

Mojave control October 2014 taken from Desert Stateline

(b)

Site Ratio of Positive to Negative
Breakpoints Preconstruction

Ratio of Positive to Negative
Breakpoints Postconstruction

Desert Stateline 171/53; 3.226 19/112; 0.1696

Desert Sunlight 193/21; 9.190 78/106; 0.7358

Genesis 201/138; 1.457 77/62; 1.242

Imperial Solar Energy Center West 296/52; 5.692 1/1; 1

McCoy 194/53; 3.660 9/1; 9

JOTR control 2702/264; 10.23 1870/185; 10.11

MOJA control 2768/1042; 2.656 530/712; 0.7444

(c)

Site Postconstruction Variance
(×10−4)

95% Bootstrap Preconstruction
Variance CI (×10−4)

Desert Stateline 3.890 [1.105, 5.822]

Desert Sunlight 2.460 [1.012, 19.55]

Genesis 3.552 [16.98, 81.77]

Imperial Solar Energy Center West 0.05605 [10.85, 210.4]

McCoy 0.3225 [1.508, 17.18]

JOTR control 81.18 [5.942, 121.5]

MOJA control 32.17 [10.98, 74.60]

The sign distribution of breakpoint shifts was not uniform across development sites (Table 4b).
The Desert Stateline and Desert Sunlight sites favored positive breakpoints (positive–negative ratio
greater than 1) against negative breakpoints, but tended to favor negative breakpoints after construction
of the solar facility. The Genesis site favored positive breakpoints before construction and continued
to favor positive breakpoints afterwards. The results at the McCoy and Imperial sites could not be
evaluated because of the sparsity of breakpoints after construction (10 and 2, respectively).

Variance in breakpoint density was computed for only the regions covered by solar installations
for each site for the time series segment before the start of construction and after construction, and then
evaluated for significance using a nonparametric bootstrap (Table 4c). The time series of breakpoint
density for each site was divided into a preconstruction and a postconstruction section, within which
the variance was calculated. A bootstrap 95% confidence interval for the variance in the preconstruction
segments was calculated and compared to the variance for the postconstruction segments. Inclusion
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of the 2-km buffer zone into the time series made the differences between pre- and postconstruction
arbitrary and less clear.

For three out of the five solar energy sites, the postconstruction breakpoint density variance
was significantly smaller than the preconstruction breakpoint density variance based on the 95%
bootstrap confidence interval. In terms of vegetation cover, this result implies that, at these three
sites, the variance has been significantly reduced due to a damping in the process tending to generate
breakpoints. As this shift is aligned with the timing of the construction of solar energy sites, the result
may relate construction to a reduction in breakpoint appearance. The Desert Sunlight and Desert
Stateline sites did not reflect this pattern; their postconstruction breakpoint density variances were
contained within the confidence interval. Likewise, the postconstruction breakpoint density variance
was contained in the bootstrap confidence interval for both control sites.

Kernel density estimation characterized the spatial distribution of breakpoints for all sites, but did
not yield entirely consistent results (Figure 7). The differenced breakpoint distributions directly on
the solar installations at Genesis, McCoy, and Imperial Solar Energy Center West sites tended to
concentrate negative values, indicating a reduction in breakpoint intensity over time. This pattern
implies that the area of the solar installation footprints experienced a reduced intensity of breakpoints,
thus less change in vegetation conditions, for those three sites. However, the Desert Sunlight and
the Desert Stateline sites deviated from this general pattern. The kernel density estimates for Desert
Stateline concentrated a greater mass of the distribution closer to the center of the solar installations
after construction than before construction. The differenced distribution for the Desert Sunlight site
indicated a shift in the distribution to the north.
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Figure 7. Kernel density estimates for solar sites. The first column is breakpoint distribution density 
before construction, second is density after construction, and third is the differenced density (after - 
before). The inner boundary in each panel for noncontrol sites is the outline of the solar installations; 
the outer boundary is a 2-km buffer from the inner boundary. Axes display distance in kilometers. 

The kernel density estimates for the control sites were also inconsistent. The Joshua Tree control 
site displayed a similar uniform breakpoint distribution before and after the proxy construction date. 
The density of the differenced surface indicated an approximately symmetric unimodal distribution 
centered at 0. The Mojave control site, before the proxy construction date, displayed a more uniform 
breakpoint distribution. However, the distribution was more concentrated away from the edges 
postconstruction. The density of the differenced surface indicated a less peaked distribution with 
greater spread across its range. 

Despite the mixed results within each method, the McCoy, Genesis, and Imperial sites exhibited 
significant differences between pre- and postconstruction periods. This consistency implies that these 
sites experienced significant reductions of vegetation change in time and space at the solar 
installation footprints (referring to the two methods). 

4.3. Change Detection at the Regional Scale 

The BFAST method detected at least one breakpoint in 99% of the cells in the combined larger 
study areas (Joshua Tree National Park, Mojave National Preserve, and selected study DFAs). Time 
series of the breakpoint density for the study sites showed the presence of several large breakpoint 
events (Figure 8). The positive breakpoint shifts were, in general, on a larger scale than the negative 
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Figure 7. Kernel density estimates for solar sites. The first column is breakpoint distribution density
before construction, second is density after construction, and third is the differenced density (after -
before). The inner boundary in each panel for noncontrol sites is the outline of the solar installations;
the outer boundary is a 2-km buffer from the inner boundary. Axes display distance in kilometers.

The kernel density estimates for the control sites were also inconsistent. The Joshua Tree control
site displayed a similar uniform breakpoint distribution before and after the proxy construction date.
The density of the differenced surface indicated an approximately symmetric unimodal distribution
centered at 0. The Mojave control site, before the proxy construction date, displayed a more uniform
breakpoint distribution. However, the distribution was more concentrated away from the edges
postconstruction. The density of the differenced surface indicated a less peaked distribution with
greater spread across its range.

Despite the mixed results within each method, the McCoy, Genesis, and Imperial sites exhibited
significant differences between pre- and postconstruction periods. This consistency implies that these
sites experienced significant reductions of vegetation change in time and space at the solar installation
footprints (referring to the two methods).

4.3. Change Detection at the Regional Scale

The BFAST method detected at least one breakpoint in 99% of the cells in the combined larger study
areas (Joshua Tree National Park, Mojave National Preserve, and selected study DFAs). Time series
of the breakpoint density for the study sites showed the presence of several large breakpoint events
(Figure 8). The positive breakpoint shifts were, in general, on a larger scale than the negative breakpoint
shifts because their range extended up to about 50% coverage as opposed to only about 20% coverage
for the negative shifts. The conspicuous peaks in the positive shifts were located approximately in late
2004 to early 2005, early 2010, and late 2016 to early 2017.

Distribution statistics for positive and negative change were computed and evaluated within
the boundaries of the larger study sites to compare regional-level NDVI responses. For cells with
multiple breakpoints, only the shift value with the maximum magnitude was retained to examine the
most extreme breakpoint responses. Thus, the distributions were pooled over time to average out
differential weather influences at finer temporal scales.

Histograms of breakpoint “shift” responses (change in a time series at a breakpoint) showed a
bimodal distribution for all three sites (Figure 9). However, the negative breakpoint shift response
in the DFAs was less frequent than the positive shift responses. The distribution across the positive
and negative breakpoint shift responses was more balanced in the case of JOTR and MOJA, but still
favored positive shifts.
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Figure 9. Histograms of breakpoint shifts by site.

The overall breakpoint shift histogram was split into a positive and negative distribution
and analyzed separately. The positive breakpoint distribution for all sites showed a right-skewed
distribution (Figure 10). The sample distribution statistics were also computed for a more precise
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distributional description (Table 5a,b). The means between the three sample distributions are
comparable, with a maximum range of 0.008 in NDVI (or 80 scaled NDVI units). However, the standard
deviation, kurtosis, and skewness tend to set apart the sites more distinctly. The DFAs had the highest
kurtosis, skewness, and standard deviation, followed by the MOJA and then JOTR. The skewness
for all sites confirmed that the distribution in each site was right-skewed. All kurtosis values for
distributions are leptokurtic, i.e., larger than 3, the kurtosis for a normal distribution.
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Table 5. (a) Positive breakpoint shift distribution statistics by sites. 95% bootstrap confidence intervals
are additionally supplied in brackets for DFAs for standard deviation and kurtosis. All statistics
are based on scaled NDVI (NDVI × 10,000). (b) Negative breakpoint shift distribution statistics by
sites. 95% bootstrap confidence intervals are additionally supplied in brackets for DFAs for standard
deviation and kurtosis. All statistics are based on scaled NDVI (NDVI × 10,000).

(a)

Site Mean Standard Deviation Kurtosis Skewness

selected DFAs 758.9 422.1
[409.1, 435.5]

11.9
[10.6, 13.3] 2.2

JOTR 782.9 307.1 5.2 0.9

MOJA 833.1 391.1 8.0 1.6

(b)

Site Mean Standard Deviation Kurtosis Skewness

selected DFAs −645.1 365.8
[338.8, 393.9]

7.9
[5.6, 10.5] −1.7

JOTR −774.5 305.8 4.2 −0.79

MOJA −800.7 380.7 5.9 −1.4
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A comparison of these summary statistics for the positive breakpoint shift distribution singled
out the DFAs as having consistently greater “spread” statistics (standard deviation, skewness, and
kurtosis) than the JOTR or MOJA sites. Bootstrap 95% confidence intervals for kurtosis and variance in
the DFAs supported the fact that these statistics at the other sites were significantly smaller (Table 5a).
These numerical results imply that the DFAs, compared to the JOTR and MOJA regions, favored more
extreme increases in NDVI and thus more intense greening episodes.

The same procedure performed on the positive breakpoint shift distribution was also applied to
the negative breakpoint shift distribution (Figure 11). The descriptive statistics for the distributions
by site confirmed the visual observation that all three distributions are left-skewed (Table 5b).
The range in means was larger in the negative shift distributions than in the positive shift distributions
(approximately 0.02 to 0.008 in NDVI), suggesting that negative responses were, on average, more
variable between sites than positive responses. The kurtosis and magnitude of skewness were again
largest for the DFAs, with JOTR showing the smallest values. The sample distributions were all
leptokurtic, i.e., kurtosis values were all larger than 3. However, the MOJA site had the greatest
variance, indicating that the negative shift distribution for this site had greater spread in values but
thinner tails than that for the DFAs.
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The nonparametric bootstrap did not significantly separate the sites in terms of kurtosis and
standard deviation for the negative breakpoint shift distribution (Table 5b). Although the DFA kurtosis
was larger than that of the MOJA site and the DFA variance was smaller than that of MOJA, these
differences were not significant according to 95% bootstrap confidence intervals. We did not find that,
for the negative breakpoint distribution, the DFAs had significantly greater kurtosis and variance than
both the MOJA and JOTR sites. These numerical results imply that, comparing both controls to the
DFAs, declines in vegetation conditions operated on intensities that were indistinguishable from each
other across sites.
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5. Discussion

5.1. Vegetation Index Suitability

Correlations with precipitation and wildfires support the use of NDVI instead of EVI or SAVI
within the study region, a finding that may be attributable to its dynamic VI range. Huete et al. [12]
found that the NDVI product from the Terra MODIS sensor tends to have a greater range in values
in their semiarid study sites than did EVI. Thus, the higher sensitivity of NDVI to these events may
stem from its stronger signal in the presence of sparser vegetation cover typical of desert ecosystems.
Another contributing factor may be the more uniform structure of vegetation in the study area.
In practice, EVI and SAVI are more sensitive to differences in vegetation structure, such as canopy
architecture [12,13]. In contrast, NDVI relies more on variations in chlorophyll to distinguish values.
Since a substantial portion of the study area is dominated by low, sparse vegetation like creosote bush
and white bursage, structural variations are more uniform than are variations in chlorophyll. Then,
EVI and SAVI may appear less sensitive because vegetation structure is less variable than chlorophyll
content. This reasoning would explain the insensitivity of EVI and SAVI to the examined wildfires
(Figure 5).

The tendency of SAVI to yield similar breakpoint results to EVI may be due to the common feature
of SAVI and EVI for decoupling the vegetation signal from the background canopy [13]. EVI and SAVI
may be more suited for detecting different types of vegetation change and warrant evaluation in this
regard. One well-documented guideline is that EVI would be more appropriate for regions where
vegetation is denser and greener because NDVI tends to saturate whereas EVI remains responsive in
those conditions [12]. Nonetheless, suitability assessments for other VIs must be completed to optimize
the correlation between a VI and vegetation characteristics (e.g., density, diversity, height) that may be
influential for ecosystem functioning.

5.2. Meteorological Controls on Breakpoints

The regional-scale analysis of Joshua Tree National Park, Mojave National Preserve, and the
selected DFAs supports the idea that anomalously large precipitation events tend to dictate the
appearance of (positive) breakpoints. The positive peaks in the breakpoint density for these sites were
located in three time periods associated with generally higher than average rainfall totals, namely the
2005, 2010, and 2017 water years. Thus, these major peaks are correlated with higher than average
rainfall seasons.

In addition, the ubiquity of cells with at least one breakpoint (99% for these study regions)
implies a phenomenon, like precipitation, operating on the scale of hundreds of thousands of square
kilometers. Although the BFAST method incorporates seasonality in estimating breakpoints, these
elevated precipitation intensity events are not captured in the seasonal model because of their lower
frequency. This outcome may be a feature, if one wishes to track deviations from the usual yearly
cycle, or a drawback, if one wishes to completely decouple the vegetation signal from the precipitation
cycle. A more detailed harmonic model fit that includes more frequencies may be necessary for the
latter case.

The causes of negative VI breakpoints in our study region are less clear because of the lack of any
single particular phenomenon that reduces NDVI at the regional-scale. Two plausible mechanisms for
negative breakpoints are drought and wildfires. Wildfires, although they do influence a landscape
at the scale of analysis addressed by MODIS, do not occur as often in a daily, widespread fashion as
does a heavy rain event, thus making fire impacts more difficult to pinpoint in the time series. NDVI
reduction due to drought is also difficult to attribute in the time series because the browning is gradual,
making the expression in breakpoints less clear. A combination of drought and wildfire may have a
unique signature as well in the time series, but is not readily identifiable from the data.
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5.3. Surface Homogeneity at the Scale of Solar Energy Development Sites

The BFAST variance results showed that the postconstruction variances in breakpoint density
were significantly smaller than the preconstruction variances for the solar installations at all sites except
Desert Sunlight. For the facilities at which this pattern did hold, the reduction in breakpoint density
variance may be attributable to an effective “homogenization” of the desert surface. The introduction
of an expanse of solar installations, whether concentrated or photovoltaic, would smooth out the
differences in the natural desert landscape by masking any underlying vegetation signal and reduce
surface variability overall simply by virtue of their identical construction. The notion that construction
of new road surfaces is not a major factor in NDVI change is supported by the lack of a coherent
difference between pre- and postconstruction breakpoint density time series because the buffer areas
immediately surrounding the solar installations, but not covered by them, would not have been
transformed into such a uniform surface by road traffic and land clearing for equipment usage.

This causal effect of a homogenized surface was supported by the kernel density estimates. The
variance results reveal that breakpoint events produce far fewer breakpoints in a given area after the
construction of solar installations. The spatial kernel density estimates answer where the breakpoint
distribution changes. The differenced probability surfaces for Genesis, McCoy, and Imperial sites
showed that breakpoints, when they did occur after construction, tended to occur away from the solar
installations themselves compared to the distribution before construction. This finding was consistent
with the apparent decrease in breakpoint density variability after the start of construction.

The above findings do not apply to the Desert Sunlight and Desert Stateline sites because they
do not follow the observed pattern of reducing breakpoint influence at the solar installations. The
Desert Sunlight site did not have a significantly smaller postconstruction breakpoint density variance
and did not show a clear reduction in breakpoint probability density over solar installations from
before and after construction. We expect that this discrepancy stems from the specific construction
process of the site. Desert Sunlight had a nominal construction start date of September 2011. However,
Landsat imagery taken in May 2012 shows that a vast majority of the solar installations had not yet
been installed but were beginning to be placed onsite from the southern margin. This fact may account
for the differential north-south gradient in the differenced density surface for Desert Sunlight. Since
the southern half of the site had been developed and impacted first, it exhibited a stronger reduction
in breakpoint occurrence than the northern section.

The Desert Stateline site seemed to concentrate breakpoints where solar installations were located
rather than disperse them according to the differenced density surface. One possible reason for this
apparent discrepancy is the presence of a medium-sized road running north–south through the center
of the facility (diagonal from southwest to northeast in the plots due to the MODIS spatial projection),
with an appreciable margin of unpaved desert surface to the sides. Thus, any vegetation signal at
the site would be expressed through this section of exposed ground, potentially accounting for the
concentration of breakpoints toward the center.

Overall, the change detection results at Desert Stateline and Desert Sunlight tended to be different
from those at the other solar sites, not simply in regard to density estimation. The ratio of positive to
negative breakpoints at these two sites changed dramatically from being much larger than 1 (about
3 and 9) prior to construction to being less than 1 after construction. Furthermore, these two sites
were the only solar energy facilities in the study whose postconstruction breakpoint density variances
were comparable to their preconstruction breakpoint density variances. These findings imply that
Desert Stateline and Desert Sunlight tended to maintain similar breakpoint variability with time, but
the mechanism behind the breakpoints tended to reduce NDVI instead of increasing it. This shift
could signal a change in the “breakpoint generation process” from precipitation-dominated (positive
breakpoints) to human-dominated (negative breakpoints).
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5.4. Positive Breakpoint Distribution

The significantly larger kurtosis and variance in the DFAs for the positive shift distribution
suggest that the DFAs have had a more extreme positive NDVI response to the positive shift events
(precipitation, in most cases) than the MOJA and JOTR sites. The similar means across sites imply
that, on average, the positive NDVI shifts are similar in all sites but the tendency for greater variance
and kurtosis in the DFAs, combined with high skewness, implies that shifts greater than the mean
were more common in the DFAs. This conclusion is supported by the bootstrap distributions for the
variance and kurtosis in the DFAs, strongly suggesting that the variance and kurtosis in the DFAs are
significantly greater than those of the MOJA and JOTR sites.

One potential explanation is that vegetation health and density in the DFAs are, in general, lower
than those in protected regions, a claim that is supported by NDVI observations and the legacy of
human activity. The mean MODIS NDVI, after spatial and temporal averaging, was lowest for the
DFAs, with the MOJA site having the largest value (Table 6). Moreover, portions of the DFAs have
been subject to extreme human disturbances dating back to World War II, when the region was utilized
as a military training ground and experienced heavy vehicle use and explosive bombardments [26].
The positive shifts in the DFAs could tend to larger values because any particular amount of rainfall
would produce a stronger response in the more damaged vegetation conditions. For example, a
similar precipitation event would produce a much lesser NDVI response in healthy vegetation than in
browning vegetation, in which an input of the same amount of water would allow it “green up” and
begin to recover. JOTR protects stands of denser woodlands than are seen in the DFAs. The explanation
above would also align with the fact that JOTR has the lowest kurtosis and variance in positive shift
distribution out of the three sites (JOTR, MOJA, and DFAs).

Table 6. Mean Terra MODIS NDVI by site (February 2000 through May 2018).

Site Mean Terra MODIS NDVI

selected DFAs 0.099
JOTR 0.135
MOJA 0.154

The MOJA site was shown to have the highest mean NDVI among the study sites, but did not
have the smallest sample kurtosis and variance. Slightly cooler summer temperatures and higher
average annual rainfall in the eastern Mojave may account for this paradox. Higher elevations and
cooler temperatures at MOJA could reduce the rate at which the soil dries out following precipitation,
making more water available to plants over a longer period of time. Furthermore, extreme NDVI
shift values were relatively rare as a result, because soil water is available for longer, reducing the
burden for the plant to uptake the water quickly. This more dispersed greening from the feedback
between water availability and temperature explains the apparent discrepancy between the NDVI and
distributional statistics across sites.

5.5. Negative Breakpoint Distribution

Negative shift responses seem to be less favored overall in the DFAs compared to the protected
sites, but the level of response seems to be comparable to the MOJA site when negative shifts do occur.
As seen in the overall histogram of shifts by site, the ratio of negative to positive shifts is smaller in
the DFAs than in other sites, where the ratio tends to be closer to 1. Negative shift responses could
be less dominant in the DFAs because of the presence of developed areas. Events that could lead
to a sharp decline in vegetation conditions would be more controlled and mitigated for by humans.
Decreases in vegetation density and health during drought could be more muted because of poorer
initial vegetation conditions in the DFAs, so there is less potential for a major drop in NDVI.
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5.6. Limitations and Future Work

Field studies of the specific areas of interest were outside the scope of this study. Future work
should elucidate the connection between the purely statistical concept of a breakpoint with the possible
suite of physical phenomena it may represent. As a result, the conclusions drawn here, although
plausible, remain tentative until detailed fieldwork is performed for validation. Once the bridge
between the statistical and physical meanings is clarified, the methods presented here will be valuable
and practical tools to monitor sustainable development.

While a remote sensing framework using vegetation index datasets has been presented here,
the analysis relies on the suitability of vegetation indices as a proxy for vegetation conditions. More
lines of inquiry, for example, data on soil moisture and surface temperature, are required for a
comprehensive evaluation that vegetation indices alone cannot give. As BFAST only supports
univariate time series, further work should develop multivariate time series approaches to incorporate
relevant data to capture the wider collection of possibly influential processes.

6. Conclusions

A remote sensing change detection framework based on the BFAST time series analysis method
was developed and applied to identify the ecosystem impacts of solar energy sites in southern
California deserts. Three VIs (NDVI, EVI, and SAVI) were tested for their sensitivity to precipitation
and wildfire perturbations. NDVI was shown to have the strongest response, and thus adopted for
the subsequent analysis. The Terra MODIS NDVI dataset, starting from 2000, was used in the BFAST
change detection approach, which estimated breakpoints independent of seasonality. The BFAST
change detection analysis showed that positive breakpoints in NDVI are correlated with larger than
average rainfall events regardless of protection status, but negative breakpoints tended to have more
clearly different responses in JOTR, MOJA, and the selected study DFAs. The positive breakpoint
shift distribution for the DFAs indicated significantly larger variance and kurtosis. On the other hand,
the statistics for the negative breakpoint shift distribution for the DFAs could not be significantly
differentiated from the protected lands apart from the fact that negative breakpoints were less frequent
compared to positive breakpoints. These results may stem from differences in baseline vegetation
conditions and prior degradation. At the scale of individual solar energy sites, breakpoint patterns
were less consistent. Three out of the five solar energy facilities examined indicated that the distribution
of breakpoints after construction, when breakpoints did occur, were focused away from the immediate
location of solar installations. This phenomenon may be linked to a “homogenization” of the desert
surface, a transformation that would inhibit the appearance of breakpoints. However, the presence
of sites that do not match this pattern points to the significance of site-specific factors in determining
the response to construction. Finally, fieldwork is a key next step to connecting the largely statistical
analysis of this study with the physical significance to the desert ecosystem at the ground level.
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