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Abstract: Ozone (O3) pollution has become one of the most challenging problems in China, and high
O3 concentrations have been a major air quality issue in Changchun. Based on continuous observation
data of surface ozone concentrations from ten automatic air monitoring stations and meteorological
data from the meteorological bureau in Changchun, the temporal and spatial variations of the O3

concentration and its relationships with meteorological factors were analyzed by correlation analysis
during the period of 2013–2017. The results showed the following: A single apex model of the annual
mean O3 concentrations of the daily maximum 8 h average (MDA8) was found from the data for
2013 to 2017 in Changchun, with the highest MDA8 O3 concentrations in 2015 and a slight decline
from then until 2017. The O3 concentrations in the suburban areas and the south of Changchun were
higher than those downtown and north of the city. The seasonal variation of O3 concentrations was
obvious, following the order summer > spring > autumn > winter, which was similar to the results of
neighboring cities and provinces in Changchun. The days on which O3 concentrations exceeded the
standard were concentrated in summer and spring, and the total number of ozone excess days was
91 days; the maximum number of ozone excess days was in 2015. The O3 concentration exceeded
the standard in Changchun mainly in March–August, and its monthly mean value curve showed a
bimodal type in which the highest values appeared in May and July, while the lowest values appeared
in December. The diurnal pattern of ozone showed a single peak mode, and the peak value usually
appeared at 14:00–16:00 while the minimum value appeared at 07:00–08:00. O3 concentrations in
Changchun and the six selected pollutants CO, NO, NO2, NOx, PM10, and PM2.5 were negatively
correlated. Higher temperature is a necessary synoptic condition for ozone pollution in Changchun:
when the temperature rose, O3 concentrations increased significantly; further, O3 concentrations
were negatively correlated with relative humidity and atmospheric pressure and were positively
correlated with temperature and solar radiation. The O3 concentrations were highest when the wind
scale approached 14~20 km/h and the wind direction was S. Combined with the research results in
the surrounding areas of Changchun, it is indicated that there may be an ozone contribution from
south of Changchun through long-range pollution transport and tropospheric subsidence.

Keywords: surface ozone concentration; spatial–temporal variation; meteorological factors

1. Introduction

Ozone and fine particulate matter, as secondary pollutants, are considered to be two main
atmospheric contaminants that dramatically affect the current environmental quality [1]. Ozone is
mainly produced by the photochemical reaction of volatile organic compounds, nitrogen oxides, carbon
monoxide, and other precursors under the action of solar radiation [2]. Studies have shown that
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photochemical processes are the main source of near-surface ozone, and its contribution is 7~15 times
that of stratospheric ozone transport flux [3]. Tropospheric ozone has become a greenhouse gas which
can affect the radiation budget of the atmosphere [4] and, at a certain concentration level, will have
adverse effects on human health [5,6], ecosystems, crops [7,8], and so on. While the available data
on the free troposphere are limited, a notable finding from the existing literature is that no site or
region has shown a significant negative ozone trend since the 1970s [9]. In addition, significant positive
upper tropospheric trends have been measured in one or more seasons above southern China and
many other regions [10]. At the same time, ozone can accelerate the formation of particulate matter
and other pollutants and thus affect the frequency and intensity of heavy pollution weather [11]. The
formation of ozone is mainly controlled by precursor emissions and photochemical processes, but
tropospheric ozone entrainment also influences the surface ozone, resulting in enhancement of its
concentration [9]. It has been shown that the regional background ozone levels in the free troposphere
and the boundary layer during summer contribute on average to the most part of the surface ozone
levels measured in large urban areas like Athens [12]. Analysis has revealed that ozone is strongly
influenced by synoptic meteorology [13,14]. Meteorological changes can affect recent and future
trends in ozone and its precursors [15], and ozone pollution events are often caused by high-intensity
emissions and adverse meteorological conditions [16]. Also, the tropospheric ozone is affected by
climate variability [17,18]. Research over the Eastern Mediterranean indicated that the main origin
of these high background ozone levels is tropospheric ozone subsidence, which seems to be strongly
related with specific synoptic meteorological conditions [19]. In addition, strong summer anticyclonic
subsidence in the lower troposphere, leading to enhanced ozone, has been reported over the eastern
Mediterranean [20].

At present, a lot of extensive research on the photochemistry mechanism, transport, and migration
of ozone has been carried out in North America [21,22]. Until the mid-2000s, only a few developed
cities in China had carried out research on ozone [23,24], and there was little systematic research and
coordinated monitoring of ozone nationally. Over the past few decades, ozone concentrations have
been rising around the world [21,25]. With the rapid development of Chinese cities, ozone pollution is
becoming more and more serious [26,27]. Since 2013, several serious air pollution phenomena have
broken out in northeast China, and the environmental pollution has become increasingly serious [28,29].
Therefore, study on ozone is extremely urgent. In this paper, ozone monitoring data from Changchun,
the capital of Jilin province, from 2013 to 2017 were used to analyze the variation characteristics and
main causes of the ozone concentration in Changchun in combination with the relationship between
various pollutants and meteorological factors.

2. Materials and Methods

2.1. Sampling Sites

Since 2013, the Ministry of Environmental Protection has set up 1497 national automatic monitoring
stations for atmospheric environmental quality, which have all been put into operation. The ozone
observation data used in this paper are from ten automatic atmospheric environment monitoring
stations in Changchun. Nine of the ten sites are located in the built-up area of Changchun, as
shown in Figure 1: Daishan Park (DP), High-Tech Zone Management Committee (HZMC), Economic
Development Zone Environment Sanitary Administration (EESA), Jingyue Park (JYP), Bus Factory
Hospital (BFH), Labour Park (LP), Children’s Park (CP), Institute of Posts and Telecommunications
(IPT), Junzilan Park (JZP). The tenth is one clean control station named Shuaiwanzi (SWZ), which
is located in the Shuangyang district of Changchun and represents the background concentration.
Data from all ten sites were used together for data processing in this paper. The equipment of the
automatic monitoring stations of atmospheric environmental quality automatically collects samples
and generates data every 15 min; it then automatically uploads these data to the national and provincial
environmental protection departments. Table 1 shows the details of the above sampling stations.



Environments 2019, 6, 46 3 of 15
Environments 2019, 6, x FOR PEER REVIEW 3 of 14 

 

 

 

Figure 1. Air monitoring stations of Changchun, as well as the annual average concentration and five-
year average concentration of O3 for each monitoring station in 2013–2017. 
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Figure 1. Air monitoring stations of Changchun, as well as the annual average concentration and
five-year average concentration of O3 for each monitoring station in 2013–2017.

Table 1. Basic information of the air monitoring stations in Changchun.

Name Environmental Air
Quality Functional Area

Major Source of
Pollution (Area) Wind Direction

CP II Urban and rural Upwind
BFH II Industrial discharge Upwind
IPT II Densely populated Upwind
LP II Densely populated Downwind

HZMC II Urban and rural Upwind
DP II Industrial discharge Upwind
JYP I Natural reserve Side wind

EESA II Densely populated Downwind
JZP II Vehicle emission Downwind

SWZ I Background Side wind

Children’s Park (CP), Bus Factory Hospital (BFH), Institute of Posts and Telecommunications (IPT), Labour Park (LP),
High-Tech Zone Management Committee (HZMC), Daishan Park (DP), Jingyue Park (JYP), Economic Development
Zone Environment Sanitary Administration (EESA), Junzilan Park (JZP). The tenth is one clean control station
named Shuaiwanzi (SWZ).

2.2. Reference Standards and Pollutant Information

Unless specified otherwise, the ozone concentration used in this paper is the 8-hour moving
average value of ozone. The environmental quality evaluation standard values of ozone concentration
used herein are according to the HJ 633-2012 “Technical Regulation on Ambient Air Quality Index
(on trial)” [30] issued by the Ministry of Environmental Protection; the limits of concentration at
different levels in the daily evaluation of O3-8h are 161–215 µg/m3 for mild pollution, 216–265 µg/m3 for
moderate pollution, and >265 µg/m3 for severe pollution and above. (The “Ozone Mass Concentration”
is hereinafter referred to as the “ozone concentration” in units of µg/m3.) According to the regulation,
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the ozone concentration exceeds the standard when the “daily maximum 8-hour average” exceeds
160 µg/m3 or the “one-hour average” exceeds 200 µg/m3. In this paper, all measured data were selected
according to the “Monitoring Regulation for Ambient Air Quality” [31], the unreasonable values were
removed, and data quality control was carried out. The calculation, statistics, and evaluation of various
pollutant monitoring data were carried out in accordance with the “Monitoring Regulation for Ambient
Air Quality” (GB3095-2012) and the “Technical Regulation for Ambient Air Quality Assessment (on
trial)” (HJ663-2013) [32]. The pollutant data used in this paper include ozone hourly values (O3-1h),
ozone 8-hour moving average values (O3-8h), nitric oxide (NO), nitrogen dioxide (NO2), carbon
monoxide (CO), inhalable particulate matter PM10, and fine particulate matter PM2.5 from 2013 to 2017.
The meteorological data include hourly temperature, air pressure, relative humidity, wind speed and
direction data, and solar radiation data at 5:00, 13:00, and 21:00 for each day in 2015. The multi-year
statistical date count uses Julian days [33], and the seasonal division was adjusted with reference to
the meteorological industry standard “Division of Climate Season” (QX/T152—2012) [34] and annual
differences: April 16–May 31 is spring (46 days) in Changchun, June 1–August 31 is summer (92 days),
September 1–October 25 is autumn (55 days), and October 26–April 15 is winter (172 days).

3. Results and Discussion

3.1. Analysis of the Spatial–Temporal Variation of the Ozone Concentration

3.1.1. Analysis of the Spatial Variation of the Ozone Concentration in Changchun

As can be seen from Figure 1, the overall spatial distribution characteristics of the ozone
concentration in Changchun are similar to those in other cities [35,36]. It is shown that the ozone
concentration in the periphery of Changchun is higher than that in the center of the city, and the ozone
concentration in the south of the city is higher than that in the north of the city. Except for 2013, the
ozone concentration of IPT station was the lowest among the nine inner stations. Taking the IPT station
as the center, the urban central area covered by the IPT, CP, and BFH stations in Changchun is the
area with low ozone concentration. The highest average ozone concentrations were observed at the
stations JYP and SWZ, located outside of the urban area to the southwest, while at the same time
the prevailing wind direction is from the south in Changchun with relatively strong winds. These
are strong signs that the background ozone levels in the area might originate from various processes
including long-range pollution transport and tropospheric subsidence [37]. From 2013 to 2017, the
ozone concentration at JYP station was always the highest among the nine sites. JYP station is located
in a national scenic spot with high vegetation coverage, low traffic volume, and no pollution sources
nearby. So, the large amounts of ozone precursor that are released by plants [25], blown upwind, and
transported over long distances [38] may be the main reasons for the high concentration of ozone
in this region. We used a kriging interpolation method in Surfer software to process the monthly
average ozone concentration for five years in Changchun at these sites from 2013 to 2017, and we
plotted the contour map as shown in Figure 2. The spatial distribution characteristics of the ozone
concentration in Changchun are reflected in all time periods, and the monthly spatial distribution of
ozone concentration is basically consistent, which conforms to the above laws.
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annual average concentration of MDA8 in the following two years declined very slowly, and the 
concentration in 2017 was 90 μg/m3. The multi-year annual concentration of ozone MDA8 in the 90th 
percentile was 138 μg/m3, and the average annual MDA8 of the ozone concentration ranged from 128 
μg/m3 to 149 μg/m3. The total number of days on which the ozone concentration exceeded the 
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number of ozone excess days in 2015 is the highest at 28 days. The number of ozone excess days in 
the following two years decreased but was still at a high level. 

Figure 2. The spatial distribution of the monthly average O3 concentrations for five years in Changchun
during 2013–2017.

3.1.2. Analysis of the Annual Variation of the Ozone Concentration in Changchun

From 2013 to 2017, the daily maximum 8 h average (MDA8) of the ozone concentration in
Changchun was 87 µg/m3. The trend of variation (Figure 3) showed a single peak distribution. The
lowest concentration was 80 µg/m3 in 2013, and the highest concentration was 92 µg/m3 in 2015. The
annual average concentration of MDA8 in the following two years declined very slowly, and the
concentration in 2017 was 90 µg/m3. The multi-year annual concentration of ozone MDA8 in the 90th
percentile was 138 µg/m3, and the average annual MDA8 of the ozone concentration ranged from
128 µg/m3 to 149 µg/m3. The total number of days on which the ozone concentration exceeded the
standard in Changchun from 2013 to 2017 was 91 days. The column chart in Figure 3 shows that the
number of ozone excess days in 2015 is the highest at 28 days. The number of ozone excess days in the
following two years decreased but was still at a high level.
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concentration of ozone is relatively high, and the highest concentration of ozone, which fluctuates 
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Figure 3. Annual O3 daily maximum 8 h average (MDA8) concentrations and its 90th percentile
variation and the number of O3 excess days in Changchun from 2013 to 2017.

In order to analyze the five-year trend of ozone in Changchun in more detail, we calculated the
daily, monthly, and annual average ozone concentrations from the 8-hour moving average values. The
results are shown in Figure 4. Firstly, the annual average ozone concentration changed slightly from
2013 to 2014, rising by 19% in 2015, and then changed slightly in the following three years. Secondly,
the monthly average concentration of ozone presents an obvious annual cycle. The concentration
is low in the first and last cold months of the year in Changchun, and the lowest concentration
occurs in December; during the warm months in the middle of the year, the concentration of ozone is
relatively high, and the highest concentration of ozone, which fluctuates greatly every year, occurs
in May–August. The monthly peaks of ozone concentration were in May in 2013 and 2016 and the
peak was in July in the remaining three years. The long-term average annual value of daily ozone
concentration was 57 µg/m3. From 2015 to 2017, the number of days with high ozone concentration
increased, and the annual average ozone concentration increased generally compared with the previous
two years.

Environments 2019, 6, x FOR PEER REVIEW 6 of 14 

 

 
Figure 3. Annual O3 daily maximum 8 h average (MDA8) concentrations and its 90th percentile 
variation and the number of O3 excess days in Changchun from 2013 to 2017. 

In order to analyze the five-year trend of ozone in Changchun in more detail, we calculated the 
daily, monthly, and annual average ozone concentrations from the 8-hour moving average values. 
The results are shown in Figure 4. Firstly, the annual average ozone concentration changed slightly 
from 2013 to 2014, rising by 19% in 2015, and then changed slightly in the following three years. 
Secondly, the monthly average concentration of ozone presents an obvious annual cycle. The 
concentration is low in the first and last cold months of the year in Changchun, and the lowest 
concentration occurs in December; during the warm months in the middle of the year, the 
concentration of ozone is relatively high, and the highest concentration of ozone, which fluctuates 
greatly every year, occurs in May–August. The monthly peaks of ozone concentration were in May 
in 2013 and 2016 and the peak was in July in the remaining three years. The long-term average annual 
value of daily ozone concentration was 57 μg/m3. From 2015 to 2017, the number of days with high 
ozone concentration increased, and the annual average ozone concentration increased generally 
compared with the previous two years. 

 

Figure 4. Variation of daily, monthly, and annual average O3 concentrations in Changchun from 2013 
to 2017. 

  

Figure 4. Variation of daily, monthly, and annual average O3 concentrations in Changchun from 2013
to 2017.



Environments 2019, 6, 46 7 of 15

3.1.3. Analysis of the Seasonal Variation of the Ozone Concentration in Changchun

The diurnal variation of the multi-year average ozone concentration over the four seasons in
Changchun (Figure 5) shows a single peak trend. The concentrations in spring and summer were
higher than those over the whole year and higher than those in autumn and winter. The peak ozone
concentration was in the order summer > spring > autumn > winter, occurring at 14:00 p.m., and the
valley concentration was in the order spring > summer > winter > autumn, generally occurring at
6:00 a.m. but at 7:00 instead in winter. The daily distribution of the ozone concentration in Figure 5
also presents diurnal and nighttime variation. During 11:00–21:00 in the daytime, the concentration of
ozone in summer is higher than that in spring, while at other times that in spring is higher than that in
summer. Similarly, diurnal variation of the ozone concentration in autumn and winter is also observed
at 9:00–19:00. The major wind direction in spring at a synoptic scale is westerly in Changchun, which
transports higher background ozone to East Asia. On the other hand, the major wind direction in
summer is southerly [39], which transports cleaner air from the south. High values of near-surface
ozone concentration appear in spring, which may be caused by large-scale air mass transport or
stratospheric exchange caused by “tropospheric folding”, which may lead to a high concentration
of tropospheric ozone in spring. Studies have shown that the tropospheric ozone concentration
shows an increasing trend or abnormal value in spring, which is largely attributed to stratospheric
ozone [40]. In summer, the daytime solar radiation is stronger and photochemistry reactions are more
active. Near-surface NO depletes ozone and reduces its concentration. As shown in Figure A1, the
concentration of NO in Changchun is higher in spring than in summer at 8:00–23:00 in the daytime and
higher in summer than in spring at other times; this is also the reason why a high concentration of ozone
occurs in spring at night, but there is no clear evidence to show the reason why a high concentration
of ozone occurs in spring [41]. The diurnal and nocturnal variation of the ozone concentration in
autumn and winter can also be explained by NO. The concentration of NO in Changchun is higher in
winter than in autumn from 7:00 to 17:00, while it is higher in autumn than in winter at other times.
The seasonal and diurnal variation of the NO concentration in Changchun is exactly opposite to the
variation of the ozone concentration.
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3.1.4. Analysis of the Monthly Variation of the Ozone Concentration in Changchun

The 24-hour stacked graph of the ozone concentration in Changchun (Figure 6) shows an obvious
white shuttle-shaped area; this area indicates that the monthly average ozone concentration in
Changchun is high in the middle hot months and low in the head and tail cold months. The reason for
this is that the solar radiation during the hot months is stronger, there are more sunshine hours, and the
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temperature is higher, which is conducive to the formation of ozone, so the ozone concentration must
be higher. It is also obvious in Figure 6 that March–August are months of high ozone concentration in
Changchun. From 2013 to 2017, the monthly average ozone concentration reached its peak in May
and July and its valley in December. The monthly concentration averaged over five years reached its
peak in May of 82 ± 18 µg/m3 and reached its lowest value in December of 30 ± 7 µg/m3. In 2015, the
monthly variation of the ozone concentration became a bimodal pattern. The peak months of ozone
concentration were May and July, and the annual maximum appeared in July. The high-concentration
period of ozone is also shuttle-shaped in Figure 6. The high concentration of ozone represented by red
is concentrated between March and August, and the low concentrations in the middle of May and June
may be associated with the high relative humidity; this is also related to larger cloud cover and lower
solar radiation, which are not conducive to the formation of ozone. (The relative humidity in June is
7–10% higher than that in the next two months.)
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3.1.5. Analysis of the Diurnal Variation of the Ozone Concentration in Changchun

From the seasonal variation maps of ozone concentration (Figure 5) and 24-h stack maps (Figure 6),
it can be seen that the diurnal variation of ozone presents a single peak distribution. Figure 5 is the
eight-hour moving average value of ozone and Figure 6 is the hourly value of ozone; both charts show
that low concentrations of ozone occur from 23:00 p.m. to 6:00 a.m. and high concentrations of ozone
occur from 10:00 a.m. to 20:00 p.m. The maximum occurs at 14:00–16:00 p.m. and the minimum
occurs at 07:00–08:00 a.m. The accumulation regularity of ozone pollution is roughly divided into
three stages: the accumulation stage of ozone and precursors, the photochemistry generation stage
of ozone, and the ozone depletion stage [42]. From midnight to early morning, the concentration
of ozone in the urban atmosphere is in the low concentration portion of the day. Although there
is no photochemical reaction at night, the near-surface NO will continue to deplete ozone through
constant rapid consumption reactions with a small range of time. Therefore, the lowest level of ozone
concentration in Changchun appears at 07:00–08:00 in the morning and then increases rapidly, which



Environments 2019, 6, 46 9 of 15

is usually due to ozone entrainment from the free troposphere after the breaking of the nocturnal
boundary layer. While 08:00–17:00 is mainly the stage of ozone optical chemical formation, with the
emergence of morning rush hour, a large number of ozone precursors are released, and the intensity of
solar radiation begins to increase gradually. The strong solar radiation is prone to producing a series of
photochemical reactions. The free tropospheric influence attains its maximum in the afternoon hours
when the thermal mixing also attains its maximum, while local in situ photochemical ozone production
is maximized around noon, which makes the ozone concentration rise and reach its maximum value in
a day at 15:00.

3.2. Effects of Meteorological Factors and Other Pollutants on Ozone Concentration

Previous analysis results showed that 2015 was a year with serious ozone pollution indicators,
so this paper focused on the analysis of various causes of ozone changes in 2015. Therefore, it is
particularly important to analyze the relationship between ozone concentration and meteorological
factors and other pollutants after comparing the daily and monthly changes in 2015. The analysis of
other pollutants and meteorological factors in this chapter is based on a one-hour time scale.

3.2.1. Effects of Other Pollutants on Ozone Concentration

The relationship between O3 and meteorological factors varies slightly in different regions, but
there are generally the same conclusions on solar radiation, temperature, air pressure, relative humidity,
wind direction, and wind speed, etc. In order to analyze the impact of other pollutants on ozone, this
paper selected CO, NO, NO2, NOx, PM10, and PM2.5 as typical atmospheric pollutants. Combined
with the selected meteorological factors, correlation analysis was used to analyze the correlation of
12 factors (Table 2). In the graph, the blue bars represent positive correlation, the red bars represent
negative correlation, and the lengths of the bars represent the size of the correlation coefficient. The
sample number of 12 factors is 8760. The atmospheric pressure and six pollutants selected in this paper
are negatively correlated with the ozone concentration, among which the pollutants carbon monoxide
and nitrogen oxides are moderately negatively correlated with ozone concentration; this is inevitable
and similar to the research results in many cities. Also, the negative correlation of ozone concentrations
against six primary pollutants while temperature, solar irradiation, and wind speed show a positive
correlation with ozone indicates that regional background ozone levels are much more important than
local in situ photochemical ozone production.

Table 2. Correlation diagrams and correlation coefficients of O3 with other six pollutants and four
meteorological factors (n = 8760).
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T(°C） 0.58 0.57 1.00
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3.2.2. Effects of Temperature and Relative Humidity on Ozone Concentration

From Table 2, it can be seen that the ozone concentration in Changchun has strong negative
correlations with relative humidity and air pressure. Under certain synoptic weather conditions, high
regional background ozone concentrations might be observed, especially at the edge of a high-pressure
synoptic system, which is also associated with high irradiation and temperature and low humidity [43].
Temperature is one of the most important meteorological factors affecting ozone concentration. The
higher the temperature, the higher the ozone concentration will be; this is because the high temperature
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reduces the concentration of peroxyacyl nitrate (PAN), one of the precursors of ozone, resulting in high
ozone concentration. In addition, an increase in temperature is often accompanied by an increase in
radiation, a decrease in water vapor, and the natural emission of isoprene; all these factors together
lead to an increase in the ozone concentration. An increase in relative humidity is often accompanied
by increases in cloud cover, wind speed, and other meteorological conditions which are not conducive
to ozone generation and the accumulation of pollution, thus leading to a reduction of the ozone
concentration [44]. Relevant studies have suggested that in heavily polluted urban areas, due to the
presence of a large number of ozone precursors, an increase in water vapor will promote the conversion
of NO2 to nitric acid, thus inhibiting the formation of ozone [45]. It is confirmed again that an increase
in relative humidity will result in a significant reduction of the ozone concentration. Studies in some
cities [46] have shown that the effect of temperature on the ozone concentration is not simply a positive
correlation, while relative humidity may have a positive correlation with ozone concentration in some
areas; this provides a more detailed and reliable research direction for the future study of the effect of
meteorological factors on ozone concentration.

3.2.3. Effects of Wind Direction and Wind Speed on Ozone Concentration

Wind direction and wind speed affect the transport and diffusion of ozone pollutants, and different
wind fields significantly affect the ozone concentration in Changchun. The prevailing wind direction in
Changchun is southwesterly wind all year round, while southerly wind is the dominant wind direction
in Changchun on ozone excess days, with an average wind speed of 14 km/h. Figure 7 also shows that
the dominant wind direction in Changchun had a high wind speed of 14–20 km/h on the days when
ozone exceeded the standard. In the case of ozone pollution, ozone pollutants and their precursors in
the south of Changchun may be transported to Changchun through the southerly wind. Research
results have shown that the ozone concentrations at the 90th percentile in each year of 2013–2015
in Shenyang, close to Changchun, were 140, 165, and 155 µg/m3, respectively—higher than those of
Changchun. The highly polluted area of Shenyang is a suburb located in the south of Changchun. The
ozone pollution in Shenyang may affect the generation and accumulation of ozone in Changchun. The
impact of the wind field on pollutants cannot be simply inferred from a single dataset. This will be
the main research direction in the future to explore the impact of the wind field on ozone pollution in
Changchun based on data from all cities in Jilin Province and the surrounding provinces and cities.
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3.2.4. Effects of Solar Radiation on Ozone Concentration

Because of the strong positive correlation between O3-8h and O3-1h concentrations, we chose the
solar radiation data and the O3-8h data for correlation analysis and linear fitting (Figure 8). There is a
strong positive correlation between ozone concentration and solar radiation in Changchun, with a
correlation coefficient of 0.65. O3 concentration increases with increasing solar radiation, but there
is little difference under different radiation conditions: only in the case of high radiation intensity of
30–40 W/m2, the ozone concentration exceeds 140 µg/m3. Some studies from the literature have shown
that when radiation is low, the value of the O3 concentration is small, and it increases with increasing
radiation. It is noteworthy that the relationship between ozone and solar radiation is not a simple linear
relation. Zhao et al. [47] considered that when the solar radiation is higher than a certain value (about
40 W/m2), with increasing radiation, the value of the O3 concentration does not increase but decreases.
However, the solar radiation in Changchun does not exceed this limit, so there is no such relationship.
When studying the influence of temperature on ozone concentration, some scholars believe that when
the temperature is higher than a certain threshold, the excessive temperature conditions will reduce
pollution emissions and increase the diffusion speed, resulting in a decrease in the concentration of
nitrogen oxides and VOCs in the air and thus reducing the concentration of O3 near the ground [48].
This can also explain the decrease in the O3 concentration near the ground when the solar radiation
reaches a critical value.
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Variation in the ozone concentration is affected by many factors, the causes and mechanisms of
which need to be further analyzed in future work, and more direct evidence must be obtained.

4. Conclusions

1. The ozone concentration in the periphery of Changchun is higher than that in the city center, and
that in the south of Changchun is higher than that in the north. The average ozone MDA8 in
Changchun was shown to be 87 µg/m3 and the maximum ozone concentration in Changchun
increased year by year from 2013 to 2017 with a gentle single-front distribution. In 2015, the
concentration of ozone MDA8 was the highest and the concentration growth rate was the fastest;
in addition, the number of days exceeding the standard was the greatest in this year.

2. The seasonal and diurnal variations of the ozone concentration in Changchun showed a single
peak distribution, while the monthly variations showed a double peak distribution. Obvious
seasonal variation characteristics were shown. The peak concentration occurred between 10:00
and 20:00 in the daytime; during this period, the seasonal variation characteristics were in the
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order summer > spring > autumn > winter. The valley concentration occurred in the remaining
period, and the seasonal variation characteristics were in the order spring > summer > winter
> autumn. The monthly average ozone concentration reached its highest in May and July and
reached its lowest value in December. The diurnal variation peak of the ozone concentration
occurred from 14:00 to 15:00 p.m., and the lowest concentration appeared from 07:00 to 08:00 a.m.

3. In 2015, the ozone concentration in Changchun was moderately negatively correlated with carbon
monoxide and nitrogen oxides and negatively correlated with PM2.5 and PM10. The ozone
concentration was negatively correlated with atmospheric pressure and relative humidity and
positively correlated with temperature, and there was a linear positive correlation between ozone
concentration and solar radiation.
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